Eutectic reaction and cored dendritic morphology in yttrium doped Zr-based amorphous alloys

合集下载

ASTM E155-2010 铝和镁铸件检验用标准参考射线照片

ASTM E155-2010 铝和镁铸件检验用标准参考射线照片

Designation:E155−10Standard Reference Radiographs forInspection of Aluminum and Magnesium Castings1This standard is issued under thefixed designation E155;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.These Reference Radiographs have been developed in cooperation with the Quality Control Committee and Aerospace Research and Testing Committee of the Aerospace Industries Association.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1These reference radiographs illustrate the types and degrees of discontinuities that may be found in aluminum-alloy and magnesium-alloy castings.The castings illustrated are in thicknesses of1⁄4in.(6.35mm)and3⁄4in.(19.1mm).The reference radiographfilms are an adjunct to this document and must be purchased separately from ASTM International if needed.1.2Thesefilm reference radiographs are not intended to illustrate the types and degrees of discontinuities found in aluminum-alloy castings when performing digital radiography. If performing digital radiography of aluminum-alloy castings, refer to Digital Reference Image Standard E2422.Magnesium-alloy digital reference images are not currently available from ASTM International.1.3This document may be used where no other applicable document exists,for other material thicknesses for which it has been found to be applicable and for which agreement has been reached between the purchaser and the manufacturer.1.4The values stated in inch-pound units are to be regarded as the standard.The values given in parentheses are mathemati-cal conversions to SI units that are provided for information only and are not considered standard.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.N OTE1—V ol I:The set of reference radiographs consists of13plates covering discontinuities in aluminum-alloy castings and10plates cover-ing discontinuities in magnesium-alloy castings.Each plate is held in an 81⁄2by11-in.(216by279-mm)cardboard frame and each plate illustrates eight grades of severity for the discontinuity in approximately a2by2-in.(51by51-mm)area.The cardboard frames are contained in a101⁄2by 111⁄2-in.(267by292-mm)ring binder.The reference radiographs are not impacted by this revision.There have been no revisions to the adjunct reference radiographs since original issue.The adjunct reference radio-graphs of any issue remain valid and may be used to this standard.V ol.II:The set of reference radiographs consists of four plates covering discontinuities in magnesium-alloy castings only.Each plate is held in an 81⁄2by11-in.(216by279-mm)cardboard frame and illustrates eight grades of severity for the discontinuity(with the exception of discrete discontinuities,where only one example of each discontinuity is given).N OTE2—Reference radiographs applicable to aluminum and magne-sium die castings up to1in.(25mm)in thickness are contained in Reference Radiographs E505.2.Referenced Documents2.1ASTM Standards:2E94Guide for Radiographic ExaminationE505Reference Radiographs for Inspection of Aluminum and Magnesium Die CastingsE1316Terminology for Nondestructive ExaminationsE2422Digital Reference Images for Inspection of Alumi-num Castings2.2ASTM Adjuncts:Reference Radiographs for Inspection of Aluminum and Magnesium Castings:V olume I,Aluminum and Magnesium Castings3V olume II,Magnesium Castings43.Terminology3.1Definitions—Definitions of terms used in this standard may be found in Terminology E1316.3.2Definitions of Terms Specific to This Standard:3.2.1The terms relating to discontinuities used in these reference radiographs are described based upon radiographic appearance.1These reference radiographs are under the jurisdiction of ASTM Committee E07on Nondestructive Testing and are the direct responsibility of Subcommittee E07.02on Reference Radiological Images.Current edition approved Sept.1,2010.Published September2010.Originally approved st previous edition approved in2005as E155-05.DOI: 10.1520/E0155-10.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from ASTM International Headquarters.Order Reference Radio-graph No.ADJE015501.4Available from ASTM International Headquarters.Order Reference Radio-graph No.ADJE015502.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959.United States3.2.2foreign materials—appear as isolated,irregular,or elongated variations offilm density,not corresponding to variations in thickness of material,nor to cavities.They may be due to the presence of sand,slag,oxide or dross,or metal of different density.3.2.3gas holes—appear as round or elongated,smooth-edged dark spots,occurring individually,in clusters,or distrib-uted throughout the casting.3.2.4gas porosity—represented by round or elongated dark spots corresponding to minute voids usually distributed through the entire casting.3.2.5microshrinkage(feathery type)—microshrinkage hav-ing an elongated appearance resembling feather-like streaks.3.2.6microshrinkage(sponge type)—microshrinkage hav-ing a spongelike appearance,and more massive and equiaxed than the feathery type.3.2.7reacted sand inclusions—appear on radiograph as “spotty segregation,”that is,sharply defined round light areas, about1mm in diameter,and often with the rim lighter than the center.They are entrapped sand particles that underwent reaction with molten magnesium alloys containing zirconium (Note3).3.2.8segregations—appear as variations infilm density which can be explained by segregation of elements of atomic numbers different from that of the matrix.3.2.8.1gravity segregation—appears white on radiograph and may range from a mottling-type effect through white-diffused spots blending with the matrix,to a cloud-like appearance in more severe cases.They are agglomerations of particles precipitated at temperatures above liquidus(Note3).3.2.8.2eutectic segregation—type of segregation is gener-ally represented when a defect or discontinuity develops during solidification and is fed with a near eutectic residual liquid rich with alloying elements that have a high X-ray attenuation.One exception to this enrichment as illustrated in Reference Radio-graphs E155isflow line(or eutectic depletion),where there is a local impoverishment of the alloying elements that have a high X-ray attenuation(Note3).(1)eutectic segregation—microshrinkage type—type of seg-regation develops when a microshrinkage develops during solidification,and is fed with residual liquid rich in dense alloying elements such as thorium.The area will show light ona radiograph(Note3).(2)eutectic segregation—pipe-shrink type—type of segre-gation develops during solidification when a pipe shrink forms and is immediatelyfilled with eutectic liquid rich in high X-ray attenuation alloying elements.The area shows light on a radiograph as a feathery or dendritic feature(Note3).(3)eutectic segregation—hot-tear type—type of segregation develops during solidification when the hot tear that takes place is immediatelyfilled with liquid rich in alloying elements high in X-ray attenuation.The defect shows as white or light irregular defined lines(Note3).(4)eutectic depletion—flow line—type of segregation devel-ops when a section of a mold isfilled by liquid and solidifies at the front before liquid from another feed meets the solid front.A portion of the solid front then partially melts; otherwise,the discontinuity would be a cold shut.Solidifica-tion begins after this remelt and the initial crystals are of high purity and contain fewer high-density alloying elements than the melt average.Since the metal is stillflowing across these crystals,the composition ahead of this solidifying front is depleted.This depletion of the eutectic shows on the radio-graph as a dark diffused line(Note3).