几何证明选讲专题复习(精选5篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明选讲专题复习(精选5篇)

第一篇:几何证明选讲专题复习

河津中学高三二轮专题复习

几何证明选讲专题复习

1、如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B、C两点,圆心O在∠PAC的内部,点M是BC的中点。

⑴证明:A、P、O、M四点共圆。⑵求∠OAM+∠APM的大小。

2、如图,BA是⊙O的直径,AD是⊙O的切线,BF、BD是割线。证明:BE·BF=BC·BD

3、△ABC内接于⊙O,AB=AC,直线MN切⊙O 于C,弦BD∥MN,AC、BD交于点E

⑴求证:△ABE≌△ACD⑵AB=6,BC=4,求AE4、如图所示,AB 是⊙O 的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O 的切线,切点为H。

求证:⑴C、D、F、E四点共圆;⑵GH2=GE·GF.第 1页

5、如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E..⑴求证: AB2=DE·BC;

⑵若BD=9,AB=6,BC=9,求切线PC的长。

6、已知C点在⊙O直径BE的延长线上,CA切⊙O于A点,∠ACB的平分线分别交AE、AB于点F、D。⑴求∠ADF的度数;⑵若AB=AC,求AC/BC的值。

7、如图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D 为切点。⑴求证:AD∥OC;⑵若⊙O的半径为1,求AD·OC的值。

8、在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。

⑴求证:

⑵若AC=3,求AP·AD的值。

9、在平面四边形ABCD中,△ABC≌△BAD.求证:AB∥CD10、已

知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于A、F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC。

⑴求证:∠BAC=∠CAG;⑵AC2=AE·AF11、如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,绕点O逆时针旋转600到OD。

⑴求线段PD的长;

⑵在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由。

12、如图,⊙O的直径AB=6,C为圆周上一点,BC=3,过C做圆的切线l,过A做l的垂线AD,AD分别与直线l,圆O交于点D,E。⑴求∠DAC;⑵求线段AE的长。

13、如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、2BC相交于E点,F为CE上一点,且DE=EF·EC.⑴求证:∠P=∠EDF;⑵求证:CE·EB=EF·EP.14、如图,AB是圆O的直径,D为圆O上一点,过D做圆O的切线交AB的延长线于点C,若DA=DC,求证:AB=2BC。

15、如图,点A、B、C是圆O上的点,且AB=4,∠ACB=300,则圆O的面积等于_____________。

16、如图,AB、CD是半径为a的圆O的两条弦,它们相交于AB 的中点P,0PD=2a/3,∠OAP=30,则CP=______________。

17、如图,⊙O的弦ED,CB的延长线交于点A,若

BD⊥AE,AB=4,BC=2,AD=3,DE=_________;CE=__________.

第二篇:《几何证明选讲》综合复习

选修4-1 《几何证明选讲》

广东高考考试大纲说明的具体要求:

(1)了解平行线截割定理,会证直角三角形射影定理.(2)会证圆周角定理、圆的切线的判定定理及性质定理.(3)会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.(4)了解平行投影的含义,通过圆柱与平面的位置关系,了解平行投影;

会证平面与圆柱面的截线是椭圆(特殊情形是圆).(5)了解下面定理:

定理在空间中,取直线l为轴,直线l'与l相交于点O,其夹角为α,l'围绕l旋转得到以O为顶点,l'为母线的圆锥面,任取平面π,若它与轴

l交角为β(π与l平行,记β=0),则:

(i)β>α,平面π与圆锥的交线为椭圆;

(ii)β=α,平面π与圆锥的交线为抛物线;

(iii)β<α,平面π与圆锥的交线为双曲线.人教(A)版选修4-1《几何证明选讲》综合复习

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作

圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =()

A.15︒

B.30︒

C.45︒

D.60︒

【解析】由弦切角定理得∠DCA=∠B=60︒,又AD⊥l,故∠DAC=30︒,【解析】设εO半径为r,由割线定理有6⨯(6+22)=(12-r)(12+r),解得r=8.故选D.3

6.如图,AB是半圆O的直径,点C在半圆上,CD⊥AB于点D,且AD=3DB,设∠COD=θ,则tan2

11A

.B.34θ2=()

第三篇:几何证明选讲基础知识复习

几何证明选讲基础知识复习

一、选考内容《几何证明选讲》考试大纲要求:

(1)了解平行线截割定理,会证直角三角形射影定理.(2)会证圆周角定理、圆的切线的判定定理及性质定理.(3)会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.(4)了解平行投影的含义,通过圆柱与平面的位置关系,了解

平行投影;会证平面与圆柱面的截线是椭圆(特殊情形是圆).

(5)了解下面定理:

定理在空间中,取直线l为轴,直线l'与l相交于点O,其

夹角为α,l'围绕l旋转得到以O为顶点,l'为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行,记β=0),则:

(i)β>α,平面π与圆锥的交线为椭圆;

(ii)β=α,平面π与圆锥的交线为抛物线;

(iii)β<α,平面π与圆锥的交线为双曲线.二、基础知识填空:

1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上

截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________。推论2: 经过梯形一腰的中点,且与底边平行的直线________________。

2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例。推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段____________。

3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于_______;

相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________;相似三角形面积的比、外接圆的面积比都等于____________________;

4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;

两直角边分别是它们在斜边上_______与_________的比例中

项。

5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半。圆心角定理:圆心角的度数等于_______________的度数。

推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______。

o推论2:半圆(或直径)所对的圆周角是_______;90的圆周角

相关文档
最新文档