2018海淀区高三理科数学二模试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高三年级第二学期期末练习
数 学(理科)
2018.5
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目
要求的一项.
(1)已知全集{1,2,3,4,5,6},U = 集合{1,2,4},{1,3,5}A B ==,则()
U A B =
(A ){1}
(B ){3,5}
(C ){1,6}
(D ){1,3,5,6}
(2)已知复数z 在复平面上对应的点为(1,1)-,则
(A )+1z 是实数 (B )+1z 是纯虚数 (C )+i z 是实数 (D )+i z 是纯虚数
(3)已知0x y >>,则
(A )
11x y
>
(B )11()()22
x y
>
(C )cos cos x y >
(D )ln(1)ln(1)x y +>+
(4)若直线0x y a ++=是圆22
20x y y +-=的一条对称轴,则a 的值为
(A )1
(B )1-
(C )2
(D )2-
(5)设曲线C 是双曲线,则“C 的方程为2
2
14
y x -=”
是“C 的渐近线方程为2y x =±”的
(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件
(D )既不充分也不必要条件
(6)关于函数
()sin cos f x x x x =-,下列说法错误的是
(A )
()f x 是奇函数
(B )0不是()f x 的极值点
(C )()f x 在(,)22
ππ
-上有且仅有3个零点 (D )
()f x 的值域是R
(7) 已知某算法的程序框图如图所示,则该算法的功能是
(A )求首项为1,公比为2的等比数列的前2017项的和 (B )求首项为1,公比为2的等比数列的前2018项的和 (C )求首项为1,公比为4的等比数列的前1009项的和 (D )求首项为1,公比为4的等比数列的前1010项的和
(8)已知集合*{|115}M
x x =∈≤≤N ,集合123,,A A A 满足
① 每个集合都恰有5个元素 ②
123A A A M =.
集合i A 中元素的最大值与最小值之和称为集合i A 的特征数,记为i X (1,2,3i =),则
123X X X ++的值不可能为(
). (A )37
(B )39
(C )48
(D )57
第二部分 (非选择题 共110分)
二、填空题共6小题,每小题5分,共30分。

(9)极坐标系中,点(2,)2
π
到直线cos 1ρθ=的距离为________.
(10)在5
2()x x +的二项展开式中,3x 的系数为 .
(11)已知平面向量a ,b 的夹角为
3
π
,且满足||2=a ,||1=b ,则⋅=a b ,
2+=|a b | .
(12)在ABC ∆中,::4:5:6a b c =,则tan A = .
(13)能够使得命题“曲线22
1(0)4x y a a
-=≠上存在四个点P ,Q ,R ,S 满足四边
形PQRS 是正方形”为真命题的一个实数a 的值为 . (14)如图,棱长为2的正方体1111ABCD ABC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P 垂直于CM ,则PBC ∆的面积的最小值为_________.
A 1
M
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题13分)
如图,已知函数()sin()f x A x ωϕ=+(0,0,)2
A π
ωϕ>><
在一个周期内的图象经过
(
,0)6B π
,2(,0)3C π,5(,2)12D π
三点. (Ⅰ)写出A ,ω,ϕ的值;
(Ⅱ)若52(
,)123
ππα∈,且()1f α=,求cos 2α的值.
16. (本小题共13分) 某中学为了解高二年级中华传统文化经典阅读的整体情况,
从高二年级随机抽取10名学生进行了两轮测试,并把两轮测试成绩的平均分作为该名学生
(Ⅰ)从该校高二年级随机选取一名学生,试估计这名学生考核成绩大于等于90分的概率; (Ⅱ)从考核成绩大于等于90分的学生中再随机抽取两名同学,求这两名同学两轮测试成绩均大于等于90分的概率;
(Ⅲ)记抽取的10名学生第一轮测试成绩的平均数和方差分别为1x ,2
1s ,考核成绩的平均数和方差分别为2x ,2
2s ,试比较1x 与2x ,2
1s 与2
2s 的大小. (只需写出结论)
17. (本小题共14分)
如图,在三棱柱
111ABC A BC -中,12AC BC AB ===,1AB ⊥平面ABC ,
1AC AC ⊥,D ,E 分别是AC ,11BC 的中点.