(5)oxide inclusions in magnesium alloys containing zirconium—show on a radiograph as well defined light area of irregular shape and size resembling a radiograph of a com-pactedfine steel wool.It is composed of complex magnesium oxidefilm with high zirconium content,and,if present,rare earths and thorium oxides also.It is often associated with zirconium-rich particles.N OTE3—More detailed descriptions of these discontinuities can be found in the article,“New Reference Radiographs for Magnesium Alloy Castings,”by gowski,published in the Journal of Testing and Evaluation,V ol2,No.4,July1974.3.2.9shrinkage cavity—appears as a dendritic,filamentary, or jagged darkened area.3.2.10shrinkage porosity or sponge(nonferrous alloys)—a localized lacy or honeycombed darkened area.4.Significance and Use4.1These radiographs are intended for reference only but are so designed that acceptance standards,which may be developed for particular requirements,can be specified in terms of these radiographs.The illustrations are radiographs of castings that were produced under conditions designed to develop the discontinuities.The radiographs of the1⁄4-in.(6.35-mm)castings are intended to be used in the thickness range up to and including1⁄2in.(12.7mm).The radiographs of the3⁄4-in.(19.1-mm)castings are intended to be used in the thickness range of over1⁄2in.to and including2in.(51mm). The grouping and system of designations are based on consid-erations of the best practical means of making these reference radiographs of the greatest possible value.4.2Film Deterioration—Radiographicfilms are subject to wear and tear from handling and use.The extent to which the image deteriorates over time is a function of storage conditions,care in handling and amount of use.Reference radiographfilms are no exception and may exhibit a loss in image quality over time.The radiographs should therefore be periodically examined for signs of wear and tear,including scratches,abrasions,stains,and so forth.Any reference radio-graphs which show signs of excessive wear and tear which could influence the interpretation and use of the radiographs should be replaced.5.Basis for Application5.1The reference radiographs may be applied as acceptance standards tailored to the end use of the product.Application of these reference radiographs as acceptance standards should be based on the intended use of the product and the following considerations(see Note4).5.1.1Compare the production radiographs of the casting submitted for evaluation with the reference radiographs appli-cable to designated wall thickness in accordance with the written acceptance criteria.5.1.2An area of like size to that of the reference radiograph shall be the unit area by which the production radiograph is evaluated,and any such area shall meet the requirements as defined for acceptability.5.1.3Any combination or portion of these reference radio-graphs may be used as is relevant to the particular application. Different grades or acceptance limits may be specified for each discontinuity type.Furthermore,different grades may be speci-fied for different regions or zones of a component.5.1.4Special considerations may be required where more than one discontinuity type is present in the same area.Any modifications to the acceptance criteria required on the basis of multiple discontinuity types must be specified.5.1.5Where the reference radiographs provide only an ungraded illustration of a discontinuity,acceptance criteria may be specified by referencing a maximum discontinuity size, or percentage of the discontinuity size illustrated.5.1.6Production radiographs showing porosity,gas, shrinkage,or inclusions shall be evaluated by the overall condition with regard to size,number,and distribution.The aggregate size of discontinuities shall not exceed the total accumulation in area of the discontinuities of the reference radiograph.It is not the intent that the maximum size of the illustrated discontinuity shall be the limiting size for a single production radiographic discontinuity,or that the number of discontinuities shown on the reference radiograph shall be the limiting number for production radiographs.Also,caution should be exercised in judging a large discontinuity against a collection of small discontinuities on the basis of size alone. Each of the factors of size,number,and distribution must be considered in balance.The purchaser may provide documented specific methods of evaluation.5.1.7When the severity level of discontinuities per unit in the production radiograph being evaluated is equal to or better than the severity level in the specified reference radiograph, that part of the casting represented by the production radio-graph shall be acceptable.If the production radiograph showsdiscontinuities per unit area of greater severity than the reference radiograph,that part of the casting shall not be accepted.5.1.8As a minimum the acceptance criteria should contain information addressing:zoning of the part(if applicable),the acceptable severity level for each discontinuity type,and the specified area to which the reference radiographs are to be applied.N OTE4—Caution should be exercised in specifying the acceptance criteria to be met in a casting.Casting design coupled with foundry practice should be considered.It is advisable to consult with the manufacturer/foundry before establishing the acceptance criteria to ensure the desired quality level can be achieved.6.Description6.1The radiographs listed in Table1illustrate each type of discontinuity in eight grades.The radiographs listed in Table2 illustrate each type of discontinuity in eight grades,with the exception of pipe shrink,flow line,hot tear and oxide inclusion,where a single ungraded illustration is given for each.Although eight grades of each discontinuity are shown (with the above exceptions),a numerically smaller graded set of discontinuities based on these reference radiographs could be used for acceptance standards.Each grade is illustrated in approximately a2by2-in.(51by51-mm)area.The radio-graphic technique used is in agreement with Guide E94,and produced a desired density of2.0to2.25.6.2The alloys used to reproduce the various discontinuities were as listed in Table3.N OTE5—Misruns,core shift,cold shut,and surface irregularities are not illustrated,as they are readily identifiable by surface inspection or by other means of nondestructive testing.6.3All of these references are original radiographs;they should be viewed by transmitted light.TABLE1Reference Radiographs for Aluminum and MagnesiumCastings—Volume IDiscontinuityCastingThickness,in.AApplicableCastingThickness,in.AAluminum-Alloy CastingsGas holes1⁄4up to1⁄2,inclGas holes3⁄4over1⁄2to2,incl Gas porosity(round)1⁄4up to1⁄2,inclGas porosity(round)3⁄4over1⁄2to2,incl Gas porosity(elongated)1⁄4up to1⁄2,inclGas porosity(elongated)3⁄4over1⁄2to2,incl Shrinkage cavity1⁄4All thicknesses Shrinkage(sponge)1⁄4up to1⁄2,incl Shrinkage(sponge)3⁄4over1⁄2to2,incl Foreign material(less dense)1⁄4up to1⁄2,incl Foreign material(less dense)3⁄4over1⁄2to2,incl Foreign material(more dense)1⁄4up to1⁄2,incl Foreign material(more dense)3⁄4over1⁄2to2,inclMagnesium-Alloy CastingsGas holes1⁄4up to1⁄2,inclGas holes3⁄4over1⁄2to2,incl Microshrinkage(feathery)1⁄4up to1⁄2,incl Microshrinkage(feathery)3⁄4over1⁄2to2,incl Microshrinkage(sponge)1⁄4up to1⁄2,incl Microshrinkage(sponge)3⁄4over1⁄2to2,incl Foreign material(less dense)1⁄4up to1⁄2,incl Foreign material(less dense)3⁄4over1⁄2to2,incl Foreign material(more dense)1⁄4up to1⁄2,incl Foreign material(more dense)3⁄4over1⁄2to2,inclA1in.=25.4mm.TABLE2Reference Radiographs for Magnesium Castings—Volume IIDiscontinuityCastingThickness,in.AApplicableCastingThickness,in.A Eutectic segregation(discrete discontinui-ties)—pipeshrink,flow line,hot tears,oxideinclusions1⁄4all thicknesses Reacted sand inclusion1⁄4all thicknesses Eutectic segregation(microshrinkage type)1⁄4all thicknesses Gravity segregation1⁄4all thicknesses A1in.=25.4mm.7.Keywords7.1aluminum;castings;discontinuities;magnesium;refer-ence radiographs;X-rayASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website ().Permission rights to photocopy the standard may also be secured from the ASTM website (/COPYRIGHT/).TABLE 3Actual Alloys Used to Reproduce DiscontinuitiesDiscontinuityAlloy UsedAluminumGas holes356Gas porosity (round)356Gas porosity (elongated)195Shrinkage cavity 356Shrinkage (sponge)356Foreign material (less dense)356Foreign material (more dense)356MagnesiumGas holesZK51A Eutectic segregation and flow line EZ33A Gravity segregationZK91Microshrinkage (feathery)AZ91C Microshrinkage (sponge)AZ91C Foreign material (less dense)AZ91C Foreign material (more dense)AZ91C Reacted sand inclusionsHK31A Oxide inclusion in magnesium alloys containing zirconiumHZ11。

