岳阳市初中数学八年级下期末经典习题(培优专题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.(0分)[ID :10232]若2(5)x =x ﹣5,则x 的取值范围是( ) A .x <5
B .x ≤5
C .x ≥5
D .x >5
2.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双
1
3
3
6
2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5
B .24.5,24
C .24,24
D .23.5,24
3.(0分)[ID :10216]如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )
A .(-5,3)
B .(-5,4)
C .(-5,
5
2
) D .(-5,2)
4.(0分)[ID :10208]下列说法:
①四边相等的四边形一定是菱形
②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形
④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有( )个. A .4
B .3
C .2
D .1
5.(0分)[ID :10143]如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部
C 的8米处,则大树断裂之前的高度为( )
A .10米
B .16米
C .15米
D .14米
6.(0分)[ID :10142]如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线
AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形
( ).
A .AE =CF
B .DE =BF
C .ADE CBF ∠=∠
D .AED CFB ∠=∠
7.(0分)[ID :10140]下列计算正确的是( ) A .2(4)-=2
B .52=3-
C .52=10⨯
D .62=3÷
8.(0分)[ID :10190]下列计算中正确的是( ) A .325+=
B .321-=
C .3333+=
D .
33
42
=
9.(0分)[ID :10188]如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为( )
A .1
B .2
C .3
D .4
10.(0分)[ID :10182]“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )
A .9
B .6
C .4
D .3 11.(0分)[ID :10181]若一个直角三角形的两边长为12、13,则第三边长为( ) A .5
B .17
C .5或17
D .5或√313
12.(0分)[ID :10178]从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S 甲2=1.5,S 乙2=2.6,S 丙2=3.5,S 丁2=3.68,你认为派谁去参赛更合适( ) A .甲
B .乙
C .丙
D .丁
13.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米
A.0.4B.0.6C.0.7D.0.8
14.(0分)[ID:10153]正方形具有而菱形不一定具有的性质是()
A.对角线互相平分
B.每条对角线平分一组对角
C.对边相等
D.对角线相等
15.(0分)[ID:10148]如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()
A.4B.5C.6D.43
二、填空题
16.(0分)[ID:10328]如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE的度数为度.
17.(0分)[ID:10318]长、宽分别为a、b的矩形,它的周长为14,面积为10,则
a2b+ab2的值为_____.
x 有意义,那么x的取值范围是__________.18.(0分)[ID:10310]如果二次根式4
19.(0分)[ID:10308]如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.
20.(0分)[ID:10295]一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海
21.(0分)[ID :10287]已知函数y =2x +m -1是正比例函数,则m =___________. 22.(0分)[ID :10286]一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.
23.(0分)[ID :10280]菱形两条对角线的长分别为6和8,它的高为 . 24.(0分)[ID :10272]将直线y =2x 向下平移3个单位长度得到的直线解析式为_____. 25.(0分)[ID :10252]有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .
三、解答题
26.(0分)[ID :10384]国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).
A 组:0.5t
B <组:0.51t
C <组:1 1.5t
D <组: 1.5t
请根据上述信息解答下列问题: (1)C 组的人数是 ;
(2)本次调查数据的中位数落在 组内;
(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.
27.(0分)[ID :10367]甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,因有事按原路原速返回A 地.乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是 千米/时,t = 小时;
(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范
(3)直接写出乙车出发多长时间两车相距120千米.
28.(0分)[ID:10364]为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.
甲、乙射击成绩统计表
平均数(环)中位数(环)方差命中10环的次数
甲70
乙1
甲、乙射击成绩折线统计图
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
29.(0分)[ID:10349]我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分)中位数(分)众数(分)
初中部85
高中部85100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
30.(0分)[ID:10424]如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.
(1)求证:四边形BECD是矩形;
(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.
【参考答案】
2016-2017年度第*次考试试卷参考答案
**科目模拟测试
一、选择题
1.C
2.A
3.A
4.C
5.B
6.B
7.C
8.D
9.C
10.D
11.D
12.A
13.D
14.D
15.A
二、填空题
16.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E
17.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2
18.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根
19.>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(12)∴关于x的不等式mx+n<x+n-2的解集为x>1故答案为x>1
20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+
21.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1
是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义
22.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;
②a<0原来的说法错误;③方
23.【解析】试题解析:由题意知AC=6BD=8则菱形的面积S=×6×8=24∵菱形对角线互相垂直平分∴△AOB为直角三角形AO=3BO=4∴AB==5∴菱形的高h==考点:菱形的性质
24.【解析】【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y2x向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b而言:
25.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差
三、解答题
26.
27.
28.
29.
30.
2016-2017年度第*次考试试卷参考解析
【参考解析】
**科目模拟测试
一、选择题
1.C
解析:C
【解析】
【分析】
(a≤0),由此性质求得答案即可.
【详解】

