江苏13大市数学中考分类汇编:分式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏13大市数学中考分类汇编:分式
1.(2008江苏盐城11)方程213
x =-的根为 .答案:x =5(或5) 2.(2008江苏盐城20.)(本题满分8分) 先化简,再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭
,其中4x =-. 答案:20.解:原式2345()222x x x x x --=÷---- 322(3)(3)
x x x x x --=--+ 1.3x =+ 当x=-4时,原式=1143
=--+ 3.(2008江苏扬州19.)(本题满分14分,(1)题6分,(2)题8分)
(2)课堂上,李老师出了这样一道题: 已知352008x -=,求代数式)1x 3x 1(1
x 1x 2x 22+-+÷-+-的值。
小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。
答案:19.(2)解:原式2(1)13(1)(1)11x x x x x x x -+-⎛⎫=÷+ ⎪+--+⎝⎭
12(1)11
x x x x --=÷++ 1112(1)x x x x -+=
+- 12=. 4. (2008江苏省无锡13) 计算2
2
()ab ab 的结果为( ) A.b B .a
C.1 D.1b 答案选B 5.(2008苏州)若220x x --=,则22223()13
x x x x -+--+的值等于( A ) A .233 B .33 C .3 D .3或33
6.(08泰州14)方程31222x x x
-+=--的解是x = .0 7.(08连云港12)若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 60m
.(写出一个..即可)
8.(2008年江苏省无锡市,19T (2),5分)先化简,再求值:244(2)24
x x x x -++- ,其中5x =. 19.(2)解:原式22(2)11(2)(2)(2)(4)2(2)22
x x x x x x -=+=-+=-- . ········································································································································· (4分) 当5x =时,原式11(54)22
=
-=. ··········································································· (5分) 9.(08泰州22)先化简,再求值:222221162444x x x x x x x x x
+--⎛⎫-÷ ⎪--++⎝⎭,其中22x =+. 原式=)4()4)(4()2(1)2(22+-+÷⎥⎦
⎤⎢⎣⎡----+x x x x x x x x x ……………… 4分 =x x x x x x x x x x 4)2()1()
2()2)(2(22-÷⎥⎦⎤⎢⎣⎡-----+ ……………………6分 =4)2()1()2()2)(2(22-⋅⎥⎦
⎤⎢⎣⎡-----+x x x x x x x x x x ……………………7分 =2
)2(1-x …………………………………………………… 8分 当x=22+
时,原式=21 ……………………………………9分 (第一步中每一个因式分解正确得1分)
10.(2008苏州)先化简,再求值:
2224111442a a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪-⎝⎭
⎝⎭ ,其中12a =. 解:原式12a =+.当12a =时,原式25
=. 11.(2008江苏省宿迁)先化简,再求值:2
22344322+-++÷+++a a a a a a a ,其中22-=a . 当22-=
a 时, 原式222232)2()3(2+-=+-++⋅++=
a a a a a a a a 221242222222-=-=+---=.
12.(2008年江苏省南通市,20T ,6分)解分式方程225103x x x x
-=+- 20.解:方程两边同乘以(3)(1)x x x +-,得5(x -1)-(x +3)=0
解这个方程,得x =2.
检验:把x =2代入最简公分母,得2×5×1=10≠0
∴原方程的解是x =2
13.(2008苏州)解方程:222(1)160x x x x
+++-=. 解:12x =,213x =-
.经检验,12x =,213
x =-是原方程的根. 14.(08南京18)(6分)解方程22011x x x -=+- 解:方程两边同乘(1)(1)x x -+,得
2(1)0x x --=. ··················································································································· 3分 解这个方程,得
2x =. ··································································································································· 5分 检验:当2x =时,(1)(1)0x x -+≠.
所以2x =是原方程的解. ····································································································· 6分。