核-壳结构Au-Pt纳米粒子的光谱表征和电催化性能

核-壳结构Au-Pt纳米粒子的光谱表征和电催化性能

纳米粒子的 TU%U<8 谱, 与 - 对照可发现, +BA ;5 附 近 &’ 纳米粒子的特征吸收峰完全消失,说明溶液 中的纳米 &’ 晶种已完全被 () 包覆,合成了核 % 壳 结构 # 另外 X 曲线 . 在 B+E# F ;5 附近没有出现由于 V ()I/ G W B N 中配体与金属间的电子传递所引起的吸 这说明溶液中的 V ()I/G W B N 已经完全被还原 收峰 V $B W , 为 ()# 还发现在低波长区有一较宽的尾峰,这与 ,0=-;<84< V$B W 合成 () 纳米粒子的 TU%U<8 图一致 # I=0<64)"; V$$ W 等通过计算指出 () 纳米粒子的吸收峰 出现在 B$+ ;5 附近,我们制备的核 % 壳结构 &’%() 纳米粒子溶胶在 B$* ;5 附近出现吸收峰,可能对应 外层 () 壳的吸收 #
图8 ’()* 8
"#$%& 纳米粒子的 9:; 图 9:; (/0). 34 "#$%& 5053<02&(,7.1
入 !B , 逐渐吹扫除去透射池中的气相 IJ, 同时采集 样品单光束光谱 9 #K : # 所得光谱表示为吸收谱L #K #O 每个单光束光谱都由 FAA 张干涉图累加而成,光谱 $ M N /6 分辨率为 B 35 N $# 电化学测量在 BGD& 9 1PQP : 恒电位仪上进行# 玻碳 9 PI : 表面依次用 + !5、 $ !5 、 A# D !5 和 A# A+ !5 的 &/B JD 研磨,然后用超声波水浴除去表面杂 质,再将平均直径为 B* ;5 的核 % 壳结构 &’%() 纳 米粒子溶胶分散到 PI 电极表面, 使其均匀铺展, 所 制备的电极记为 &’%() ? PI, 辅助电极为铂黑电极, 参比电极为饱和甘汞电极 9 KI1 : # 电解质溶液为A# $ 5"/・@ N $ RBKJF 溶液,由 S</<>"=0 超纯水和优级纯 硫酸试剂配制 # 所有实验均在室温下进行 #

英文单词

英文单词

Synopsis:概要,大纲Macroscopic:宏观的,肉眼可见的Interconnected:连通的,有联系的Inter-dendritic:晶间Ingots:钢锭,铸块Globular:球状的Substantially:实质上,大体上,充分地Qualitatively:定性地Bulging:膨胀,凸出,打气,折皱(在连铸中是鼓肚的意思!)Hydrogen induced cracking:氢致裂纹(HIC)Correlated to:相互关联Perform:完成,执行Bulk concentration:体积浓度Introduction:引言Accordingly:因此,相应地Countermeasure:对策,对抗措施Equiaxed crystal:等轴晶Aggromerate:聚合Permeability:渗透性Slab:厚板Plate:薄板Contraction:收缩,紧缩Conventional:传统的Inconsistency:不一致Susceptibility:敏感性Resolve:解决,分解Morphology:形态Interpret:解释,解读Areal fraction:面积分数Quench:淬火Dendrite tips:枝晶尖端Specimen:试样,样品Proportional:成比例的Coarsening:晶粒粗大Coalescence:合并,联合Nevertheless:不过,虽然如此Planar:二维的,平面的Cellular:细胞的,多孔的Interface:界面,接触面Refer to :适用于Constant:常量Approximation:近似值,近似法Apparatus:仪器,装置Diagram:图表,图解Derive from:源自,来自Longitudinal:纵向的,长度的Section:截面Magnification:放大率schematic:图解的curvature:弯曲arrowed:标有箭头的in essence:本质上,其实lagged 延迟radial heat 辐射热transient:短暂的crucible:坩埚internal diam:内部直径chromel alumel thermocouple:铬镍-铝镍热电偶allumina:氧化铝agitated ice water:激冷冰水given:考虑到electropolish:用电解法抛光transverse:横向的,横断的metallographic:金相的diffusion:扩散,传播coefficient:系数,率undercooling/supercooling:过冷interdendritic:枝晶间,树枝晶间的intragranular:晶内的granular:颗粒的,粒状的isotherm:等温线arc-welded:弧焊deposit:沉积物,存款inversely:相反地geometry:几何学justification:理由,辩护,认为正当somewhat:有点gradient:梯度,倾斜度recognised:承认,辨别substitute:代替exponent:指数excluding:不包括,将。

