五年级下册数学试题-奥数专题训练:第二十九讲 竞赛题选讲(一)(无答案)全国通用

合集下载

小学奥数竞赛试卷(含答案)

小学奥数竞赛试卷(含答案)

小学奥数竞赛试卷一、填空题。

1.(3分)果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价元;其次是二等苹果.每千克售价元;最次的是三等苹果每千克售价元.这三种苹果的数量之比为2:3:1.若将这三种苹果混在一起出售,每千克定价元比较适宜.2.(3分)某班学生不超过60,在一次数学测验中,分数不低于90分的人数占,得80﹣﹣﹣﹣89分的人数占,得70﹣﹣﹣﹣﹣79分的人数占,那么得70分以下的有人.3.(3分)有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,…这列数的第200个数是.@4.(3分)某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是.5.(3分)从3、13、17、29、31这五个自然数中,每次取两个数分别作一个分数的分子和分母,一共可组成个最简分数.6.(3分)北京一零一中学由于近年生源质量不断提高,特别是师生们的共同努力,使得高考成绩逐年上升.在2001年高考中有59%的考生考上重点大学;2002年高考中有68%的考生考上重点大学;2003年预计将有74%的考生考上重点大学,这三年一零一中学考上重点大学的年平均增长率是.二、解答题。

-7.如图,过平行四边形ABCD内一点P画一条直线,将平行四边形分成面积相等的两部分(画图并说明方法).8.某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条小船需45元可积坐4人,请设计一种租船方案,使租金最省.{9.一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度.10.有一个六位数,它的二倍、三倍、四倍、五倍、六倍还是六位数,并且它们的数字和原来的六位数的数字完全相同只是排列的顺序不一样,求这个六位数.~11.50枚棋子围成圆圈,编上号码1、2、3、4、…50,每隔一枚棋子取出一枚,要求最后留下的枚棋子的号码是42号,那么该从几号棋子开始取呢12.计算(﹣+8)÷37+×!13.1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是亿元(精确到亿元).三、填空题。