∴5-x≤0
∴x≥5.
故选C.
【点睛】
(a≥0(a≤0).
2.A
解析:A
【解析】
【分析】根据众数和中位数的定义进行求解即可得.
【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
故选A.
【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.
3.A
解析:A
【解析】
【分析】
先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).
【详解】
由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.
又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.
∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).
故选A.
【点睛】
本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.
4.C
解析:C
【解析】
【分析】
【详解】
∵四边相等的四边形一定是菱形,∴①正确;
∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
∵对角线相等的平行四边形才是矩形,∴③错误;
∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
其中正确的有2个,故选C.
考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
5.B
解析:B
【解析】
【分析】
根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.
【详解】
由题意得BC=6,在直角三角形ABC中,根据勾股定理得:
2222
BC AC
++=10米.
=68
所以大树的高度是10+6=16米.
故选:B.
【点睛】
此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.
6.B
解析:B
【解析】
【分析】
根据平行四边形的性质以及平行四边形的判定定理即可作出判断.
【详解】
解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,
若AE=CF,则OE=OF,
∴四边形DEBF是平行四边形;
B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;
C、∵在平行四边形ABCD中,OB=OD,AD∥BC,
∴∠ADB=∠CBD,
若∠ADE=∠CBF,则∠EDB=∠FBO,
∴DE∥BF,
则△DOE和△BOF中,
EDB FBO OD OB
DOE BOF ∠=∠


=

⎪∠=∠


∴△DOE≌△BOF,
∴DE=BF,
∴四边形DEBF是平行四边形.故选项正确;
D、∵∠AED=∠CFB,
∴∠DEO=∠BFO,
∴DE∥BF,
在△DOE和△BOF中,
DOE BOF
DEO BFO OD OB
∠=∠


∠=∠

⎪=


∴△DOE≌△BOF,
∴DE=BF,
∴四边形DEBF是平行四边形.故选项正确.
故选B.
【点睛】
本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.7.C
解析:C
【解析】
【分析】
根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】
,故A选项错误;
不是同类二次根式,不能合并,故B选项错误;
C选项正确;
D选项错误,
故选C.
【点睛】
本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.
8.D
解析:D
【解析】
分析:根据二次根式的加减法则对各选项进行逐一计算即可.
详解:A
B不是同类项,不能合并,故本选项错误;
C、3不是同类项,不能合并,故本选项错误;
D
2
,故本选项正确.
故选:D.
点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.
9.C
解析:C
【解析】
【分析】
由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.
【详解】
解:∵O是矩形ABCD对角线AC的中点,OB=5,
∴AC=2OB=10,
∴CD=AB6,
∵M是AD的中点,
∴OM=1
2
CD=3.
故答案为C.
【点睛】
本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜
边上的中线等于斜边的一半是解题的关键.
10.D
解析:D
【解析】
【分析】
已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.
【详解】
a b -由题意可知:中间小正方形的边长为:,
11ab 8422
=⨯=每一个直角三角形的面积为:, 214ab a b 252
(),∴⨯+-= 2a b 25169∴-=-=(),
a b 3∴-=,
故选D.
【点睛】
本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.
11.D
解析:D
【解析】
【分析】
根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.
【详解】
当12,13为两条直角边时,
第三边=√122+132=√313,
当13,12分别是斜边和一直角边时,
第三边=√132−122=5.
故选D .
【点睛】
本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.
12.A
解析:A
【解析】
【分析】
根据方差的概念进行解答即可.
【详解】
由题意可知甲的方差最小,则应该选择甲.
故答案为A.
【点睛】
本题考查了方差,解题的关键是掌握方差的定义进行解题.
13.D
解析:D
【解析】
【分析】
【详解】
解:∵AB=2.5米,AC=0.7米,∴BC(米).
∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),
∴DC(米),
∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).
故选D.
【点睛】
此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.
14.D
解析:D
【解析】
【分析】
列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.
【详解】
正方形具有而菱形不一定具有的性质是:
①正方形的对角线相等,而菱形不一定对角线相等;
②正方形的四个角是直角,而菱形的四个角不一定是直角.
故选D.
【点睛】
本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.
15.A
解析:A
【解析】
【分析】
根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.
【详解】
∵∠ABC=120°,四边形ABCD是菱形
∴∠CBD=60°,BC=CD
∴△BCD是等边三角形
∵BD=4
∴BC=4
故答案选A.
【点睛】
本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.
二、填空题
16.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中
∵AE平分∠BAD∴∠BAE=∠E
解析:75°.
【解析】
试题分析:根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.
解:在矩形ABCD中,∵AE平分∠BAD,
∴∠BAE=∠EAD=45°,
又知∠EAO=15°,
∴∠OAB=60°,
∵OA=OB,
∴△BOA为等边三角形,
∴BA=BO,
∵∠BAE=45°,∠ABC=90°,
∴△BAE为等腰直角三角形,
∴BA=BE.
∴BE=BO,∠EBO=30°,
∠BOE=∠BEO,
此时∠BOE=75°.
故答案为75°.
考点:矩形的性质;等边三角形的判定与性质.
17.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2
解析:【解析】
【分析】
由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab (a+b),代入可求得答案
【详解】
∵长、宽分别为a、b的矩形,它的周长为14,面积为10,
∴a+b=14
2
=7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=70,
故答案为:70.
【点睛】
本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.
18.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根
解析:x≥4
【解析】
分析:根据二次根式有意义的条件列出不等式,解不等式即可.
详解:由题意得,x−4⩾0,
解得,x⩾4,
故答案为x⩾4.
点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.
19.>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(12)∴关于x的不等式mx+n<x+n-2的解集为x>1故答案为x>1
解析:x>1
【解析】
∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),
∴关于x的不等式mx+n<x+n-2的解集为x>1,
故答案为x>1.
20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC ∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+
40403
3
【解析】
【分析】
设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出
CQ,得出BC=40+403=3x,解方程即可.【详解】
如图所示:
该船行驶的速度为x海里/时,
3小时后到达小岛的北偏西45°的C处,
由题意得:AB=80海里,BC=3x海里,
在直角三角形ABQ中,∠BAQ=60°,
∴∠B=90°−60°=30°,
∴AQ=1
2
AB=40,BQ3AQ=3
在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,
∴BC=40+33x,
解得:x=403
3

