人教版数学七年级上册 几何图形初步专题练习(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F=________;
(2)请探索∠E与∠F之间满足的数量关系?说明理由.
(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;
【答案】(1)90°
(2)解:如图,分别过点E,F作EM∥AB,FN∥AB
∴EM∥AB∥FN
∴∠B=∠BEM=30°,∠MEF=∠EFN
又∵AB∥CD,AB∥FN
∴CD∥FN
∴∠D+∠DFN=180°
又∵∠D =120°
∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°
∴∠EFD=∠MEF +60°
∴∠EFD=∠BEF+30°
(3)解:如图,过点F作FH∥EP
由(2)知,∠EFD=∠BEF+30°
设∠BEF=2x°,则∠EFD=(2x+30)°
∵EP平分∠BEF,GF平分∠EFD
∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°
∵FH∥EP
∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°
【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,
∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,
∴∠EFD=∠BEF+30°=90°.
【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;
(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.
2.如图,已知:点不在同一条直线, .
(1)求证: .
(2)如图②,分别为的平分线所在直线,试探究与的数量关系;
(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.
【答案】(1)证明:过点C作,则,
∵
∴
∴
(2)解:过点Q作,则,
∵,
∴
∵分别为的平分线所在直线∴
∴
∵
∴
(3):1:2:2
【解析】【解答】解:(3)∵
∴
∴
∵
∴
∵
∴
∴
∴
∴ .
故答案为: .
【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出
,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.
3.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE
(1)若∠COF=20°,则∠BOE=________°
(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系
(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.
【答案】(1)40
(2)解:∵
∴
∴
(3)解:存在.理由如下:
∵
设
∴
∵
∴
∴
∴
∴
【解析】【解答】⑴
∴
∵OF平分∠AOE,
∴
∴
∴
故答案为:40。
【分析】(1)根据,∠EOF=∠COE-∠COF=40°,再由角平分线的定义得出∠AOF=∠EOF=40°,最后∠BOE=∠AOB−∠AOE=120°−80°=40°.
(2)由角平分线的定义得出∠AOE=2∠EOF,再利用等量代换得∠AOE=120°−∠BOE=2(60°−∠COF) , 整理得∠BOE=2∠COF;
(3)∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α ,∠AOF=∠EOF=2α ,根据∠AOD+∠BOD=120°,构建一个含α的方程,5α+70°=120°求出α,进而求出∠DOF和∠COF.
4.如图(1),将两块直角三角板的直角顶点C叠放在一起.
(1)试判断∠ACE与∠BCD的大小关系,并说明理由;
(2)若∠DCE=30°,求∠ACB的度数;
(3)猜想∠ACB与∠DCE的数量关系,并说明理由;
(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)
【答案】(1)解:∠ACE=∠BCD,理由如下:
∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,
∴∠ACE=∠BCD
(2)解:若∠DCE=30°,∠ACD=90°,
∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,
∵∠BCE=90°且∠ACB=∠ACE+∠BCE,
∠ACB=90°+60°=150°
(3)解:猜想∠ACB+∠DCE=180°.理由如下:
∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,
∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°
(4)解:成立
【解析】【分析】(1)根据同角的余角相等即可求证;
(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;
(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;
(4)根据重叠的部分实质是两个角的重叠可得。
5.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.
(1)OA=________cm,OB=________cm.
(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP﹣OQ=8.
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q 运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为________ cm.
【答案】(1)16;8
(2)解:设CO=x,则AC=16﹣x,BC=8+x,
∵AC=CO+CB,
∴16﹣x=x+8+x,
∴x= ,
∴CO=
(3)48
【解析】【解答】解:(1)∵AB=24,OA=2OB,
∴20B+OB=24,
∴OB=8,0A=16,
故答案分别为16,8.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t= ,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,
∴t= 或16s时,2OP﹣OQ=8.
②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,
∴点M运动的路程为16×3=48cm.
故答案为48cm.
【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.
②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.
6.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .
(1)求证:∠EFC=∠FEC;
(2)①若∠B=30°,∠CAD=50°,则=________,=________;
②试探究与的关系,并说明理由;
(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.
【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.
∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,
∴∠EFC=∠FEC.
(2)35°;70°;解:② , 理由如下: 由(1)可知:
, 又∵ , ∴ . ∴ .
(3)解:图形如下:
∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,
∴ .
又∵,
∴在△CEF中有:∠ECF+2∠CEF=180°,
即 .
.
∵2∠EAC=∠DAC, ,
∴ .∴即 .
∴ .
【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,
∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.
∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,
∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.
故答案为:35°,70°.
【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.