铸造行业英语词汇

铸造行业英语词汇

3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10 3.3.11 3.3.12 3.3.13 3.3.14 3.3.15 3.3.16 3.3.17 3.3.18 3.3.19 3.3.20 3.3.21 3.3.22 3.3.23
亚共晶铸铁 过共晶铸铁 灰铸铁[片墨铸铁] 球墨铸铁[球铁] 高韧性球墨铸铁 中锰球墨铸铁 中硅球墨铸铁 可锻铸铁[马铁] 白心可锻铸铁 黑心可锻铸铁 花心可锻铸铁 铁素体可锻铸铁 珠光体可锻铸铁 球墨可锻铸铁 蠕墨铸铁[蠕铁,紧密 石墨铸铁] 白口铸铁 麻口铸铁 奥氏体铸铁 贝氏体铸铁 贝氏体球墨铸铁
中文名
英文名
基本术语 铸造 砂型铸造 特种铸造 铸件 毛坯铸件 砂型铸件 试制铸件 铸态铸件 铸型[型] 铸造工艺 铸造用材料 铸造工艺材料 铸造设备 铸工 铸造工作者 铸造车间 铸造厂 铸造分厂 铸造三废 一批 一炉 铸焊 铸锭 铸造合金及熔炼、浇 注 铸造合金基本术语 铸造合金 共晶合金系 共晶合金 亚共晶合金 过共晶合金 共晶团 共晶温度
casting, founding, foundry sand casting process special casting process casting rough casting sand casting pilot casting as-cast casting mold casting process,foundry technology foundry materials consumable materials foundry equipment ,foundry facilities caster,founder,foundry worker foundryman foundry shop foundry attached foundry,captive foundry,tied foundry foundry effluent a batch a cast,a heat,a melt cast welding,flow welding ingot

微波辅助深共熔溶剂提取紫斑牡丹籽总黄酮的工艺优化及其抗氧化活性

微波辅助深共熔溶剂提取紫斑牡丹籽总黄酮的工艺优化及其抗氧化活性

陈思羽,饶桂维,王露桦,等. 微波辅助深共熔溶剂提取紫斑牡丹籽总黄酮的工艺优化及其抗氧化活性[J]. 食品工业科技,2024,45(5):161−168. doi: 10.13386/j.issn1002-0306.2023030318CHEN Siyu, RAO Guiwei, WANG Luhua, et al. Optimization of Microwave-assisted Deep Eutectic Solvent Extraction of Total Flavonoids from Paeonia rockii Seeds and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(5):161−168. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030318· 工艺技术 ·微波辅助深共熔溶剂提取紫斑牡丹籽总黄酮的工艺优化及其抗氧化活性陈思羽1,饶桂维2, *,王露桦3,盛颖霏2(1.浙江树人学院树兰国际医学院,浙江杭州 310015;2.浙江树人学院交叉科学研究院,浙江杭州 310015;3.浙江树人学院生物与环境工程学院,浙江杭州 310015)摘 要:目的:优化紫斑牡丹籽总黄酮的微波辅助深共熔溶剂提取方法,并探究其体外抗氧化活性。

方法:以低共熔溶剂作为提取溶剂,采用微波辅助技术提取紫斑牡丹籽中的总黄酮。

采用单因素实验以及响应面法进行提取工艺优化。

从DPPH 自由基清除率、羟基自由基清除率进行总黄酮的体外抗氧化活性研究。

结果:以氯化胆碱作为氢键受体,脲作为氢键供体的低共熔溶剂体系下,在摩尔比为1:3,含水量41.80%(V/V )的深共熔溶剂体系最优,料液比1:19 g/mL ,微波功率为110 W ,微波时间3.00 min ,此时紫斑牡丹籽总黄酮得率为1.76 mg/g 。

包晶共晶反应的英语

包晶共晶反应的英语

Peritectic and Eutectic Reactions inMetallurgy: A Comparative AnalysisIn the field of metallurgy, peritectic and eutectic reactions play crucial roles in the formation of alloys and microstructures. These reactions occur duringsolidification processes, influencing the mechanical properties, phase composition, and microstructural evolution of metals and alloys.Peritectic reactions involve the formation of a solid phase from two liquid phases. This reaction occurs when a liquid phase with a higher melting point reacts with another liquid phase with a lower melting point to produce a solid phase with an intermediate melting point. The driving force for this reaction is the reduction in Gibbs free energy associated with the formation of the more stable solid phase.On the other hand, eutectic reactions occur when two or more liquid phases react to form a single solid phase. These reactions are characterized by a distinctive eutectic microstructure, which consists of fine lamellar ordendritic structures. The eutectic reaction occurs at aconstant temperature, known as the eutectic temperature, which is lower than the melting points of the constituent liquid phases.A key difference between peritectic and eutectic reactions lies in the number of liquid phases involved. Peritectic reactions involve two liquid phases, while eutectic reactions involve two or more liquid phases. Additionally, the solid phase formed in peritectic reactions has an intermediate melting point, whereas the solid phase formed in eutectic reactions has a lower melting point than the constituent liquid phases.In terms of applications, peritectic reactions are commonly observed in alloys such as steel, where carbon and iron react to form cementite, a hard and brittle phase. On the other hand, eutectic reactions are commonly found in alloys like aluminum-silicon, where the eutectic microstructure enhances the mechanical properties of the alloy by providing a combination of strength and ductility. In conclusion, peritectic and eutectic reactions are fundamental processes in metallurgy that govern the formation of alloys and microstructures. Understandingthese reactions and their underlying mechanisms is crucial for developing advanced materials with optimized properties for specific applications.**包晶共晶反应在冶金学中的比较分析**在冶金学领域,包晶反应和共晶反应对于合金和微观结构的形成起着至关重要的作用。

北航物理冶金原理3-合金相图与凝固(1)

北航物理冶金原理3-合金相图与凝固(1)

B%
B
A
T, oC
Liquid: L
L + a
Solid: a
Co
CL
CS
Cs= k CL
Wa
WL
Co
CL
Ca
Ts
TL
二、单相合金的平衡凝固:Equilibrium Solidification 2. 两相平衡的基本规则:杠杆规则 Lever Rule 平衡相之成分点:连接线-tie-line or Conode 平衡相之相对重量百分数:杠杆定律Lever Rule
相平衡规律:相律
体系自由度 f=n – p + 2 f=n – p + 1(常压条件)
常见基本相图类型
1、匀晶相图(无限互溶单相固溶体)Isomorphous +L
L
a
(f=2-1+1=2)
(f=2-1+1=2)
(f=2-2+1=1)
2、共晶相图:Eutectic Phase Diagram LE (a+b) 三相平衡 f=2-3+1=0
单相二元合金的凝固 Solidification of Single-Phase Binary Alloys
一、相图分析: 液相线-Liquidus; 固相线-Solidus; 液相区; 固相区; 两相区. 自由度
DT
DGv
Tm
T
G
GL
Gs
Spontaneous Nucleation 自发形核(均匀形核)
Spontaneous Nucleation 自发形核(均匀形核)
Spontaneous Nucleation 自发形核(均匀形核)
r
临界形核功: Critical Energy of Nucleation

定向生长碳化铬堆焊复合耐磨板及其应用

定向生长碳化铬堆焊复合耐磨板及其应用

定向生长碳化5堆焊复合耐磨板及其应用王微伟1,乔明亮2,赵春燕',刘爱国2(1.江苏瑞米克金属技术有限公司,江苏常州213172;2.沈阳理工大学,辽宁沈阳110159)摘要:采用药芯焊丝明弧自保焊技术在Q235C低碳钢基体上进行了双层耐磨堆焊,采用强制冷却技术对M'C3碳化物的生长方向进行了控制,制备出了定向生长碳化辂堆焊复合耐磨板#采用光学显微镜、硬度仪、针盘磨损试验机对耐磨板堆焊层的的显微组织、硬度和耐磨性能进行了测试分析。