(Ⅰ)证明:11AC
B C ⊥
(Ⅱ)证明://DE 平面11AA B B ;
(Ⅲ)求DE 与平面11BBC C 所成角的正弦值.
A
C 1
A 1
C
B 1
B
D
E
18. (本小题共14分)
已知椭圆C :2214
x y +=,F 为右焦点,圆O :22
1x y +=,P 为椭圆C 上一点,
且P 位于第一象限,过点P 作PT 与圆O 相切于点T ,使得点F ,T 在OP 两侧.
(Ⅰ)求椭圆C 的焦距及离心率; (Ⅱ)求四边形OFPT 面积的最大值.
19. (本小题共13分)
已知函数
()3ax f x ax =--e (0a ≠)
(Ⅰ)求()f x 的极值; (Ⅱ)当0a >时,设2
11()32
ax g x ax x a =--e .求证:曲线()y g x =存在两条斜率为1-且不重合的切线.
20. (本小题共13分)
如果数列{}n a 满足“对任意正整数,i j ,i j ≠,都存在正整数k ,使得k i j a a a =”,则称
数列{}n a 具有“性质P”.已知数列{}n a 是无穷项的等差数列,公差为d .
(Ⅰ)若12a =,公差3d =,判断数列{}n a 是否具有“性质P”,并说明理由; (Ⅱ)若数列{}n a 具有“性质P”,求证:10a ≥且0d ≥;
(Ⅲ)若数列{}n a 具有“性质P”,且存在正整数k ,使得2018k a =,这样的数列{}n a 共有
多少个?并说明理由
海淀区高三年级第二学期期末练习参考答案及评分标准
数 学(理科)
2018.5
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目
要求的一项.
第二部分 (非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
(9)1
(10)10
(11)1;
(12
(13)答案不唯一,0a <或4a >的任意实数 (14
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题13分) 解:(Ⅰ)2A =,2ω=,3
π
ϕ=-
. ······································································· 7分 (Ⅱ)由(Ⅰ)得,()2sin(2)3f x x π
=-.
因为()1f α=,所以1
sin(2)32
πα-=. ·
········································· 8分 因为 52(
,)123ππα∈,所以2(,)32ππ
απ-∈. ································· 9分 所以5
236παπ-=, ·
·································································· 11分 所以7
26
απ=, ·
········································································ 12分
所以7cos 2cos 6απ==. ····················································· 13分
16. (本小题共13分)
解:(Ⅰ)这10名学生的考核成绩(单位:分)分别为:
93,89.5,89,88,90,88.5,91.5,91,90.5,91.
其中大于等于90分的有1号、5号、7号、8号、9号、10号,共6人. ·
· 1分
所以样本中学生考核成绩大于等于90分的频率为:
6
0.610
=, ································································ 3分 从该校高二年级随机选取一名学生,估计这名学生考核成绩大于等于90分的概率为0.6. ································································································································ 4分
(Ⅱ)设事件A :从上述考核成绩大于等于90分的学生中再随机抽取两名同学,这两
名同学两轮测试成绩均大于等于90分. ·
····················································· 5分 由(Ⅰ)知,上述考核成绩大于等于90分的学生共6人,其中两轮测试成绩均大于
等于90分的学生有1号,8号,10号,共3人. ·
······································ 6分 所以,232631
()155
C P A C ==
=. ························································· 9分 (Ⅲ)12x x =,2
2
12s s >. ·
·································································· 13分
17. (本小题共14分) 解:(Ⅰ)因为1AB ⊥平面ABC ,AC ⊂平面ABC ,
所以1AB AC ⊥. ······································································· 1分
因为1AC AC ⊥,1
1AB AC A =,1AB ,1AC ⊂平面11AB C ,
所以AC ⊥平面11AB C . ······························································ 3分 因为11B C ⊂平面11AB C ,
所以11AC B C ⊥. ·
······································································ 4分 (Ⅱ)法一:取11A B 的中点M ,连接MA 、ME . 因为E 、M 分别是11B C 、11A B 的中点, 所以ME ∥11AC ,且ME 111
2A C =
. ·············································· 5分 在三棱柱111ABC A B C -中,11AD
AC ,且111
2
AD A C =
, 所以ME ∥AD ,且ME =AD ,
所以四边形ADEM 是平行四边形, ·
············· 6分 所以DE ∥AM . ·
······································ 7分 又AM ⊂平面11AA B B ,DE ⊄平面11AA B B , 所以//DE 平面1AA BB . ·
························· 9分 注:与此法类似,还可取AB 的中点M ,连接MD 、MB 1. 法二:取AB 的中点M ,连接MD 、1MB . 因为D 、M 分别是AC 、AB 的中点,
所以MD ∥BC ,且MD 1
2
=
BC . ·················· 5分 在三棱柱111ABC A B C -中,1B E
BC ,且11
2B E BC =
, A
C
1
A 1 C
B 1
B
D
E
M
A C 1
A 1
C
B 1
B
D
E
M
A
C 1
A 1
C
B 1
B
D
E y
x
z
所以MD ∥B 1E ,且MD =B 1E ,
所以四边形B 1E DM 是平行四边形, ·
··········· 6分 所以DE ∥MB 1. ·
····································· 7分 又1MB ⊂平面11AA B B ,DE ⊄平面11AA B B , 所以//DE 平面1AA BB . ·
························· 9分 法三:取BC 的中点M ,连接MD 、ME .
