惠州市2024届高三第一次调研考试数学试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1图2
惠州市2024届高三第一次调研考试试题
数学
全卷满分150分,时间120分钟.注意事项:
1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答单项及多项选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一、单项选择题:本题共8小题,每小题满分5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分。
1.已知集合{}*
|,6U x x x =∈≤N ,{}1,2,3A =,{}3,5B =,求()U A B = ð(
)
团用数学软件制作“蚊香”模型,画法如下:在水平直线上取长度为1的线段AB ,作一个等边三角形ABC ,然后以点B 为圆心,AB 为半径逆时针画圆弧交线段CB 的延长线于点D ,由此得到第1段圆弧 AD ,再以点C 为圆心,CD 为半径逆时针画圆弧交线段AC 的延长线于点E ,再以点A 为圆心,AE 为半径逆时针画圆弧……以此类推,当得到如图2所示的“蚊香”恰好有11段圆弧时,则该“蚊香”的长度为()A .14π
B .18π
C .30π
D .44π
多项符合题目要求。
全部选对得5分,部分选对得2分,有选错的得0分。
三、填空题:本题共4小题,每题5分,共20分。
四、解答题:本题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分12分)
设等差数列{}n a 的公差为d ,且12d a =,59a =.(1)求数列{}n a 的通项公式;
(2)设数列{}n b 满足112223
32
n n n
n a b a b a b ++++=-
,求{}n b 的前n 项和n S .19.(本小题满分12分)
如图,在五面体ABCDE 中,AD ⊥平面ABC ,//AD BE ,2AD BE =,AB BC =.(1)问:在线段CD 上是否存在点P ,使得PE ⊥平面ACD ?若存在,请指出点P 的位置,并证明;若不存在,请说明理由.
(2)若AB =
,2AC =,2AD =,
求平面ECD 与平面ABC 夹角的余弦值.
21.(本小题满分12分)
已知椭圆22
22:1(0)x y C a b a b
+=>>的左顶点为A ,上顶点为B ,右焦点为()0,1F ,O 为坐
标原点,线段OA 的中点为D ,且BD DF =.
(1)求C 的方程;
(2)已知点M N 、均在直线2=x 上,以MN 为直径的圆经过O 点,圆心为点T ,直线AM AN 、分别交椭圆C 于另一点P Q 、,证明直线PQ 与直线OT 垂直.
22.(本小题满分12分)
惠州市2024届高三第一次调研考试数学试题参考答案与评分细则
一、单项选择题:本题共8小题,每小题满分5分,共40分题号12345678答案
B
C
A
C
D
B
D
A
1.【解析】由已知可得{}1,2,3,5A B ⋃=,{}1,2,3,4,5,6U =,所以(){}6,4=B A C U ,故选:B .
5.【解析】由弧长公式r l ⋅=α得:r l ⋅=
31,r l 232⋅=,r l 333⋅=,...,r l 11311⋅=,其中1==AB r ,()ππ
44113213
211321=+⋅⋅⋅+++=
+⋅⋅⋅+++=∴l l l l L 蚊香的长度故选:D.
二、多项选择题:本题共4小题,每小题满分5分,共20分。
在每小题给出的四个选项中,有多项符合题目要求。
全部选对得5分,部分选对得2分,有选错的得0分。
2
25624π⎛⎫
=- ⎪ ⎪⎝⎭,h 为球缺的高,
三、填空题:本题共4小题,每小题5分,共20分。
15.【解析1】
BP AD λ=,[]0,1λ∈,则()
2
AD AP AD AB BP AD AB AD
λ⋅=⋅+=⋅+22cos120442AD AP λλ⋅=⨯⨯︒+=-
,因为[]0,1λ∈,所以22AD AP -≤⋅≤ .
【解析2】如图示,以C 为原点,BC
为x 轴正方向,过C 垂直向上方向为y 轴建立平面直角坐标系.
因为菱形ABCD 的边长为2,60ABC ∠=︒,则()2,0B
-,()0,0C ,(D ,(A -.
因为点P 在BC 边上(包括端点),所以(),0P t ,其中[]2,0t ∈-.
所以()2,0AD = ,(1,AP t =+ ,所以22AD AP t ⋅=+
.