结果表明,第一堆焊层为亚共晶成分,显微组织为马氏体(+残余奥氏体)+共晶组织;第二堆焊层为过共晶成分,显微组织为初生碳化物M7C3+共晶组织;从熔合区到堆焊表面硬度逐渐升高,堆焊表面硬度达到60.2HRC#通过强制冷却技术控制,第二堆焊层中M7C3碳化物的生长方向垂直于堆焊表面,有利于提高堆焊层的耐磨性,针盘磨损试验中磨损失重仅为作为对比试样的Q235C基体的1/30#在磨煤机筒体防磨板上的实际使用结果显示,其使用寿命达到某市售堆焊耐磨板的3倍#关键词:耐磨板;堆焊;碳化辂;定向生长中图分类号:TG455Hardfacel wear resistant composite plate witt orientate'ctromium carbide and is applicationWang Weiwl1,Qiao Mingliang2,Zhao Chunyan1,Lin Aiguo2$1.Jiangsu RemakeMeeaeTethn/egyC/.,Led.,Changzh/u2131'2,Jiangsu,China;2.Shenyang Ligong University,Shenyang110159,Liaoning,China)Abstrace:Low corbon steel Q235C plates were hardfaced wita cored wires,as welO as self-shielded open arc.Growth oeentation of M7C3corbides was controlled with forced cooling.Doubie-layered overlays w W orientat­ed theomium taebideweeepeoduted on eheBubBeeaee.MiteoBeeuteueeB,haedneBand wea e eeBi ean te of ehe o A verlay were analyzed with opticoi microscope,hadness testee and pin-on-dWk weae testee.The results showed that composition of the first overlay was hypoeutectic and its microstructure consisted of martensite with residuai austenite and e utectic position of the second overlay was hypereutectic, and its microstructures consisted of primare corbides M7C3and eutectic microstructures.Hadness of tae ovee-lays incressed from the fsion boundare te tae surfaco of the second overlay.Hadness of the surfaco of tae o­verlay was60.2HRC.Controlled with forced cooling technology,growta oeentation of M7C3corbides in the second overlay was perpendiculae te the surfaco.Wee resistanco of tte overlay was incressed with oeentated-growing M7C3corbines,and wer loss in tae pin-on-disk test was only1/30of that of tte Q235C substrate.Applicotion in cool mili btrel showed0x0its life was3times of a cortain commercialiy aveilablehardfaced composite plate.Key words:w—resistant plate;hardfacing;chromium corbide;olentated growth62020年第5期0前言工业系统设备耐磨防护中常用的材料包括铸石、氧化铝陶瓷、超高分子量聚乙烯、合金钢耐磨板等,但这些材料存在脆性大、难以进行切割及焊接加工等一系列问题[1]#采用堆焊或熔敷技术制造的带有碳化物增强相的复合耐磨板具有耐磨性好、抗冲击、进行切割及焊接加工等优点,在耐磨防护中获得了广泛的应用[1"3]#在众多的碳化物中,碳化锯由于具有耐磨性能优异、价格低廉、可以在Fe-Cr-C合金体系中原位生成的特点,成为铁基耐磨材料堆焊、熔敷的首选增强材料。