五年级下册数学奥数试题- 竞赛模拟试卷(三)(含解析卷)全国通用

五年级下册数学奥数试题- 竞赛模拟试卷(三)(含解析卷)全国通用

小学五年级数学竞赛模拟试卷(三)一、填空(每题6分,共90分)1.(6分)1.25×67.875+125×6.7875+1250×0.053375.2.(6分)一个人从某地出发,前进20米就向右转30度,再前进20米又向右转30度,…,照这样走下去,当他回到出发点时共走了米.3.(6分)定义新运算:a△b=(a+b)+2,a○b=a×3+b,当(X△24)○18=60时,X=.4.(6分)三张卡片上分别写着1、2、3三个数字,可组成个不同的自然数.5.(6分)某食堂买来500千克的大米和200千克的面粉,吃了一段时间后,发现吃掉的大米和面粉同样多,而剩下的大米恰好是剩下面粉的7倍.则大米和面粉各吃掉千克.6.(6分)如图,正方形ABCD的边长为8厘米,AE的长为10厘米,BE的长为6厘米,则DF 的长为厘米.7.(6分)右边算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,当春蕾杯决赛各代表几时,算式成立.春=、蕾=、杯=、决=、赛=.8.(6分)有一本书共900页,编上页码1、2、3…问数字“0”在页码中共出现次.9.(6分)公司从某地运来一批陶瓷花瓶,损坏了50个,若把剩下的按10元一个出售,则要亏300元,若加价2元出售,则可盈利800元.公司共运来个陶瓷花瓶.10.(6分)五个数中,任取四个数的平均数再加上余下的一个数,所得的和分别是74、80、98、116、128,那么五个数中的最小数比最大数小.11.(6分)小胖用700元买了一件大衣、一条裤子和一双皮鞋.小亚问他每件商品的价格,小胖告诉他:大衣比裤子贵340元,大衣比鞋子和裤子的总和还贵180元,裤子的价格是元.12.(6分)一艘船,第一次顺水航行420千米,逆水航行80千米,用11小时;第二次用同样的时间顺水航行240千米,逆水航行140千米.这艘船顺水行198千米需要小时.13.(6分)已知五位数能同时被3和5整除,这样的五位数有个.14.(6分)甲乙两车同时从A、B两地出发相向而行,在距B地108千米处相遇.他们各自到达对方的出发地后立即返回原地,途中又在距A地84千米处相遇.两次相遇地点相距千米.二、解答题(每题15分,共30分).(要求写出推算过程)15.(15分)一袋球,有红黄两种颜色,先取出60个球,其中恰好有红球56个.以后,每次取出的18个球中总有14个红球,一直取到最后18个球正好取完.如果这堆球中红球的总个数正好占总球数的五分之四,那么这袋球中红球一共有几个?16.(15分)如图,△ABC的面积是5平方厘米,AE=ED,BD=2DC.阴影部分的总面积是平方厘米.参考答案与试题解析一、填空(每题6分,共90分)1.(6分)1.25×67.875+125×6.7875+1250×0.053375.【解答】解:1.25×67.875+125×6.7875+1250×0.053375,=125×0.67875+125×6.7875+125×0.53375,=125×(0.67875+6.7875+0.53375),=125×8,=1000.2.(6分)一个人从某地出发,前进20米就向右转30度,再前进20米又向右转30度,…,照这样走下去,当他回到出发点时共走了240米.【解答】解:20×(360÷30)=20×12,=240(米).答:当他回到出发点时共走了240米.故答案为:240.3.(6分)定义新运算:a△b=(a+b)+2,a○b=a×3+b,当(X△24)○18=60时,X=﹣12.【解答】解:(X△24)○18=60,(X+24+2)○18=60,(X+26)×3+18=60,X+26=14,X=﹣12;故答案为:﹣12.4.(6分)三张卡片上分别写着1、2、3三个数字,可组成15个不同的自然数.【解答】解:1、2、3三个数字组成的一位数有:1,2,3一共3个;两位数有:12,13,21,23,31,32一共6个;三位数有:123,132,213,231,312,321,一共有6个.3+6+6=15(个);答:可组成15个不同的自然数.故答案为:15.5.(6分)某食堂买来500千克的大米和200千克的面粉,吃了一段时间后,发现吃掉的大米和面粉同样多,而剩下的大米恰好是剩下面粉的7倍.则大米和面粉各吃掉150千克.【解答】解:设吃掉大米、面粉各x千克,根据题意得500﹣x=(200﹣x)×7,500﹣x=1400﹣7x,7x﹣x=1400﹣500,6x=900,x=150.答:大米和面粉各吃掉150千克.故答案为:150.6.(6分)如图,正方形ABCD的边长为8厘米,AE的长为10厘米,BE的长为6厘米,则DF 的长为 6.4厘米.【解答】解:8×8÷2×2÷10,=64÷10,=6.4(厘米);答:DF的长为6.4厘米.故答案为:6.4.7.(6分)右边算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,当春蕾杯决赛各代表几时,算式成立.春=4、蕾=2、杯=8、决=5、赛=7.【解答】解:根据题干分析可得:所以春=4,蕾=2,杯=8,决=5,赛=7.故答案为:4;2;8;5;7.8.(6分)有一本书共900页,编上页码1、2、3…问数字“0”在页码中共出现172次.【解答】解:①最后只有一位是0,即10﹣90,110﹣190,210﹣290,310﹣390,410﹣490,510﹣590,610﹣690,710﹣790,810﹣890,910,一共是82个0;②最后两位都是0,即100、200、300、400,500,600,700,800,900一共是18个0;③中间是0,101﹣109,201﹣209,301﹣309,401﹣409,501﹣509,601﹣609,701﹣709,80﹣809,一共是72个;综上,总共82+18+72=172个0.故答案为:172.9.(6分)公司从某地运来一批陶瓷花瓶,损坏了50个,若把剩下的按10元一个出售,则要亏300元,若加价2元出售,则可盈利800元.公司共运来600个陶瓷花瓶.【解答】解:剩下的个数:(300+800)÷2,=1100÷2,=550(个);总个数:550+50=600(个);答:公司共运来600个陶瓷花瓶.故答案为:600.10.(6分)五个数中,任取四个数的平均数再加上余下的一个数,所得的和分别是74、80、98、116、128,那么五个数中的最小数比最大数小72.【解答】解:(128×4﹣74×4)÷3=(512﹣296)÷3=216÷3=72;答:五个数中的最小数比最大数小是72.故答案为:72.11.(6分)小胖用700元买了一件大衣、一条裤子和一双皮鞋.小亚问他每件商品的价格,小胖告诉他:大衣比裤子贵340元,大衣比鞋子和裤子的总和还贵180元,裤子的价格是100元.【解答】解:设每条裤子x元,x+340+x+340+x﹣180﹣x=700,2x+500=700,2x+500﹣500=700﹣500,2x÷2=200÷2,x=100,答:裤子的价格是100元.故答案为:100.12.(6分)一艘船,第一次顺水航行420千米,逆水航行80千米,用11小时;第二次用同样的时间顺水航行240千米,逆水航行140千米.这艘船顺水行198千米需要 3.3小时.【解答】解:顺水航行的速度是逆水航行速度的:(420﹣240)÷(140﹣80),=180÷60,=3(倍);顺水速度每小时行:(420+80×3)÷11,=660÷11,=60(千米);这艘船顺水行198千米需要:198÷60=3.3(小时);答:这艘船顺水行198千米需要3.3小时.故答案为:3.3.13.(6分)已知五位数能同时被3和5整除,这样的五位数有7个.【解答】解:根据题意可知这个五位数能被5整除,所以个位是0或5,再根据能被3整除的特征确定百位上的数字,①如果个位是0,百位上是2或5或8,②如果个位是5,百位上是0或3或6或9,所以这个五位数可能是54270,54270,54870,54075,54375,54675,54975共7个.故答案为:7.14.(6分)甲乙两车同时从A、B两地出发相向而行,在距B地108千米处相遇.他们各自到达对方的出发地后立即返回原地,途中又在距A地84千米处相遇.两次相遇地点相距48千米.【解答】解:108×3﹣84﹣108﹣84,=324﹣84﹣108﹣84,=240﹣108﹣84,=132﹣84,=48(千米),答:两次相遇地点相距48千米,故答案为:48.二、解答题(每题15分,共30分).(要求写出推算过程)15.(15分)一袋球,有红黄两种颜色,先取出60个球,其中恰好有红球56个.以后,每次取出的18个球中总有14个红球,一直取到最后18个球正好取完.如果这堆球中红球的总个数正好占总球数的五分之四,那么这袋球中红球一共有几个?【解答】解:设取了x次,则球的总数有60+18x,红球有56+14x,依题意可得:(56+14x)÷(60+18x)=,56+14x=(60+18x)×,56+14x=48+14.4x,0.4x=8,x=20,56+14×20=336(个);答:这袋球中红球一共有336个.16.(15分)如图,△ABC的面积是5平方厘米,AE=ED,BD=2DC.阴影部分的总面积是2平方厘米.【解答】解:S△DCF的面积=5÷5=1(平方厘米).阴影部分面积等于△BDF的面积=△DCF的面积×2=1×2=2(平方厘米);答:.阴影部分的总面积是2平方厘米.故答案为:2.。

小学五年级下册奥数题型分类讲义(附答案)

小学五年级下册奥数题型分类讲义(附答案)

小学五年级下册奥数题型分类讲义(附答案)图形问题专题1长方形、正方形的周长一、专题解析同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4.长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。