因为[]2,0t ∈-,所以[]222,2AD AP t ⋅=+∈-
.故答案为:[]22-,
.【注1】答案用不等式表示时使用了含未定义参数的,得0分。
如:22a -≤≤,则认为a 为未定义
的参数。
【注2】本题可用临界值的投影向量点积可到范围的边界值。
【注】答案用不等式表示时使用了含未定义参数的,得0分。
如:2
05
λ<<,则认为λ为未定义的参数。
四、解答题:本题共6小题,共70
分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分10分,其中第一小问5分,第二小问5分)【解析】(1)由正弦定理
sin sin a b
A B
=得sin sin cos sin B B A A B +=················1分
sin 0B >,
∴cos 1A A -=·························································2分∴得1sin 62
A π⎛⎫-
= ⎪⎝
⎭·····································································3分
()0,A π∈,∴5,666A πππ⎛
⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭········4分【注:无范围的说明,本得分点不得分】
∴6
6
π
π
=
-
A ,即3
π
=
A .·····································································5分
(2)【解法1】由余弦定理A bc c b a cos 2222-+=,·························································1分
代入已知得c
c 416212-+=·······································································2分
解得舍)或(15-==c c ······················································································3分所以1
sin 2
ABC S bc A =
······················································································4分14522
=⨯⨯⨯=所以ABC ∆的面积为··················································································5分
【解法2】由正弦定理
sin sin a b A B =得4
sin sin 3
B π=
,得27sin 7B =,·························1分由a b >,则0,
2B π⎛⎫∈ ⎪⎝⎭所以21cos 7
B ==
··········2分【注:无范围的说明,本得分
点不得分】
所以()sin sin sin cos sin cos C A B A B B A
=+=
+1=
277214
=
⨯+⨯·························································3分所以1
sin 2
ABC S ab C =
(4)
分
1574214
=⨯=所以ABC ∆
的面积为···········································································5分18.(本小题满分12分,其中第一小问5分,第二小问7分)【解析】(1)依题意有⎩⎨
⎧=+==9
42151
d a a a d ·······················································1分
解得2
,11==d a ··········································3分【注:每个结果正确各1分】
于是()1121
n a a n d n =+-=-······························4分【注:公式正确即可给分】
∴数列{}n a 的通项公式是21
n a n =-··········································5分
(2) N n *∈,11222332n n n
n a b a b a b ++++=-
当2n ≥时,1122111
21
32n n n n a b a b a b ---++++=- ···········································1分两式相减得:212n n n
n a b -=···································································2分
而当1n =时,1112a b =
满足上式,因此N n *∈,21
2
n n n n a b -=··························3分由(1)知21n a n =-,于是得1
2n n
b =
,·····················································4分∴21
212111=
=--n n n n b b ∴{}n b 是以
21为首项,2
1
为公比的等比数列······5分【注:无说明首项及公比,本得分点不得分】∴1211122112
n
n n
S b b b ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣
⎦=+++=- ·······················6分【注:公式正确即可给分】
得112n
n S ⎛⎫
=- ⎪⎝⎭
··················································································7分
19.(本小题满分12分,其中第一小问6分,第二小问6分)
【解析】(1)当P 为线段CD 的中点时,PE ⊥平面ACD.·············································1分
证明如下:
【解法1】分别取AC 、CD 中点O 、P ,连接OB 、PE 、OP .
在ACD ∆中,O 、P 分别是AC 、CD 的中点,∴AD OP 2
1//······························2分
又 //AD BE ,2AD BE =,即AD BE 2
1
//
,∴OP //∴四边形OBEP 是平行四边形,PE
BO //·························································3分
又 ABC AD 平面⊥,ABC OB 面⊂,∴OB AD ⊥,则有AD PE ⊥······················4分由AB BC =知OB AC ⊥,则有AC
PE ⊥且A AD AC = ,ACD AC 面⊂,ACD AD 面⊂·····5分【注:未列举全三个条件,本得分点不得分】
∴PE ⊥平面ACD
····························································································6分
【解法2】取AC 中点O ,连接OB ,作//Oz AD ,由已知可知,,Oz OB AC 两两垂直,
故可建立如下图所示的空间直角坐标系O xyz -··························2分令22AD BE a ==,OB c =,OA OC b ==,取CD 中点P 则(0,,2)D b a -,(0,,0)C b ,(,0,)E c a ,()
a P ,0,0所以(0,2,2)CD
b a =- ,(,,)CE
c b a =-
,()0,0,c PE =············3分
若(,,)m x y z = 是面CDE 的一个法向量,即220
m CD by az m CE cx by az ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩
令z b =,则(0,,)m a b =
···································································4分
0=⋅m PE ,·························································································5分
∴PE ⊥平面ACD .···················································································6分
(2)【解法1】在平面ABED 中分别延长DE 、AB 交于点F ,并连接CF