金属的英语单词

金属的英语单词

金属的英语单词篇一:金属英语单词物料科学Material Science物料科学定义Material Science Definition加工性能Machinability强度Strength抗腐蚀及耐用Corrosion resistance durability金属特性Special metallic features抗敏感及环境保护Allergic, re-cycling environmental protection化学元素Chemical element元素的原子序数Atom of Elements原子及固体物质Atom and solid material原子的组成.大小.体积和单位图表The size, mass, charge of an atom, and is particles (Pronton,Nentron and Electron)原子的组织图Atom Constitutes周期表Periodic Table原子键结Atom Bonding金属与合金 Metal and Alloy铁及非铁金属Ferrous Non Ferrous Metal金属的特性Features of Metal晶体结构 Crystal Pattern晶体结构,定向格子及单位晶格Crystal structure, Space lattice Unit cell_线结晶分析法_ – ray crystal analyics method金属结晶格子 Metal space lattice格子常数 Lattice constant米勒指数 Mill s Inde_金相及相律 Metal Phase and Phase Rule固熔体 Solid solution置换型固熔体 Substitutional type solid solution 插入型固熔体 Interstital solid solution金属间化物 Intermetallic compound金属变态Transformation变态点Transformation Point磁性变态Magnetic Transformation同素变态Allotropic Transformation合金平衡状态Thermal EquilibriumPhase Rule自由度Degree of freedom临界温度Critical temperture共晶Eutectic包晶温度 Peritectic Temperature包晶反应 Peritectic Reaction包晶合金 Peritectic Alloy亚共晶体 Hypoeutetic Alloy过共晶体 Hyper-ectectic Alloy金属的相融.相融温度.晶体反应及合金在共晶合金.固熔孻共晶合金及偏晶反应的比较Equilibrium Comparision金属塑性 Plastic Deformation滑动面 Slip Plan畸变 Distortion硬化 Work Hardening退火 Annealing回复柔软 Crystal Recovery再结晶 Recrystallization金属材料的性能及试验Properties testing of metal化学性能Chemical Properties物理性能Physical PropertiesColour磁性Magnetisum比电阻Specific resistivity specific resistance比重Specific gravity specific density比热Specific Heat热膨胀系数Coefficient of thermal e_pansion导热度Heat conductivity机械性能 Mechanical properties屈服强度(降伏强度) (Yield strangth)弹性限度.阳氏弹性系数及屈服点elastic limit, Yeung s module of elasticity to yield point 伸长度 Elongation断面缩率Reduction of area金属材料的试验方法The Method of Metal inspection不破坏检验篇二:金属材料相关英语词汇物料科学Material Science物料科学定义Material Science Definition加工性能Machinability强度Strength抗腐蚀及耐用Corrosion resistance durability金属特性Special metallic features抗敏感及环境保护Allergic, re-cycling environmental protection化学元素Chemical element元素的原子序数Atom of Elements原子及固体物质Atom and solid material原子的组成.大小.体积和单位图表The size, mass, charge of an atom, and is particles (Pronton,Nentron and Electron)原子的组织图Atom Constitutes周期表Periodic Table原子键结Atom Bonding金属与合金 Metal and Alloy铁及非铁金属Ferrous Non Ferrous Metal金属的特性Features of Metal晶体结构 Crystal Pattern晶体结构,定向格子及单位晶格Crystal structure, Space lattice Unit cell_线结晶分析法_ – ray crystal analyics method金属结晶格子 Metal space lattice格子常数 Lattice constant米勒指数 Mill s Inde_金相及相律 Metal Phase and Phase Rule固熔体 Solid solution置换型固熔体 Substitutional type solid solution 插入型固熔体 Interstital solid solution金属间化物 Intermetallic compound金属变态Transformation变态点Transformation Point磁性变态Magnetic Transformation同素变态Allotropic Transformation合金平衡状态Thermal Equilibrium相律Phase Rule自由度Degree of freedom临界温度Critical temperture共晶Eutectic包晶温度 Peritectic Temperature包晶反应 Peritectic Reaction包晶合金 Peritectic Alloy亚共晶体 Hypoeutetic Alloy过共晶体 Hyper-ectectic Alloy金属的相融.相融温度.晶体反应及合金在共晶合金.固熔孻共晶合金及偏晶反应的比较 Equilibrium Comparision金属塑性 Plastic Deformation滑动面 Slip Plan畸变 Distortion硬化 Work Hardening退火 Annealing回复柔软 Crystal Recovery再结晶 Recrystallization金属材料的性能及试验Properties testing of metal化学性能Chemical Properties物理性能Physical Properties颜色Colour磁性Magnetisum比电阻Specific resistivity specific resistance比重Specific gravity specific density比热Specific Heat热膨胀系数Coefficient of thermal e_pansion导热度Heat conductivity机械性能 Mechanical properties屈服强度(降伏强度) (Yield strangth)弹性限度.阳氏弹性系数及屈服点elastic limit, Yeung s module of elasticity to yield point 伸长度Elongation断面缩率Reduction of area金属材料的试验方法The Method of Metal inspection不破坏检验Non – destructive inspections渗透探伤法Penetrate inspection磁粉探伤法Magnetic particle inspection放射线探伤法Radiographic inspection超声波探伤法Ultrasonic inspection显微观察法Microscopic inspection破坏的检验Destructive Inspection冲击测试Impact Test疲劳测试Fatigue Test潜变测试 Creep Test潜变强度Creeps Strength第壹潜变期Primary Creep第二潜变期Secondary Creep第三潜变期Tertiary Creep主要金属元素之物理性质Physical properties of major Metal Elements工业标准及规格–铁及非铁金属Industrial Standard – Ferrous Non – ferrous Metal磁力 Magnetic简介 General软磁 Soft Magnetic硬磁 Hard Magnetic磁场 Magnetic Field磁性感应 Magnetic Induction透磁度 Magnetic Permeability磁化率 Magnetic Susceptibility (_m)磁力(Magnetic Force)及磁场(Magnetic Field)是因物料里的电子(Electron)活动而产生抗磁体.