那么如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长呢?还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的图形转化为标准的图形,以便计算它们的周长。

二、精讲精练例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。

思路导航】根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。

因此,所求周长是18×4=72厘米。

操演11、右图由8个边长都是2厘米的正方形组成,求这个图形的周长。

2、右图由1个正方形和2个长方形组成,下方长方形长为50cm,求这个图形的周长。

3、有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。

1例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。

现在这块木板的周长是多少厘米?思路导航】把截掉的192平方厘米分红A、B、C三块(如图),个中AB的面积是192-4×4=176(平方厘米)。

把A和B移到一同拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半。

176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米)。

练21、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分恰好是一个正方形。

求这个正方形的周长。

2、有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是几何?3、有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形。

五年级下册数学智力竞赛试题(附参考答案)

五年级下册数学智力竞赛试题(附参考答案)

一、填一填。

(每空1分,后3题每空2分,共26分。

) 1. 能同时被2、3、5整除的最大两位数是( )。

2. 60有( )个因数,91有( )个因数。

3.已知a =2×3×7,b =2×5,a 和b 的最小公倍数是( ),最大公因数是( )。

4.把两个棱长是5分米的正方体粘合成一个长方体,这个长方体的表面积是( ),体积是( )。

5.把4米长的绳子平均分成7段,每段长是全长的)()(,每段长( )米。

6.在a5里,当a 是( )时,这个分数值是1;当a 是( )时,这个分数值是5。

7.)()(35)(2116)(87==÷==←填小数。

8.三个连续奇数的和是219,这三个数的平均数是( ),其中最大的数是( )。

9.把37化成小数,小数点后面第2017位的数字是( )。

10.分子是7的最小假分数是( ),分母是7的最大真分数是( )。

11. 比较大小。

77777777777955555555555712.一个长、宽、高分别为21厘米、15厘米和12厘米的的长方体,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是( )立方厘米。

13. 下图中有( )个三角形。

二、判一判。

(对的打“√”,错的打“×”)(共12分)1. 长方体的6个面一定都是长方形。

( )2. 两个质数的积一定是合数。

( )3. 两个数的乘积一定的它们的公倍数。

( )4.五角星是轴对称图形,它只有1条对称轴。

( )5.做一个零件,甲用了12 小时,乙用了13 小时,甲的效率高。

( )6.大于120 而小于720 的分数有5个。

( )7. 分子和分母的公因数只有1的分数是最简分数。

( )8.一个正方体的棱长之和是36厘米,体积是27立方厘米。

( ) 三、选一选。

五年级下册数学试题- 奥数流水行船 冀教版(无答案)

五年级下册数学试题- 奥数流水行船  冀教版(无答案)

奥数专题之流水行船问题11.两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需几小时?2.两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,逆水比顺水需要多用几个小时行完全程?3.甲、乙两个码头相距130千米,汽船从乙码头逆水行驶6.5小时到达甲码头,又知汽船在静水中每小时行驶23千米。

求汽船从甲码头顺流开回乙码头需要几小时?4.一支运货小船队,第一次顺流航行42千米,逆流航行8千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米。

求这支小船队在静水中的速度和水流速度。

5.一只船在静水中的速度是每小时18千米,水流速度是每小时2千米。

这只船从甲港逆水航行到乙港需要15小时,甲、乙两港的距离是多少千米?6.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?7.甲、乙两港相距240千米。

一艘轮船逆水行完全程要15小时,已知这段航程的水流速度是每小时4千米。

这艘轮船顺水行完全程要用多少小时?8.甲、乙两港之间的距离是140千米。

一艘轮船从甲港开往乙港,顺水7小时到达,从乙港返回甲港逆水10小时到达。

这艘轮船在静水中的速度和水流速度各是多少?9.一艘轮船从乙港开往甲港,逆流而上每小时行18千米,返回乙港时顺流而下用了4小时。

已知这段航道的水速是每小时3千米,甲、乙两港相距多少千米?10.甲、乙两港相距192千米,从乙港到甲港逆流而上用了12小时,从乙港返回甲港每小时比去时多行8千米。

返回时比去时少用几小时?11.一只小船,第一次顺流航行48千米,逆流航行8千米,共用10小时;第二次用同样的时间顺流航行24千米,逆流航行14千米。

这只小船在静水中的速度和水流速度各是多少?12.已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。

现在轮船从上游A城到下游B城,已知两城的水路长72千米,开船时一旅客从窗口投出一块木板,问船到B城时木板离B城还有多少千米?13.甲、乙两港相距90千米,一艘轮船顺流而下要6小时,逆流而上要10小时;一艘汽艇顺流而下要5小时,如果汽艇逆流而上需要几小时?14.两上码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为每小时4千米,求逆水行完全程需要多少小时?15.两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水重组小时比顺水少行9千米,逆水比顺水多用几小时?16.A河是B河的支流,A河水的水速为每小时3千米,B河水的水速是每小时2千米。

小学五年级下学期数学竞赛试题(含答案)图文百度文库

小学五年级下学期数学竞赛试题(含答案)图文百度文库

小学五年级下学期数学竞赛试题(含答案)图文百度文库一、拓展提优试题1.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块2.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…3.数一数,图中有多少个正方形?4.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.5.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.6.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.7.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;8.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.9.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.10.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有 个细胞.11.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心 块.12.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A 、B 两人各自答题,得分之和是58分,A 比B 多得14分,则A 答对 道题.13.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有 种.14.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是 .15.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a ﹣b ×c 的值是 .【参考答案】一、拓展提优试题1.64 [解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。

(完整word版)最新五年级下册同步分数加减法的奥数题含答案

(完整word版)最新五年级下册同步分数加减法的奥数题含答案

(完整word版)最新五年级下册同步分数加减法的奥数题含答案分数加减法的奥数题知识点一任意一个自然数1除外作为分母的所有最简真分数的和,等于最简真分数的个数除以2。