.
即该船行驶的速度为40403
3

海里/时;
40403

【点睛】
本题考查的是解直角三角形,熟练掌握方向角是解题的关键.
21.1【解析】分析:依据正比例函数的定义可得m-
1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-
1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义
解析:1
【解析】
分析:依据正比例函数的定义可得m-1=0,求解即可,
详解:∵y=2x+m-1是正比例函数,
∴m-1=0.
解得:m=1.
故答案为:1.
点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.
22.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方
解析:①③④
【解析】
【分析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.
【详解】
根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.
【点睛】
考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.23.【解析】试题解析:由题意知AC=6BD=8则菱形的面积S=×6×8=24∵菱形对角线互相垂直平分∴△AOB为直角三角形AO=3BO=4∴AB==5∴菱形的高h==考点:菱形的性质
解析:24 5
.
【解析】
试题解析:由题意知AC=6,BD=8,则菱形的面积S=1
2
×6×8=24,
∵菱形对角线互相垂直平分,
∴△AOB为直角三角形,AO=3,BO=4,∴225
AO BO
+==5,
∴菱形的高h=
S
AB
=
24
5

考点:菱形的性质.
24.【解析】【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y 2x 向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b 而言: 解析:23y x =-.
【解析】
【分析】
根据直线的平移规律“上加下减,左加右减”求解即可.
【详解】
解:直线y =2x 向下平移3个单位长度得到的直线解析式为23y x =-.
【点睛】
本题考查了直线的平移变换. 直线平移变换的规律是:对直线y=kx+b 而言:上下移动,上加下减;左右移动,左加右减.例如,直线y=kx+b 如上移3个单位,得y=kx+b +3;如下移3个单位,得y=kx+b -3;如左移3个单位,得y=k (x +3)+b ;如右移3个单位,得y=k (x -3)+b .掌握其中变与不变的规律是解决直线平移变换问题的基本方法. 25.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n 个数据x1x2…xn 的平均数为=()则方差=)==2考点:平均数方差
解析:2
【解析】
试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,x =1n
(12n x x x ++⋯+),则方差2S =1n [22212n x x x x x x -+-+⋯+-()()()]),2S =15
[222222434445464-+-+-+-+-()()()()()]=2. 考点:平均数,方差
三、解答题
26.
(1)141;(2)C ;(3)估算其中达到国家规定体育活动时间的人数大约有8040 人.
【解析】
【分析】
(1)C 组的人数为总人数减去各组人数;
(2))根据中位数的概念即中位数应是第161个数据,即可得出答案;
(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.
【详解】
(1)C组人数为321(2010060)141
-++=(人),
故答案为:141;
(2)本次调查数据的中位数是第161个数据,而第161个数据落在C组,所以本次调查数据的中位数落在C组内,
故答案为:C.
(3)估算其中达到国家规定体育活动时间的人数大约有
14160 128408040
321
+
⨯=(人).
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力
.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.
27.
(1)60,3;(2)y=120t(0≤t≤3);y=120(3<t≤4);y=-120t+840(4<t≤7);(3)8
3
小时或4
小时或6小时.
【解析】
【分析】
(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t的值是多少即可.
(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.
(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.