顺磁体.铁磁体.反铁磁体及亚铁磁体Diamagnetism, Paramagnetic, Ferromagnetism,Antiferromagnetism Ferrimagnetism抗磁体 Diamagnetism磁偶极子 Dipole负磁力效应 Negative effect顺磁体 Paramagnetic正磁化率 Positive magnetic susceptibility铁磁体 Ferromagnetism转变元素 Transition element交换能量 Positive energy e_change外价电子 Outer valence electrons化学结合 Chemical bond自发上磁 Spontaneous magnetization磁畴 Magnetic domain相反旋转 Opposite span比较抗磁体.顺磁体及铁磁体Comparison of Diamagnetism, Paramagnetic Ferromagnetism 反铁磁体 Antiferromagnetism亚铁磁体 Ferrimagnetism磁矩 magnetic moment净磁矩 Net magnetic moment钢铁的主要成份The major element of steel钢铁用碳之含量来分类Classification of Steel according to Carbon contents 铁相Steel Phases钢铁的名称Name of steel纯铁体Ferrite渗碳体Cementitle奥氏体 Austenite(转载自第一范文网,请保留此标记.)珠光体及共释钢 Pearlite Eutectoid 奥氏体碳钢Austenite Carbon Steel单相金属Single Phase Metal共释变态Eutectoid Transformation珠光体 Pearlite亚铁释体Hyppo-Eutectoid初释纯铁体 Pro-entectoid ferrite过共释钢 Hype-eutectoid珠光体Pearlite粗珠光体 Coarse pearlite中珠光体 Medium pearlite幼珠光体 Fine pearlite磁性变态点 Magnetic Transformation钢铁的制造Manufacturing of Steel连续铸造法 Continuous casting process电炉 Electric furnace均热炉 Soaking pit全静钢 Killed steel半静钢 Semi-killed steel沸腾钢(未净钢) Rimmed steel钢铁生产流程 Steel Production Flow Chart钢材的熔铸.锻造.挤压及延轧The Casting, Fogging, E_trusion, Rolling Steel熔铸 Casting锻造 Fogging挤压 E_trusion延轧 Rolling冲剪 Drawing stamping特殊钢 Special Steel简介篇三:金属材料的英文词汇加热炉 heating furnace, reheating furnace火焰炉 flame furnace?环形炉 circular rotating furnace?退火炉 annealing furnace, annealer?? 真空退火炉 vacuum annealing furnace连续酸洗机组 pickle line? processor:带钢不间断地通过几个酸性槽进行酸性.轧辊 roll?挤压辊 e_trusion roll?辊道? roll table延伸辊道 e_tension roller table?芯棒 mandrel?卫板 guard?导板 guide?带卷箱 coil bo_?活套 loop?2.1.3 组织性能与测试穿晶断裂? transgranular fracture:穿过多晶体材料的晶体内部发生的断裂.晶间断裂 intergranular? fracture:沿着晶粒界间发生的断裂.解理断裂 cleavage fracture:沿着给定的晶面—解理面发生的断裂(是穿晶断裂的方式之一).?剪切断裂 shear fracture:沿着最大剪应力的作用面发生的断裂.?疲劳断裂 fatigue? fracture:在低于材料的屈服强度的反复或交变应力作用下发生的断裂.延迟断裂 delayed? fracture:金属遭受本不足以直接引起断裂的静应力但经过一段时间却发生了断裂.断口 fracture? surface:金属件的断裂面或破裂面.断口形貌学 fractography?杯锥断口 cup cone? fracture:圆柱形拉伸试件于延性断裂(韧性断裂)后,一侧的断口呈杯状,另一侧的断口呈锥状,两者合称杯锥断口.丝状断口 silky? fracture:表面光滑.有丝绸光泽的极细晶粒断口.纤维状断口 fibrous? fracture:金属或合金的延性足够大,在断裂前晶粒被拉长了从而总体看上去象许多纤维的断口.层状断口 lamination? fracture:所含非金属夹杂物在轧制过程中被延展成薄层的金属材料垂直于轧制面的断口.贝壳状断口 conchoidal? fracture:由许多同心圆圈组成的.好象贝壳状的断口.金相学? metallography:研究金属和合金的内部组织的学科.其主要内容是借助于金相显微镜和电子显微镜研究金属及合金的内部组织以及化学成分.凝固条件.形变加工.焊接和热处理等等所引起的内部组织的变化和由之引起的性能的变化.金相检查 metallographic e_amination:用金相方法对金属或合金的宏观组织和显微组织进行的分析.研究或检验.?? 光学显微镜 optical microscope:利用反射光研究对可见光并不透明的金属及合金的组织所用的显微镜.镶样? mounting:将试样的体积过小(例如丝材.薄带等)或形状复杂,从而不便于以手指捏持或夹具夹持时,将其镶嵌于塑料(胶木粉等)或易熔合金等之内的操作.磨光? grinding:将金相试块上欲进行组织观察的一面,用手工或在普通磨光机上以从粗到细的各号砂纸.砂布或磨料依次进行研磨,或者用掺有各号粒度的磨料的蜡盘或MoS2盘依次进行研磨,直到用最细的砂纸或磨料磨过为止.抛光 polishing:将金相试块上欲进行金相分析的表面搞得平滑而光亮的操作.?浸蚀? etching:用某种方法(通常是用蚀刻剂)将金属或合金的试块抛光面上的组织显露出来的操作.浸蚀剂? etchant:使金属或合金的抛光面上的组织特征或组织组分显现出来用的化学试剂.蚀坑 etch? pit:精细抛光的金属表面上由于深度化学蚀刻而形成的有规则形状的小坑.高温显微镜 hot stage? microscope:在高温下研究金属或合金的显微镜.电子显微镜 electron? microscope:利用高速运动的电子束代替可见光的光束作为工作媒介制成的一种显微镜.扫描电子显微镜scanning electron? microscope, SEM:利用电子束在被研究试样表面作规则地扫描而产生的二次电子和/或背散射电子等在显像管的荧光屏上成像的电子显微镜(即扫描式电子显微镜).? 透射电子显微镜transmission electron microscope, TEM:利用电子束穿过被研究试样(薄膜试样或复型)而成像的电子显微镜(即透视式电子显微镜).复型? replica:透视电子显微术用的一种试样:以复型材料将经过蚀刻的显微磨面上的浮雕或者断口的凹凸形貌复制下来而制备成的极薄的(对电子射线来说,具有很高的透明度)薄膜.提取复型 e_traction replica:为研究金属或合金中的析出物和夹杂物而用蚀刻的方法将它们从基体上萃取到复型上面得到的一种复型.?投影复型 shadowed? replica:为提高像的衬比或根据阴影长度测量浮凸的高度而用重金属(Cr.Au.Pt.Pd等或者其合金)进行过投影的复型.衬度? contrast:底片.照片.荧光屏上的最亮部分与最暗部分或者最白部分与最黑部分的强弱差别.取向衬度 orientation? contrast:在经过蚀刻的金属或单相合金的显微磨面上,因各个晶粒相对于磨面的晶体学取向之不同而造成的.各个晶粒之间的衬比.相衬度 phase? contrast:基于从试样表面(具有微小的凹凸差别)反射回来的光线中的微小相位变化(即微小的相位差)所造成的试样表面像内不同区域之间的衬比.? 衍射衬度 diffraction contrast:由于晶体的选择衍射(满足布喇格反射条件)而产生的衬比.电子探针 electron? microprobe:将由热灯丝发射出来的电子,以静电场加速,随之以静电透镜聚焦到试样表面极微小的一点上来激发该点(微体积)内诸化学元素的标志_射线,而后分析标志_射线谱或∕和谱线的强度,以进行该点的化学成分的定性或∕和定量分析的仪器.俄歇电子能谱术Auger electron spectroscopy?场离子显微镜 field ion? microscope:分辨本领极高的一种显微镜,它是在尖形试样的尖端加上对荧光屏来说为正的高压电势,成象气体(He.Ne或其它稀有气体)在试样尖端被电离为正离子,并从电离点径向加速至荧光屏而成像.原子探针 atom probe?扫描隧道显微术 scanning tunnelling microscopy, STM?? 