·····················1分
由AD BE 2
1
//
,知点B 是AF 中点,又O 是AC 的中点∴FC BO //,而由(1)知ACD OB 平面⊥,∴ACD FC 平面⊥····································2分∴ACD ∠就是平面ECD 与平面ABC 的夹角·····························································3分
在ACD Rt ∆中,2AC =,2AD =22=∴DC ···························································4分
∴2
2
2
22cos =
=
∠ACD ·······················································································5分所以平面ECD 与平面ABC 的夹角的余弦值为
2
2.················································6分
【解法2】取AC 中点O ,连接OB ,作//Oz AD ,由已知可知,,Oz OB AC 两两垂直,故可建立如下图所示的空间直角坐标系O xyz -·······························1分【注:若第一问已经建系,则不重复给分】
()0,1,0-A ,(0,1,2)D -,(0,1,0)C
,E 所以()2,2,0-=CD ,(
)
1,1,2-=
DE ········································2分
若()l k j n ,,=是面ECD 的一个法向量,即⎪⎩⎪⎨
⎧=-+=⋅=+-=⋅0
20
220l k j DE n l k CD n 令1=l ,则0=j ,1=k ,即()1,1,0-=n ······························································3分而平面ABC 的一个法向量为()
2,0,0=AD ··························································4分
设平面ECD 与平面ABC 的夹角为θ
,则22
2
2200cos =⨯++=
=
θ····················5分所以平面ECD 与平面ABC 的夹角的余弦值为
2
2
.··················································6分
【解法3】由题可知,AD ⊥平面ABC ,//AD BE ,BE ⊥平面ABC
·····························1分
所以∆CDE 在底面的投影为∆ABC
·····························2分【注:无本步骤,本得分点不得分】
在等腰∆CDE 中,CE =DE =2,CD =2,2222
1
E C =⨯⨯=
∆D S ,··························3分同理在等腰∆ABC 中,AB =BC =3,CA =2,22222
1
B C =⨯⨯=
∆A S ························4分设平面ECD 与平面ABC 夹角为θ,则22
S S cos DEC ABC =
=
∆∆θ········································5分所以平面ECD 与平面ABC 的夹角的余弦值为
2
2
.····················································6分20.(本小题满分12分,其中第一小问6分,第二小问6分)【解析】(1)根据题意知,X 的可能取值为15,0,15,30
-···········································1分
可得()150.40.50.750.15
P X =-=⨯⨯=()00.60.50.750.40.50.750.40.50.250.425
P X ==⨯⨯+⨯⨯+⨯⨯=······························2分
()150.40.50.250.60.50.250.60.50.750.35P X ==⨯⨯+⨯⨯+⨯⨯=()300.60.50.250.075P X ==⨯⨯=·······························································3分
∴随机变量X 的分布列为
21.(本小题满分12分,其中第一小问5分,第二小问7分)
【解析】(1)由题意知:1c =,(,0)2
a
D ··········································································1分
∴C 的方程1
43
+=·························································································5分
(2)【解法1】令(2,)M m ,(2,)N n ,则(2,
2
m n
T +,而(2,0)A -∴可设直线:(2)4
m
AM y x =
+··········································································1分
联立()⎪⎪⎩
⎪⎪⎨
⎧+==+2413
42
2x m y y x 整理得2222(12)44480m x m x m +++-=·····································2分
若11(,)P x y ,则由韦达定理得:2
12
4212
m x m -=-+∴2122(12)
12
m x m -=+,则1
21212m y m =+······································································3分
同理,直线:(2)4n BN y x =+,联立()
⎪⎪⎩
⎪⎪⎨
⎧+==+2413
42
2x n y y x 若22(,)Q x y ,可得2222(12)
12
n x n -=+,则221212n y n =+············4分
∴1222126(12)()12
24()4()
PQ y y mn n m mn k x x n m n m ----=
==--+··············5分
又 OM ON ⊥,∴
12
2-=⋅n
m ∴4mn =-,∴4PQ k n m =-
+,而4
OT n m
k +=·············································································6分∴1-=⋅OT PQ k k ,则直线PQ 与直线OT 垂直,得证.·····················································7分
【解法2】令(2,)M m ,(2,)N n ,则(2,
2
m n
T +由MN 为直径0,=⋅⊥∴ON OM ON OM 即所以4+mn =04
)2(20m
m k AM =
---=
则可设直线)2(4
AM +=
x m
y l :·············································································1分联立椭圆方程()⎪⎪⎩
⎪⎪⎨
⎧+==+2413
42
2x m y y x 整理得2222(12)44480m x m x m +++-=·····················2分
若11(,)P x y ,则由韦达定理得:2
12
4212
m x m -=-+∴2122(12)
12
m x m -=+,则1
21212m y m =+···································································3分
1212,12)12(2(222++-∴m m m m P 同理1212,12)12(2(222++-∴n n
n n Q ···································4分
)12121212,12)12(212)12(2(222222+-++--+-=∴n n
m m n n m m PQ ,·········································5分
12612612612612)12(412)12(42222222222+-
+-+++++--+-=⋅∴n mn
n m n n n mn m m n n QT PQ 0
2212
2241222422
22=-=++-++=⋅∴m m n n QT PQ ··················································6分
OT PQ OT PQ ⊥⊥∴即,···················································································7分。