因为D 、M 分别是CA 、CB 的中点,
所以,//DM AB . ···································································· 5分 在三棱柱111ABC A B C -中,11//BC B C ,11BC B C =,
因为E 、M 分别是11C B 和CB 的中点, 所以,1//MB EB ,1MB EB =,
所以,四边形1MBB E 是平行四边形, ·
·········· 6分 所以,1//ME BB . ··································· 7分
又因为ME
MD M =,1
BB AB B =,
ME ,MD ⊂平面MDE ,BB 1,AB ⊂平面11AA B B , 所以,平面//MDE 平面11AA B B . ·············· 8分 因为,DE ⊂平面MDE ,
所以,//DE 平面1AA BB . ·
······················ 9分 (Ⅲ)在三棱柱111ABC A B C -中,11//BC B C ,
因为11AC B C ⊥,所以AC BC ⊥. 在平面1ACB 内,过点C 作1//Cz AB , 因为,1AB ⊥平面ABC ,
所以,Cz ⊥平面ABC . ·
·························· 10分 建立空间直角坐标系C -xyz ,如图.则
(0,0,0)C ,(2,0,0)B ,1(0,2,2)B ,1(2,2,2)C -,(0,1,0)D ,(1,2,2)E -.
(1,1,2)DE =-,(2,0,0)CB =,1(0,2,2)CB =. ···························· 11分 设平面11BB C C 的法向量为(,,)x y z =n ,则
10
CB CB ⎧⋅=⎪⎨
⋅=⎪⎩n n ,即20220x y z =⎧⎨+=⎩, 得0x =,令1y =,得1z =-,故(0,1,1)=-n . ····························· 12分 设直线DE 与平面11BB C C 所成的角为θ,
A
C 1
A 1
C B 1
B
D E
M
则sin θ=cos ,||||
DE DE DE
⋅<>=
⋅n n
n =
所以直线DE 与平面11BB C C 所成角的正弦值为6
. ·························· 14分
18. (本小题共14分)
解:(Ⅰ)在椭圆C :2
21
4
x y +=中,
2a =,1b =,
所以c == ·
····················································
········ 2分 故椭圆C 的焦距为2c = ·
············································
········· 3分 离心率c e a =
=
. ··································································· 5分 (Ⅱ)法一:设00(,)P x y (00x >,00y >),

2
20014x y +=,故220
014
x y =-. ·
················· 6分 所以22222
20003||||||14TP
OP OT x y x =-=+-=,
所以0||TP =, ·
·······················
·········· 8分01||||2OTP S OT TP x ∆=⋅=. ·
···
······· 9分
又(0,0)O ,F ,故00122OFP S OF y y ∆=⋅=. ·
·········
·········· 10分 因此0
0()2
OFP OTP OFPT x S S S y ∆∆=+=+四边形 ·
····················
······
·····
11分
==
由220014x y +=,得1
,即0
01x y ⋅≤

所以OFPT S =四边形, ·········································· 13分
当且仅当22
0014
2x y ==,即0x =02
y =
时等号成立. ················· 14分 (Ⅱ)法二:设(2cos ,sin )P θθ(02
π
θ<<
), ········································ 6分 则2222
22||||||4cos sin 13cos
TP OP OT θθθ=-=+-=,
所以||TP θ=, ·
····················································
··········· 8分 1||||cos 22
OTP S OT TP θ∆=
⋅=. ·
·································
······· 9分 又(0,0)
O ,F ,故012OFP S OF y θ∆=⋅=. ·
··············· 10分
因此(cos sin )2
OFP OTP OFPT S S S θθ∆∆=+=
⋅+四边形 ·
························ 11分
)4πθ=+≤
·········································· 13分
当且仅当4πθ=时,即0x =02
y =时等号成立.