7.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补
(1)试判断直线AB与直线CD的位置关系,并说明理由
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH
(3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P 作PQ平分∠EPK交EF于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)
【答案】(1)解:如图,
∵∠1和∠2互补,∠2和∠3互补,
∴∠1=∠3
∴AB∥CD
(2)解:如图,
由(1)得AB∥CD,
∴∠BEF+∠EFD=180°
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,
∴∠EPF=90°,即EG⊥PF
∵GH⊥EG,
∴PF∥GH.
(3)解:∠HPQ的大小不发生变化,理由如下:
∵EG⊥HG,∴∠KGP=90°
∴∠EPK=180°-∠4=180°-(180-∠3-∠KGP)=90°+∠3
∵∠3=2∠6,
∴∠EPK=90°+2∠6
∵PQ平分∠EPK,
∴∠QPK= ∠EPK=45°+∠6
∴∠HPQ=∠QPK-∠6=45°
∴∠HPQ的大小不发生变化,一直是45°
【解析】【分析】(1)利用邻补角的定义可证得∠2与∠3互补,再根据同角的补角相
等,可证得∠1=∠3,然后利用同位角相等,两直线平行,可证得结论。
(2)利用两直线平行,同旁内角互补,可证得∠BEF+∠EFD=180°,再利用角平分线的定义去证明∠EPF=90°可得到EG⊥PF,然后利用同垂直于一条直线的两直线平行,可证得结论。
(3)利用垂直的定义可证得∠KGP=90°,利用邻补角的定义可证得∠EPK=90°+∠3,再由∠3=2∠6,可得到∠EPK=90°+2∠6,再利用角平分线的定义,可推出∠QPK=45°+∠6,由∠HPQ=∠QPK-∠6,即可求出∠HPQ的度数。
8.如图1,点是第二象限内一点, 轴于,且是轴正半轴上一点,是x轴负半轴上一点,且 .
(1)(________),(________)
(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点 ,求的度数: (注: 三角形三个内角的和为 )
(3)如图3,当点在线段上运动时,作交于的平分线交于 ,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.
【答案】(1)-2,0;0,3
(2)解:如图,作DM∥x轴
根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,
∵∠CAD=90°,
∴∠CAE+∠OAD=90°,
∴2y+∠OAD=90°,
∴∠OAD=90°-2y,
∵DM∥x轴,
∴∠OAD+∠ADM=180°,
∴90-2y+2x+90°=180°,
∴x=y,
∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°
(3)解:∠N的大小不变,∠N=45°
理由:如图,过D作DE∥BC,过N作NF∥BC.
∵BC∥x轴,
∴DE∥BC∥x轴,NF∥BC∥x轴,
∴∠EDM=∠BMD,∠EDA=∠OAD,
∵DM⊥AD,
∴∠ADM=90°,
∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,
∵MN平分∠BMD,AN平分∠DAO,
∴∠BMN= ∠BMD,∠OAN= ∠OAD,
∴∠ANM=∠BMN+∠OAN= ∠BMD+ ∠OAD
= ×90°=45°.
【解析】【解答】解:(1)由,可得和,
解得
∴A的坐标是(-2,0)、B的坐标是(0,3);
故答案为:-2,0;0,3;
【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;
(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;
(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得
∠ANM= ∠BMD+ ∠OAD,据此即可得到结论.
9.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的
直线分别交射线,,于点E,F,C.
(1)如图1,若,,,求的度数;
(2)如图2,若,请探索与的数量关系,并证明你的结论;
(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.
【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,
∴∠BAP=∠PAE= ∠BAM= ,
∠ABP=∠PBE= ∠ABN= ,
∴∠BPC=∠BAP+∠ABP= ;
(2)解:,理由如下:
∵PA、PB是∠BAM、∠ABN的角平分线,
∴设,,
∵,
∴,
∵,
∴,
又∵,
∴,
∴;
(3)
【解析】【解答】解:(3)∵PA、PB是∠BAM、∠ABN的角平分线,
∴设,,
∵,
∴,
如图,当点P在线段BD上时,
,
∴;
如图,当点P在线段BD的延长线上时,
,即,
∴,
即;
故答案为:.
【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;
(2)设,,根据角平分线的性质结合四边形内角和定理即可求解;
(3)分点P在线段BD上和点P在线段BD的延长线上两种情况讨论即可求解.
10.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.
(1)求∠ECF的度数;
(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;
(3)当∠AEC=∠ACF时,求∠APC的度数.
【答案】(1)解:∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°
∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF
∴∠ECF= ∠ACD=70°
(2)解:不变.数量关系为:∠APC=2∠AFC.
∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP
∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC
(3)解:∵AB∥CD,∴∠AEC=∠ECD
当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF
∴∠PCD=∠ACD=70°
∴∠APC=∠PCD=70°
【解析】【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.
11.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β
(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;
(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.
【答案】(1)解:在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,
∴∠ABC+∠ADC=360°-(α+β),
∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°
∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,
∵α+β=120°,
∴∠MBC+∠NDC=120°
(2)解:β﹣α=60°
理由:如图1,连接BD,
由(1)得,∠MBC+∠NDC=α+β,
∵BE、DF分别平分四边形的外角∠MBC和∠NDC,
∴∠CBG= ∠MBC,∠CDG= ∠NDC,
∴∠CBG+∠CDG= ∠MBC+ ∠NDC= (∠MBC+∠NDC)= (α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,
在△BDG中,∠GBD+∠GDB+∠BGD=180°,
∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,
∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,
∴(α+β)+180°﹣β+30°=180°,
∴β﹣α=60°
(3)解:平行,
理由:如图2,延长BC交DF于H,
由(1)有,∠MBC+∠NDC=α+β,
∵BE、DF分别平分四边形的外角∠MBC和∠NDC,
∴∠CBE= ∠MBC,∠CDH= ∠NDC,
∴∠CBE+∠CDH= ∠MBC+ ∠NDC= (∠MBC+∠NDC)= (α+β),∵∠BCD=∠CDH+∠DHB,
∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,
∴∠CBE+β﹣∠DHB= (α+β),
∵α=β,
∴∠CBE+β﹣∠DHB= (β+β)=β,
∴∠CBE=∠DHB,
∴BE∥DF
【解析】【分析】(1)由四边形的内角和等于360°并结合已知条件可求得∠ABC+∠ADC 的度数;再根据邻补角的定义可得:∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC),代入计算即可求解;
(2)由(1)得,∠MBC+∠NDC=α+β,由角平分线的性质可得∠CBG=∠MBC,
∠CDG=∠NDC,所以∠CBG+∠CDG=(∠MBC+∠NDC)=(α+β),分别在三角形BCD 和三角形BDG中,根据三角形内角和定理可得:∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,∠GBD+∠GDB+∠BGD=180°,即∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,分别把(∠CBG+∠CDG)、(∠BDC+∠CDB)、∠BGD代入计算即可求解;
(3)延长BC交DF于H,由(1)得,∠MBC+∠NDC=α+β,由角平分线的性质可得:
∠CBE=∠MBC,∠CDH=∠NDC,两式相加整理可得∠CBE+∠CDH=(α+β);由三角形的外角的性质可得
∠BCD=∠CDH+∠DHB,所以∠CDH=β﹣∠DHB,则∠CBE+β﹣∠DHB=(α+β),把α=β代入整理可得∠CBE=∠DHB,由内错角相等两直线平行可得BE∥DF。
12.已知:如图所示,直线,另一直线交于,交于,且,点为直线上一动点,过点的直线交于点,且 .
(1)如图1,当点在点右边且点在点左边时,的平分线与的平分线交于点,求的度数;
(2)如图2,当点在点右边且点在点右边时,的平分线与的平分线交于点,求的度数;
(3)当点在点左边且点在点左边时,的平分线与的平分线所在直线交于点,请直接写出的度数,不说明理由.
【答案】(1)解:过点作 .
∵平分 .
∴ .
∴(两直线平行,内错角相等).
同理可证.
.
∴ .
(2)解:过点作 .
∵ .
∴ .
∵平分 .
∴ .
∴(两直线平行,同旁内角互补).∵平分 .
∴(两直线平行,内错角相等).∴ .
(3)解:过点作 .
∵平分 .
∴(两直线平行等,内错角相等).
∴平分 .
.
∴ .
∴(两直线平行,同旁内角互补).
.
【解析】【分析】(1)过点作,由角平分线定义可
得,利用两直线平行内错角相等,可
得,同理可得∠CPE=∠PCA= ∠DCA=25°,从而求出∠BPC的度数.
(2)过点作 . 利用邻补角定义可得∠DBA=100°,由角平分线定义可得∠DBP= ∠DBA=50°,根据两直线平行,同旁内角互补可得∠BPE=130°.根据角平分线定义
及两直线平行,内错角相等角可得∠PCA=∠CPE= ∠DCA=25°,从而求∠BPC的度数.(3)过点作 . 根据两直线平行,内错角相等角可得∠DBP=∠DPE=40°,根
据邻补角可求出∠CPE的度数,由角平分线的定义可得∠PCA= ∠DCA=65°,根据两直线平行,同旁内角互补可求出∠CPE的度数,继而求出∠BPC的度数.。