1 2 3 4 5 6例1 计算(1) —+—+—+—+—+—7 7 7 7 7 71 3 7 9(2) —+—+—+—10 10 10 10通过计算,你能从中发现什么规律?练一练(1) 分母是9的所有最简真分数的和是( )。

1(2) 以—为分数单位的所有最简真分数的和是( )。

12知识点二两个分数单位相加减,如果它们的分母是互质数,那么所得的结果的分母是算式中两个分母的乘积,分子是算式中两个分母的和或差,运用这个规律,我们可以使计算简便。

例2 计算下面各题说说你发现了什么?1 1 1 1 1 1 1 1—+— = —+— = — - — = — - — =2 3 4 7 2 3 4 7练一练在括号里填上合适的数。

1 1 1 1 1 11————— = —————— = —( ) ( ) 12 ( ) ( ) 301知识点三一个分数是相邻两个自然数的积作分母,形如: ———,可以n×(n+1)1 1 1 1 1把这个分数拆成— - —— ,即: ——— = — - ——。

利用这个规律可以使n n+1 n×(n+1) n n+1我们计算简便。

1 1 1 1 1 1例3 计算——+——+——+——+——+——1×2 2×3 3×4 4×5 5×6 6×71 1 1 1 1 1练一练计算—-— - — - — - — - —4 20 30 42 56 72知识点四一道算式里,第一个加数是1/2,依次每个加数的分母都是前一个分母的2倍,分子都是1,这道算式的结果就是1减去最后一个分数,即计算结果的分母是最后一个分数的分母,分子比分母少1.例4 不用通分,你能很快地算出下面算式的结果吗?1 1 1 1 1 1 1 1 1 1—+—+—+——+—+—+—+—+—2 4 8 16 2 4 8 16 32 641 1 1 1 1 1 1 1练一练 1- — = —— - — = ( ) — - — = ( ) — - — = ( )2 2 23 34 4 51 1 1 1从上题中你发现了什么?用你的发现计算—+—+—+—2 6 12 201.在4136、8372、2924、1312四个分数中,第二大的是 . 2.有一个分数,分子加1可以约简为31,分子减1可约简为51,这个分数是 3.已知51154%75%90321÷=?=÷=?=?E D C B A .把A 、B 、C 、D 、E 这五个数从小到大排列,第二个数是 .4.所有分母小于30并且分母是质数的真分数相加,和是 .5.三个质数的倒数和为231a ,则a = . 6.计算,把结果写成若干个分母是质数的既约分数之和:199519511919591-+-+= . 7.将8473、5746、10089、3625和6251分别填入下面各( )中,使不等式成立. ( )<( )<( )<( )<( ).8.纯循环小数0.abc 写成最简分数时,分子与分母之和是58,请你写出这个循环小数 .9.()()()2413111=++ .(要求三个加数的分母是连续的偶数). 10.下式中的五个分数都是最简真分数,要使不等式成立,这些分母的和最小是 .()()()()()54321>>>>. 11.我们把分子为1,分母为大于1的自然数的分数称为单位分数.试把61表示成分母不同的两个单位分数的和.(列出所有可能的表示情况).12.试比较2?2?…?2与5?5?…?5的大小.301个2 129个513.已知两个不同的单位分数之和是121,求这两个单位分数之差的最小值. 14.(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?———————————————答案——————————————————————1.4136 提示,将分子“通分”为72,再比较分母的大小. 2. 154 事实上,所求分数为31和51的平均数,即(31+51)÷2=154. 3. C 因为655434109321?=?=?=?=?E D C B A ,又321341096554<<<<,所以D >E >B >C >A ,故从小到大第二个数是C . 4. 2159 分母是n 的所有真分数共有n -1个,这n -1个分数的分子依次为1~n -1, 和为2)1(-n n ,所以分母n 的所有真分数之和等于21-n .本题的解为 212-+212921232119211721132111217215213-+-+-+-+-+-+-+-+- =21+1+2+3+5+6+8+9+11+14=2159.5. 131因为231=3711,易知这3个质数分别为3,7和11,又31+11171+=231131,故a =131. 6. 19174+. 原式=13383399249399173219958532199512110596==-=-=+--,令19713383b a +=,则19?a +7?b =83,易见a =4,b =1,符合要求. 7. 100898473625157463625<<<<. 提示:各分数的倒数依次为73111,46111,89111,25111,89111. 8. 0.5670.abc 化为分数时是999abc ,当化为最简分数时,因为分母大于分子,所以分母大于58÷2=29,即分母是大于29的两位数,由999=3?3?3?37,推知999大于29的两位数约数只有37,所以分母是37,分子是58-37=21.因为999567273727213721=??=,所以这个循环小数是0.567. 9. 4,6,8.令241341211=++++a a a (a 为偶数).由 a a a a 3412112413<++++=,得1375<="" p="" ,故a="2或4,a">13614121>++,不合题意,因此,4=a . 10. 40提示:145114835221>>>>. 11. 令6111=+b a ,则a a a b 661611-=-=.所以636666-+=-=a a a b . 由a 、b 为整数,知636-a 为整数,即 a -6为36的约数,所以16=-a ,2,3,4,6,9,12,18,36.所以 a =7,8,9,10,12,15,18,24,42,相应地 b =42,24,18,15,12,10,9,8,7.注意到b a ≠,所有可能情况为10 115171421812419118161+=+=+=+=. 12. 因为301=43?7,129=43?3,11251285252434337129301>??? ??=???=,所以3012>1295. 13. 令ba 11121+=,且a <b ,由121=241+241知a <241281211=-. 14. (1)把9块中的三块各分为两部分:43411+=,42421+=,43411+=.每个孩子得412块: 甲:1+1+41;乙:1+4243+;丙: 1+42+43;丁:1+1+41. (2)好分,每人分721块: 甲:1+72;乙:7475+;丙:7673+;丁:71171++;戊:7376+;己:7574+;庚:172+.。