···················· 14分
19. (本小题共13分)
解:(Ⅰ)法一:'()(1)ax ax f x a a a =⋅-=⋅-e e (0,)a x ≠∈R , ·
················· 1分 令'()0f x =,得0x =. ······························································ 2分 ①当0a >时,'()f x 与1ax -e 符号相同,
当x 变化时,'()f x ,()f x 的变化情况如下表:
②当0a <时,'()f x 与1ax -e 符号相反,
当x 变化时,'()f x ,()f x 的变化情况如下表:
综上,()f x 在0x =处取得极小值(0)2f =-. ·································· 7分
法二:'()(1)ax ax f x a a a =⋅-=⋅-e e (0,)a x ≠∈R , ·
···························· 1分 令'()0f x =,得0x =. ·
····························································· 2分 令()(1)ax h x a =⋅-e ,则2'()ax h x a =⋅e , ······································· 3分 易知'()0h x >,故()h x 是(,)-∞+∞上的增函数,
即'()f x 是(,)-∞+∞上的增函数. ················································· 4分
所以,当x 变化时,'()f x ,()f x 的变化情况如下表:
因此,()f x 在0x =处取得极小值(0)2f =-. ·
································· 7分 (Ⅱ)'()3()ax g x ax f x =--=e (0,)a x >∈R , ·
···································· 8分 故'()1g x =-⇔()1f x =-. ······················································· 9分
注意到(0)21f =-<-,22()51f a =->-e ,2
2()11f a
--=->-e ,
所以,12(,0)x a ∃∈-
,22
(0,)x a
∈,使得12()()1f x f x ==-.
因此,曲线()y g x =在点111(,())P x f x ,222(,())P
x f x 处的切线斜率均为1-. ································································································ 11分 下面,只需证明曲线()y g x =在点111(,())P x f x ,222(,())P x f x 处的切线不重合. 法一:曲线()y g x =在点(,())i i i P x f x (1,2i =)处的切线方程为
()()i i y g x x x -=--,即()i i y x g x x =-++.假设曲线()y g x =在点(,())
i i i P x f x (1,2i =)处的切线重合,则2211()()g x x g x x +=+. ·
······························ 12分 法二:假设曲线()y g x =在点(,())i i i P x f x (1,2i =,12x x ≠)处的切线重合,则
2121
()()
1g x g x x x -=--,整理得:2211()()g x x g x x +=+. ····························· 12分
法一:由'()31i
ax i i g x ax =--=-e
,得2i ax i ax =+e ,则
221112
()(2)322i i i i i i i i g x x ax ax x x ax x a a
+=+--+=--+.
因为12x x ≠,故由2211()()g x x g x x +=+可得122
x x a
+=-.
而12(,0)x a ∈-,22(0,)x a ∈,于是有1222
0x x a a
+>-+=-,矛盾!
法二:令()()G x g x x =+,则12()()G x G x =,且'()'()1()1G x g x f x =+=+. 由(Ⅰ)知,当12(,)x x x ∈时,()1f x <-,故'()0G x <.
所以,()G x 在区间12[,]x x 上单调递减,于是有12()()G x G x >,矛盾!
因此,曲线()y g x =在点(,())i i i P x f x (1,2i =)处的切线不重合.
········· 13分
20. (本小题13分)
解:(Ⅰ)若12a =,公差3d =,则数列{}n a 不具有性质P .