【详解】
解:(1)根据图示,可得
乙车的速度是60千米/时,
甲车的速度=720÷6=120(千米/小时)
∴t=360÷120=3(小时).
故答案为:60;3;
(2)①当0≤x≤3时,设y=k1x,
把(3,360)代入,可得
3k1=360,
解得k1=120,
∴y=120x(0≤x≤3).
②当3<x≤4时,y=360. ③4<x≤7时,设y=k 2x+b ,
把(4,360)和(7,0)代入,可得224360{70k b k b +=+=,解得2120
{840
k b =-=
∴y=﹣120x+840(4<x≤7).
(3)①÷
+1=300÷180+1=53
+1=8
3(小时)
②当甲车停留在C 地时, ÷60 =240÷6 =4(小时)
③两车都朝A 地行驶时,
设乙车出发x 小时后两车相距120千米, 则60x ﹣[120(x ﹣1)﹣360]=120, 所以480﹣60x=120, 所以60x=360, 解得x=6.
综上,可得乙车出发8
3
小时、4小时、6小时后两车相距120千米.
【点睛】
本题考查一次函数的应用.
28.
(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析. 【解析】 【分析】
(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;
(2)计算出甲乙两人的方差,比较大小即可做出判断; (3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可. 【详解】
(1)根据折线统计图得乙的射击成绩为2,4,6,8,7,7,8,9,9,10, 则平均数为1
(24687789910)710
⨯+++++++++=(环),中位数为7.5环, 方差为
2222222
1(27)(47)(67)(87)(77)(77)(87)10⎡-+-+-+-+-+-+-⎣
222(97)(97)(107) 5.4⎤+-+-+-=⎦.
由图和表可得甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7环. 则甲第8次成绩为710(967627789)9⨯-++++++++=(环). 所以甲的10次成绩为2,6,6,7,7,7,8,9,9,9,中位数为7环,
方差为
22222221(97)(67)(77)(67)(27)(77)(77)10
⎡-+-+-+-+-+-+-⎣ 222(97)(87)(97)4⎤+-+-+-=⎦.
补全表格如下: 甲、乙射击成绩统计表 平均数(环) 中位数(环) 方差 命中10环的次数 甲 7 4 0 乙
7
5.4
1
甲、乙射击成绩折线统计图
(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出. (3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;
如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.
因为甲、乙的平均成绩相同,乙只有第5次射击比第4次射击少命中1环, 且命中1次10环,
而甲第2次比第1次第4次比第3次、第5次比第4次、第9次比第8次命中环数都低, 且命中10环的次数为0,
即随着比赛的进行,乙的射击成绩越来越好, 故乙胜出. 【点睛】
本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.
29.
(1)
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些(3)初中代表队选手成绩较为稳定
【解析】
解:(1)填表如下:
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些.
∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵

222222
S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),
∴2S 初中队<2
S 高中队,因此,初中代表队选手成绩较为稳定.
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可.
30.
(1)见解析(2)7 【解析】 【分析】
(1)根据矩形的判定即可求解;
(2)根据题意作出图形,根据直角三角形的性质及勾股定理即可求解. 【详解】
(1)∵四边形ABCD 是平行四边形, 又BE =AB
∴四边形BECD 是平行四边形, ∵∠ABD =90°,
∴平行四边形BECD 是矩形; (2)如图,作PG ⊥AE 于G 点, ∵CE =2,∠DAB =30°,
∴∠CBE=30°,PG=1,BE=23
∴AB=23
∵P为BC中点,∴G为BE中点,
∴AG=AB+BG=33
∴AP=22
AG PG
=27
【点睛】
此题主要考查矩形的性质,解题的关键是熟知矩形判定与性质.。

相关文档
最新文档