【经典】小学五年级下学期数学竞赛试题(含答案)一

【经典】小学五年级下学期数学竞赛试题(含答案)一

【经典】小学五年级下学期数学竞赛试题(含答案)一一、拓展提优试题1.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…2.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.3.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.4.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.5.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.6.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.7.如图,若每个小正方形的边长是2,则图中阴影部分的面积是.8.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.9.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.10.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.11.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.12.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.13.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.14.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分(甲和乙)的面积差是5.04,则S=.△ABC15.(7分)如图,按此规律,图4中的小方块应为个.【参考答案】一、拓展提优试题1.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.2.解:设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c…c,即b×c+c=47,c×(b+1 )=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.故答案为:46,1.3.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.4.解:行驶300米,甲车比乙车快2小时;那么甲比乙快1小时,需要都行驶150米;300﹣150=150(千米);故答案为:1505.解:根据分析,得知,=45=5×9既能被5整除,又能被9整除,故a的最大值为5,b=9,45被59□95整除,则□=8,五位数最大为59895故答案为:598956.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.7.解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.8.解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.9.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.10.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的(2)S△ABC :S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC +S△CGD)×2=360﹣(+40)×2=160.故答案是:16011.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12012.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.13.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.14.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.1615.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.。

五年级下册数学竞赛试题---14讲-图形-五大模型----全国通用(含答案)

五年级下册数学竞赛试题---14讲-图形-五大模型----全国通用(含答案)

五年下册奥数试题-图形-五大模型(一)姓名 得分【名师解析】一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型(共角定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

如: 依次称之为A 字型鸟头、X 字型鸟头、歪脖型鸟头、直脖型鸟头。

如图在ABC △中,,D E 分别是,AB AC 上的点如图(或D 、E 分别在BA 、CA 延长线上。

则有:ADE ABC S AD AE AD AE S AB AC AB AC ⨯=⨯=⨯△△三、蝴蝶定理模型(风筝模型)(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型(沙漏模型)五、燕尾定理模型【例题精讲】例1、三角形ABC 中,BD 是DC 的2倍,AE 是EC 的3倍。

三角形DEC 的面积为3平方厘米,求三角形ABC 的面积是多少平方厘米?EAD C B练习、在下图中,已知CF=2DF ,DE=EA ,△BCF 的面积为2,四边形BFDE 的面积为4,求△ABE 的面积。

FE DCB A例2、(1)在下图中,2AB BD AC CE ,,如果29ADE S cm ,求ABC S ?E D C BA练习、如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.DEAB C例3、正方形ABCD 边长为6 厘米,BC CF AC AE 3131==,.三角形DEF 的面积为多少平方厘米?BD练习、如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGS S .SGFE D CB A例4、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩.问另一个长方形的面积是多少亩?练习、下图中,长方形被两条直线分成四个小长方形,其中三个的面积分别是12平方米、8平方米、20平方米,求另一个(图中阴影都分)长方形的面积。

苏教版小学五年级下册数学奥数题带答案图文百度文库

苏教版小学五年级下册数学奥数题带答案图文百度文库

苏教版小学五年级下册数学奥数题带答案图文百度文库一、拓展提优试题1.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.3.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.4.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.5.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.6.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.7.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.8.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.9.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?11.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.12.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.13.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.14.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.15.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.16.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.17.观察下面数表中的规律,可知x=.18.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.19.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.20.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.21.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;22.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.125334215423.如图所示,P为平行四边形ABDC外一点。

五年级下册数学竞赛试题-奥数经典应用题100题 通用版(无答案)

五年级下册数学竞赛试题-奥数经典应用题100题 通用版(无答案)

经典小学五年级奥数应用题100题1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。

已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。

两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2.有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4.一个圆柱形容器内放有一个长方形铁块。

现打开水龙头往容器中灌水。

3分钟时水面恰好没过长方体的顶面。

再过18分钟水已灌满容器。

已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。

两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。

这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。

小明从家到学校全部步行需要多少时间?8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。

【精品】五年级下册数学试题-奥数:第一讲 直线形面积的计算(解析版)全国通用

【精品】五年级下册数学试题-奥数:第一讲 直线形面积的计算(解析版)全国通用

第一讲直线型面积的计算内容概述前三讲我们将针对几何部分进一步学习提高!首先,让我们一起来回顾一些基本知识!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。

我们的面积及周长都有相应的公式直接计算。

如下表:对于不规则图形的面积及周长计算,我们大都是由规则图形转化而来的!在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等.②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如下图,ACD∆和BCD∆夹在一组平行线之间,且有公共底边CD那么BCDACDSS∆∆=;反之,如果BCDACDSS∆∆=,则可知直线AB平行于CD。

这节课我们将通过例题学习到几个很重要的定理结论!同学们注意做好笔记啊!C DB例题精讲【例1】你有多少种方法将任意一个三角形分成(1)2个面积相等的三角形;(2)3个面积相等的三角形;(3)4个面积相等的三角形。

分析:(1)如右图,D、E、F分别是对应边上的中点,这样就将三角形分成了2个面积相等的三角形;(2)如右图,D、E是BC的三等分点,F、G分别是对应线段的中点;答案不唯一;(3)如下图,答案不唯一,以下仅供参考;前四种答案学生都容易得到,在这里我们需要特别说明的是第五个答案,请看例2 。

【例2】在学习三角形时,很多同学都听说过中位线,所谓中位线就是三角形两边中点的连线。

如右图所示,D、E、F分别是AB、AC、BC边的中点,根据定义可知DE、DF、EF就是三角形ABC的中线。

那么请你说明:(1)DE与BC平行(2)DE= 1/2 BC(3)S△ADE= 1/4 S△ABC分析:(1)在解答一些几何问题时,我们常常需要添加一些辅助线帮助我们分析解决。