······················ 1分 理由如下:
由题知31n a n =-,对于1a 和2a ,假设存在正整数k ,使得12k a a a =,则有
312510k -=⨯=,解得11
3
k =
,矛盾!所以对任意的*k ∈N ,12k a a a ≠. ·
·· 3分 (Ⅱ)若数列{}n a 具有“性质P”,则 ①假设10a <,0d ≤,则对任意的*n ∈N ,1(1)0n a a n d =+-⋅<.
设12k a a a =⨯,则0k a >,矛盾! ·············································· 4分
②假设10a <,0d >,则存在正整数t ,使得
123120t t t a a a a a a ++<<<⋅⋅⋅<≤<<<⋅⋅⋅
设111t k a a a +⋅=,212t k a a a +⋅=,313t k a a a +⋅=,…,1121t t k a a a ++⋅=,*
i k ∈N ,
1,2,
,1i t =+,则12310t k k k k a a a a +>>>>⋅⋅⋅>,但数列{}n a 中仅有t 项小于等于0,
矛盾!
···························································································· 6分
③假设10a ≥,0d <,则存在正整数t ,使得
123120t t t a a a a a a ++>>>⋅⋅⋅>≥>>>⋅⋅⋅
设112t t k a a a ++⋅=,
213t t k a a a ++⋅=,314t t k a a a ++⋅=,…,1122t t t k a a a +++⋅=,*i k ∈N ,1,2,
,1i t =+,则12310t k k k k a a a a +<<<<⋅⋅⋅<,但数列{}n a 中仅有t 项大于等于0,
矛盾!
···························································································· 8分
综上,10a ≥,0d ≥.
(Ⅲ)设公差为d 的等差数列{}n a 具有“性质P”,且存在正整数k ,使得2018k a =.
若0d =,则{}n a 为常数数列,此时2018n a =恒成立,故对任意的正整数k , 21220182018k a a a =≠=⋅,
这与数列{}n a 具有“性质P”矛盾,故0d ≠. 设x 是数列{}n a 中的任意一项,则x d +,2x d +均是数列{}n a 中的项,设
1()k a x x d =+,2(2)k a x x d =+
则2121()k k a a xd k k d -==-⋅, 因为0d ≠,所以21x k k =-∈Z ,即数列{}n a 的每一项均是整数. 由(Ⅱ)知,10a ≥,0d ≥,故数列{}n a 的每一项均是自然数,且d 是正整数. 由题意知,2018d +是数列{}n a 中的项,故2018(2018)d ⋅+是数列中的项,设2018(2018)m a d =⋅+,则
2018(2018)2018201820172018()m k a a d d m k d -=⋅+-=⨯+=-⋅, 即(2018)20182017m k d --⋅=⨯.
因为2018m k --∈Z ,*d ∈N ,故d 是20182017⨯的约数.
所以,1,2,1009,2017,21009,22017,10092017d =⨯⨯⨯,210092017⨯⨯.
当1d =时,12018(1)0a k =--≥,得1,2,...,2018,2019k =,故 12018,2017,...,2,1,0a =,共2019种可能;
当2d =时,120182(1)0a k =--≥,得1,2,...,1008,1009,1010k =,故 12018,2016,2014,...,4,2,0a =,共1010种可能;
当1009d =时,120181009(1)0a k =-⨯-≥,得1,2,3k =,故
12018,1009,0a =,共3种可能;
当2017d =时,120182017(1)0a k =--≥,得1,2k =,故
12018,1a =,共2种可能; 当21009d =⨯时,120182018(1)0a k =-⨯-≥,得1,2k =,故
12018,0a =,共2种可能;
当22017d =⨯时,1201822017(1)0a k =-⨯⨯-≥,得1k =,故
12018a =,共1种可能; 当10092017d =⨯时,1201810092017(1)0a k =-⨯⨯-≥,得1k =,故
12018a =,共1种可能;
当210092017d =⨯⨯时,12018210092017(1)0a k =-⨯⨯⨯-≥,得1k =,故
12018a =,共1种可能.
综上,满足题意的数列{}n a 共有201910103221113039+++++++=(种).
经检验,这些数列均符合题意. ·
······················································· 13分。

相关文档
最新文档