如右图(1),连接DC、BE。

因为D、E分别是AB、AC的中点,所以S△BDC= 1/2S△ABC= S△BEC,又因为△BDC与△BEC同用BC做底,根据“内容概述”部分常用结论③可得:DE与BC平行。

小学五年级数学下册奥数50题、附解析及参考答案

小学五年级数学下册奥数50题、附解析及参考答案

练习题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成.如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九.现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成.现在先请甲、丙合做2小时后,余下的乙还需做6小时完成.乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天.已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件.当师傅完成了1/2时,徒弟完成了120个.当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵.单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管.甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完.现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数.求A+B分之A-B的最小值...3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?四.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A 768种B 32种C 24种D 2的10次方中2 若把英语单词hello的字母写错了,则可能出现的错误共有( )A 119种B 36种C 59种D 48种五.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )A,5 B,6 C,7 D,83.一次考试共有5道试题.做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%.如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)七.路程问题1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它.问:狗再跑多远,马可以追上它?2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3.在一个600米的环形跑道上,兄弟两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子.8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9.甲乙两车同时从AB两地相对开出.第一次相遇后两车继续行驶,各自到达对方出发点后立即返回.第二次相遇时离B地的距离是AB全程的1/5.已知甲车在第一次相遇时行了120千米.AB两地相距多少千米?10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时.如果水流速度是每小时2千米,求两地间的距离?11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程.12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B 两地相距多少千米?4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?5、某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?6、有7个数,它们的平均数是18.去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20.求去掉的两个数的乘积.7、小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?7、某工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个.但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套.问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套?8、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?参考答案一、工程问题1、解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满.2、解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效.又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成.只有这样才能“两队合作的天数尽可能少”.设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3、由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量.根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1.所以1-9/10=1/10表示乙做6-4=2小时的工作量.1/10÷2=1/20表示乙的工作效率.1÷1/20=20小时表示乙单独完成需要20小时.答:乙单独完成需要20小时.4、解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天5、答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个.6、答案是15棵算式:1÷(1/6-1/10)=15棵7、答案45分钟.1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数.1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水.1/2÷18=1/36 表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟.8、答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69、答案为40分钟.解:设停电了x分钟根据题意列方程1-1/120*x=(1-1/60*x)*2解得x=40二.鸡兔同笼问题1、解:4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只.400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.数字数位问题1、解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数.解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005从1000~1999千位上一共999个“1”的和是999,也能整除;200020012002200320042005的各位数字之和是27,也刚好整除.最后答案为余数为0.2、解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)前面的 1 不会变了,只需求后面的最小值,此时(A-B)/(A+B) 最大.对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值.(A+B)/B = 1 + A/B ,最大的可能性是A/B = 99/1(A+B)/B = 100(A-B)/(A+B) 的最大值是: 98 / 1003、解:因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103.当是102时,102/16=6.375当是103时,103/16=6.43754、解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198解得a=6,则a+1=7 16-2a=4答:原数为476.5、解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24.6、解:设原两位数为10a+b,则新两位数为10b+a它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11因此这个和就是11×11=121答:它们的和为121.7、解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x根据题意得,(200000+x)×3=10x+2解得x=85714所以原数就是8571428、答案为3963解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6.再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立.先取d=3,b=9代入竖式的百位,可以确定十位上有进位.根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5.再观察竖式中的十位,便可知只有当c=6,a=3时成立.再代入竖式的千位,成立.得到:abcd=3963再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立.9、解:设这个两位数为ab10a+b=9b+610a+b=5(a+b)+3化简得到一样:5a+4b=3由于a、b均为一位整数得到a=3或7,b=3或8原数为33或78均可以10、解:(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20四.排列组合问题1、解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种.第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种.2、解:5全排列5*4*3*2*1=120有两个l所以120/2=60原来有一种正确的所以60-1=59五.容斥原理问题1、解:根据容斥原理最小值68+43-100=11最大值就是含铁的有43种2、解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题.分别设各类的人数为a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①由(2)知:a2+a23=(a3+ a23)×2……②由(3)知:a12+a13+a123=a1-1……③由(4)知:a1=a2+a3……④再由②得a23=a2-a3×2……⑤再由③④得a12+a13+a123=a2+a3-1⑥然后将④⑤⑥代入①中,整理得到a2×4+a3=26由于a2、a3均表示人数,可以求出它们的整数解:当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22又根据a23=a2-a3×2……⑤可知:a2>a3因此,符合条件的只有a2=6,a3=2.然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符.故只解出第二题的学生人数a2=6人.3、答案:及格率至少为71%.假设一共有100人考试100-95=5100-80=20100-79=21100-74=26100-85=155+20+21+26+15=87(表示5题中有1题做错的最多人数)87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)100-29=71(及格的最少人数,其实都是全对的)及格率至少为71%六.抽屉原理、奇偶性问题1、解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套.这时拿出1副同色的后4个抽屉中还剩3只手套.再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推.把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套.这时拿出1副同色的后,4个抽屉中还剩下3只手套.根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的.以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的.2、解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样.3、解:需要分情况讨论,因为无法确定其中黑球与白球的个数.当黑球或白球其中没有大于或等于7个的,那么就是:6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是:6*5+3+1=34(个)如果黑球或白球其中有等于8个的,那么就是:6*5+2+1=33如果黑球或白球其中有等于9个的,那么就是:6*5+1+1=324、解:不可能.因为总数为1+9+15+31=5656/4=14.14是一个偶数,而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个).七.路程问题1、解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x 米.根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x =20米.可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米2、解:由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份.又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米.所以算式是(40+40)÷(10-8)×(10+8)=720千米.3、解:600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间4、解:算式是(140+125)÷(22-17)=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和.5、解:300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇.6、解:算式:1360÷(1360÷340+57)≈22米/秒关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程.也就是1360米一共用了4+57=61秒.7、答案是猎犬至少跑60米才能追上.解:由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米.由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米.从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完8、解:设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解答案:18分9、解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍.即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5).因此360÷(1+1/5)=300千米10、解:(1/6-1/8)÷2=1/48表示水速的分率2÷1/48=96千米表示总路程11、解:相遇是已行了全程的七分之四表示甲乙的速度比是4:3时间比为3:4所以快车行全程的时间为8/4*3=6小时6*33=198千米12、解:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30返回时间系数:3/5÷12+2/5÷30两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)八.比例问题1、解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元.又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元.而甲乙两人吃了的价值都是10元,所以甲还可以收回18-10=8元乙还可以收回12-10=2元刚好就是客人出的钱.2、解:最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份.增加的成本2份刚好是下降利润的2份.售价都是25份.所以,今年的成本占售价的22/25.3、解:原来甲.乙的速度比是5:4现在的甲:5×(1-20%)=4现在的乙:4×(1+20%)4.8甲到B后,乙离A还有:5-4.8=0.2总路程:10÷0.2×(4+5)=450千米4、答案为64:27解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16.根据“体积增加1/3”,可知体积是原来的4/3.体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:275、解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3926、解: 7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=1687、解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分.因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分).8、算式:这道题可以用方程解:解:设加工后乙种部件有x个.3/5X + 1/4X + 9/3X=77x=20甲:0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)答:甲12人,乙5人,丙60人.9、算式:这道题可以用方程解:解:设哥哥现在的年龄为x岁.x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)答:哥哥18岁,弟弟12岁.。

五年级下册数学试题-奥数专题训练:第二十三讲 游戏与对策(无答案)全国通用

五年级下册数学试题-奥数专题训练:第二十三讲 游戏与对策(无答案)全国通用

第二十三讲游戏与对策【知识要点】我国古代有一个“田忌赛马”的故事;齐王经常要求将军田忌和他赛马.规定各从自己的马中选上等马、中等马、下等马各一匹,进行三场比赛,每场各出一匹马.每胜一场可得一千金.田忌的朋友孙膑给他出了一个主意,叫田忌用下等马对齐王的上等马,上等马对齐王的中等马,中等马对齐王的下等马.结果……他告诉我们:在竞争时,要认真分析研究、寻求并制定尽可能好的方案.利用它取得尽可能大的胜利,或在胜利无望的时候,也不至于输得太惨.【经典例题】【例1】两个人轮流数数,每个人每次可以数1个、2个或3个,但不能不数.例如第一个数1、2,第二个接着往下数3,也可以数3、4,还可以数3、4、5.如此继续下去,谁先数到100,谁就算胜.请试一试,怎样才能获胜?【例2】黑板上写有1,2,3,…,100这100个自然数,甲、乙二人轮流每次每人划去一个数,直到剩下两个数为止,如剩下的两数互质则判甲胜,否则判乙胜.(1)乙先划甲后划,谁有必胜策略?必胜策略是怎样的?(2)甲先划乙后划,谁有必胜策略?必胜策略是怎样的?【例3】一张3×10的长方形网格纸有30个小方格.甲乙两人轮流用剪刀沿方格纸直样要求再剪.然后乙又选一份再送给甲,甲再这样剪……如此重复,谁送给对方一个方格,谁就获胜.甲欲获胜有何策略?【例4】下图是一张由4×10个方格组成的棋盘,一人持白子置于A位,另一人持黑子置于B位.随后两个人轮流走子,每一次可以沿一条横线或一条纵线至少走一格,并要遵守下列游戏规则:(1)不允许和对方的棋子在同一条直线上.(2)不能越过对方棋子所在的直线.轮到谁无路可走,就算输.【例5】火柴盒中有100跟火柴,甲乙两人做游戏,他们轮流在火柴盒中取火柴,先由甲取,接着乙取,再由甲取,……,要求每人取出的火柴数必须是火柴盒中当时的火柴数的约数.若规定谁取得最后一根火柴谁输,甲为了保证自己必定获胜,那么他第一次最多可多少根火柴?【大展身手】1 (100个格子)的长条纸上,从左向右移动一枚棋子(这枚棋子在1.甲、乙两人在100第一格上).移动规则是:最少移动1格,最多移动3格,将棋子移动最后一格者为输.甲有无获胜的策略?2.甲、乙两人轮流报数,每次报的数都是不超过8的自然数.把两人报的数逐次相加,谁正好使和达到88,谁就获胜,甲欲取胜有何策略?3.把53枚棋子排成一行,甲、乙二人轮流从中取1粒或相邻的2粒,谁取完最后1粒棋子就获胜.获胜的策略是什么?4.在黑板上写有1999个数,1、2、3、4、…、1999.甲、乙两人轮流擦去黑板上的一个数(甲先擦、乙后擦).如果最后剩下的两个数相邻,则甲胜.否则乙胜.问谁必获胜?获胜的对策是什么?5.有两个箱子分别装有63、108个球.甲、乙两个轮流在任意箱中取球,规定取得最后一个球的为胜.甲先取,他应如何取才能取胜?6.现有三堆火柴,分别为3、5、8根.两人轮流取,每次只能从其中一堆里取,取得根数最少一根,最多全堆取完,可以任意选择.谁取到最后一堆的最后一根谁获胜.问先取的人要保证获胜的策略是什么?7 的方格棋盘,左上角有一格棋子.二人轮流走这格棋子,甲7.图是一个5先乙后,每人每次只能向下、向右或向右下走一格,如图中棋子可以走A、B、C三格之一.谁将棋子走入右下角方格中谁获胜.如果都按最佳方法走,那么谁将获胜?怎样走?13.8.有9张卡片,分别写着1~9这9个数.甲、乙两人轮流去取,每次取一张(甲先取、乙后取).规定:谁手上的三张卡片上数字和等于15,谁就获胜.问谁有不败的策略?2 ).甲置白子于A位,乙置黑子于B位.随后两人轮流走子,每一步9.如图是一张(9可沿一条横线或一条竖线中的一条至少走一格,并遵循如下规则:(1)不允许和对方棋子处于同一条横线或竖线.(2)不能越过对方棋子所在的横线或竖线.轮到谁的棋子无法移动就算失败.若甲先走,甲有胜乙的办法吗?10.一些苹果如图放置,游戏规则为:从最下面一排开始取,两人轮流取,个数不限,但不能不取,且下一排未取完前不能取上一排,取到最后一个为胜.若让你先取,怎样取你才能赢?。

苏教版小学五年级数学下册名校竞赛卷含答案图文百度文库

苏教版小学五年级数学下册名校竞赛卷含答案图文百度文库

苏教版小学五年级数学下册名校竞赛卷含答案图文百度文库一、拓展提优试题1.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.2.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块3.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.4.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.5.数一数,图中有多少个正方形?6.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.7.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.8.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是分.9.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.10.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.11.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.12.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?13.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.14.观察下面数表中的规律,可知x=.15.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC【参考答案】一、拓展提优试题1.解:一个自然数N 恰有9个互不相同的约数,则可得N =x 2y 2,或者N =x 8,(1)当N =x 8,则九个约数分别是:1,x ,x 2,x 3,x 4,x 5,x 6,x 7,x 8,其中有3个约数A 、B 、C 且满足A ×A =B ×C ,不可能.(2)当N =x 2y 2,则九个约数分别是:1,x ,y ,x 2,xy ,y 2,x 2y ,xy 2,x 2y 2,其中有3个约数A 、B 、C 且满足A ×A =B ×C ,①A =x ,B =1,C =x 2,则x +1+x 2=79,无解.②A =xy ,B =1,C =x 2y 2,则xy +1+x 2y 2=79,无解.③A =xy ,B =x ,C =xy 2,则xy +x +xy 2=79,无解.④A =xy ,B =x 2,C =y 2,则xy +x 2+y 2=79,解得:,则N =32×72=441.⑤A =x 2y ,B =x 2y 2,C =x 2,则x 2y +x 2y 2+x 2=79,无解.故答案为441.2.64[解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十九讲竞赛题选讲(一)
【经典例题】
【例1】图一是由19个六边形组成的图形,在六边形内蚂蚁只可以选图二中箭头所指方向之一爬到相邻的六边形内。

一只蚂蚁从六边形A出发,选择不经过六边形C的路线到达六边形B,那么这样的路线共有条。

【例2】某部队射击训练规定:用步枪射击发给子弹10颗,没击中靶心一次奖励2颗;用手枪射击发给子弹15颗,每击中靶心一次奖励3颗。

战士甲用步枪射击,乙用手枪。

当他们把发的和奖励的子弹都打完时,两人射击的次数相等,甲击中靶心16次,乙击中靶心多少次?
【例3】一次数学考试有20道题。

规定:答对一题得2分,答错一题扣1分,未答的题不计分。

考试结束后,小明共得23分,他想知道自己错了几道题,但只记得未答的题的数目是个偶数。

请你帮助小明计算一下,他答错了几道题?
【例4】一排长椅共有90个座位,其中一些座位已经有人就座了。

这时又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。

原来至少有多少人已经就座?
【例5】从1,2,3,4,5中选出四个数填入图中的方格内,使得右图的数比左边的大,下面的数比上面的大。

那么共有多少种填法?
【例6】2005年,小张有一次出差的几天的日期数加起来恰好是60.问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)
【大展身手】
1.定义新计算a※b=a×b+a+b(例如3※4=3×4+3+4=19)。

计算(4※5)※(5※6)=
2.计算12345×12346-12344×12343=
3.一个十几岁的男孩,把自己的岁数写在父亲的岁数之后,组成一个四位数。

从这个四位数中减去他们父子两人岁数的差,得到4289.求父、子的岁数各是多少?
4.甲和乙两人都买了一套相同的信封盒。

甲在每个信封里装一张信纸,结果用完了所有的信封,但剩下50张信纸。

乙在每个信封里装三张信纸,结果用完了所有的信纸,剩下50个信封。

问每套信封盒中有多少个信封?多少张信纸?
5.在一张正方形纸上画四个三角形,最多可以把这个正方形分成多少块?
7.3枝圆珠笔的价钱与2个文具盒的价钱相等。

15把削笔刀的价钱与2枝圆珠笔的价钱相等。

2把削笔刀的价钱与5把直尺的价钱相等。

没把直尺8分钱,每个文具盒多少钱?
8.将一个长和宽分别是1833厘米和423厘米的长方形分割成若干个正方形,则正方形最少是个。

9.5个空瓶子可以换1瓶汽水。

某班同学喝了160瓶汽水,其中有一些是用喝剩下的空瓶换来的,他们至少买了多少瓶汽水?
10.一堆草,可以供3头牛和4只羊吃14天,或者供4头牛和15只羊吃7天。

现将这堆草供给6头牛和8只羊吃,可以吃多少天?
11.从1开始依次把自然数一一写下去:1234567891011121314...
12.自然数按从小到大排列:1,2,3,...,9,10,...。

把这串数中的数字全部隔开,组成第二串数:1,2,...,9,1,0,1,1,1,2,...。

第一串数中100的个位数字0在第二串数中是第几个数?
8、有黑白棋子一堆,黑子个数是白子的2倍。

现在从此堆内每次取出黑子4个、白子3个。

待到若干次后,白子已经取尽,而黑子还有16个。

黑、白棋子原来各有多少个?。

相关文档
最新文档