穆斯堡尔谱术 Mossbauer spectroscopy正电子湮没技术positron annihilation technique?? _射线金相学 _ ray metallography:利用_射线研究金属及合金的学科. _射线衍射分析 _ ray diffraction? analysis:以_射线衍射为基础的晶体结构分析._射线形貌学 _ ray topography?_射线衍射花样 _ ray? diffraction pattern:用照相方法记录下来的._射线被晶体衍射所产生的衍射花样.劳厄法 Laue? method:用固定不动的单晶作试样,以连续_射线进行晶体结构分析的方法,以德国物理学家劳厄(ue)的姓氏命名.粉末法? powder method:使用粉末试样或多晶体(细小晶体的集合体)试样,以单色_射线拍摄_射线衍射花样来进行晶体结构分析的方法.周转晶体法? rotating crystal method:使作为试样的单晶体绕一定轴转动或摆动来进行_射线衍射分析的方法.极图 pole? figure:用极射赤面投影方法,以多晶金属材料的一个特定面(例如,冷拉线材中垂直于其纵轴或者平行于其纵轴的截面;冷轧板材中的轧制平面即板面)作为投影面,将该材料中各个晶粒的同一特定晶面({hkl})表示在一个极射赤面投影图上.这种极射赤面投影图称为〝极图〞.反极图 inverse pole? figure:将多晶金属材料中的某一参考方向(例如,线材的纵轴;板材的轧制方向等)的分布密度表示在与该材料的晶体点阵相同的标准极射赤面投影图上的轴分布图.极射赤面投影 stereographic? projection:假设有一个球,其上端为北极,下端为南极,其中腰为赤道;再假设,将一个晶体或者晶体点阵中的一个晶胞置于球心处;由球心向诸晶面引垂线,这些垂线的延长线与球面相交,其交点称为极点.然后再将北半球上的诸极点与南极引直线,而南半球上的诸极点与北极引直线;所有这些直线与赤道平面——投影面相交,此投影面上的诸交点就组成了晶体的极射赤面投影.心射赤面投影 gnomonic? projection:假设有一个球,其上端为北极,下端为南极,其中腰为赤道;再假设,将一个晶体或者晶体点阵中的一个阵点置于球心上;由球心向诸晶面引垂线,这些垂线的延长线与球面相交,其交点称为极点.然后再由球心向诸极点引直线,并延长到与球的北极或南极相切的平面——投影面相交,此投影面上的诸交点就组成了晶体的心射赤面投影.膨胀测量术 dilatometry:研究金属或合金试件于加热和/或冷却时的长度变化(膨胀和/或收缩)以寻找其相变点的技术.?? 示差膨胀测量术 differential dilatometry:测量被测试件与标准件两者的线膨胀量和/或线收缩量之差的膨胀测量术.硫印? sulfur print:用硫印法检测钢中硫化物的分布状况时,在照相纸上所印得的硫印痕.无损检测 non destructive? testing:在不破坏被检物的条件下来检查材料缺陷的方法.超声检测 ultrasonic testing:用超声波检查金属体内部缺陷的无损检测.?磁粉检测 magnetic particle? inspection:利用极细的铁磁性粉末(通常为磁性氧化铁的粉末)检验钢铁等铁磁性材料表面或靠近表面的宏观缺陷(裂纹.非金属夹杂物等)的无损检测.? 荧光磁粉检测 fluorescent magnetic particle inspection:使用涂有在紫外线照射后能发出荧光的物质的铁磁性粉末的磁粉探伤._射线探伤 _ ray radiographic? inspection:使用_射线透射术进行金属材料或工件的内部缺陷(例如裂纹.疏松.缩孔等)的无损检验.γ射线探伤γ ray? radiographic inspection:使用γ射线透射术进行金属材料或工件的内部缺陷(例如裂纹.疏松.缩孔等)的无损检验.荧光液渗透探伤? fluorescent penetrant test:利用荧光渗透液的渗透探伤.〝荧光液渗透探伤〞是将添加了在紫外线照射后能发出荧光的物质的渗透液,涂布于被检物的表面,渗透液即渗入缺陷里去,随之清除净残留在表面上渗透液,再以波长为330±30nm的紫外线照射之,缺陷处便发出荧火,由之显示出缺陷的图象.涡流检测 eddy current inspection:利用涡流现象的无损检验.?引伸计 e_tensometer:?? 测宽仪 width gauge:测厚仪 thickness tester, thickness gauge?测压仪 load cell?同位素测厚仪 isotopic thickness gauge?管材试验机 pipe testing machine?? 磁力探伤仪 magnetic flaw detector宏观组织? macrostructure:金属和合金的金相磨面经过适当处理后,以肉眼或借助与放大镜观察到的组织.显微组织? microstructure:金属和合金的金相磨面经过适当的显露(例如蚀刻)后借助于显微镜所观察到的组织.共晶组织 eutectic? structure:完全由共晶体所组成的组织.分离共晶体 divorced? eutectic:本来是共晶体但其组成相分离开了,即其中与共晶相变之前形成的相(先共晶相)相同的那个相,依附于先共晶相生长,并把另一相推向最后凝固的晶界处,从而失去了共晶体的特征,这就是说,共晶体中前一种相在显微观察时已经看不出来了,而后一种相则游离出来.呈大块状,分布在晶界处.层状共晶体 lamellar eutectic:其内至少有一种相是以片层状存在的共晶体.?伪共晶体 pseudo? eutectic:由成分偏离共晶成分的过冷熔体形成的.貌似共晶体的那种显微组织或组分.亚共晶体? hypoeutectic:由共晶体和共晶点左侧的先共晶相所组成的组织.过共晶体? hypereutectic:由共晶体和共晶点右侧的先共晶相所组成的组织.共析体? eutectoid:合金冷却时其某一成分(共析成分)的固相(固溶体)在恒定温度(共析温度)下转变而形成(〝同时析出〞即〝共析〞)的两种或多种固相以固定比例组成的复相混合物.伪共析体 pseudo eutectoid:由成分偏离共析成分的过冷固溶体形成的.貌似共析体那种显微组织或组分.?亚共析体? hypoeutectoid:由共析体和共析点左侧的先共析相所组成的组织.过共析体? hypereutectoid:由共析体和共析点右侧的先共析相所组成的组织.包晶体 peritectic:合金在凝固过程中发生包晶相变所形成的产物.?包析体 peritectoid:合金于冷却时发生包析相变所形成的产物.?树枝状组织 dendritic? structure:由于不平衡凝固而形成的诸树枝状晶体所组成的组织.网状组织 network? structure:一种组织组分出现在其它组织组分的晶粒的晶界上从而将后来的晶粒完全或部分地勾划出来而呈网状,这样的组织称为〝网状组织〞.层状组织? lamellar structure:由共存的诸相的薄层交替重叠而成的复相物所组成的组织.柱状组织 columnar? structure:由相互平行的细长晶粒(柱状)所组成的组织.球状组织 globular? structure:其中的一相以大致呈球状的颗粒散布于另一相(基体)之内的复相组织.针状组织 acicular? structure:在显微磨面(经过蚀刻的)上观察之呈针状的晶体或复相物所组成的组织.维氏组织 Widermanstaten? structure:沿着过饱和固熔体(母相)的特定晶面析出从而在母相内的分布具有一定规律的片状或针状的第二相的组织.反常组织 abnormal? structure:渗过碳的钢内有时出现这样的组织,即大块渗碳体和其四周被游离铁素体所包围着的组织.这样的组织,在正常的情况下是不出现的,故称〝反常组织〞.带状组织 banded structure:金属材料内与热形变加工的延伸方向大致平行的诸条带所组成的复相偏析组织.?过热组织? overheated structure:将金属或合金加热到了过高的温度以致造成晶粒变得粗大,由此得到的组织称为〝过热组织〞.残余奥氏体? retained austenite:铁基合金发生γ→α相变以后在环境温度(通常是室温)下残存的奥氏体.共析铁素体 eutectoid? ferrite:共析成分的奥氏体发生共析相变(共析相变)所形成的共析体(本意的珠光体)内的铁素体.先共析铁素体 proeutectoid? ferrite:本意是低于共析成分的奥氏体,从高温慢冷下来之际,在发生共析相变(共析转变)之前析出的铁素体.莱氏体? ledeburite:含碳很高的铁基合金在凝固过程中发生共晶相变所形成的.由奥氏体和碳化物(包括渗碳体)所组成的共晶体.板条马氏体 lath? martensite:其单元的立体形貌呈板条形状的那种类型的马氏体.片状马氏体 plate? martensite:其单个晶体的立体形貌多呈双凸透镜状,故称〝透镜状马氏体〞.表面浮突 surface? relief:在平的抛光磨面上由于相转变而产生的.反映新相形成的显微浮突.热弹性马氏体 thermo elastic? martensite:某些非铁合金于马氏体相变时,马氏体的晶体随温度的降低而增大;反之,已长大了的马氏体晶体于升温时又随温度的回升而缩小乃至消失;当重复地予以冷却和加热时,若条件适当,则马氏体晶体又可在原处出现.增大以及缩小.消失.这样的马氏体称为〝热弹性马氏体〞.回火马氏体 tempered? martensite:淬火时形成的片状马氏体(晶体结构为体心四方)于回火第一阶段发生分解—其中的碳以过渡碳化物的形式脱溶—所形成的.在固溶体基体(晶体结构已变为体心立方)内弥散分布着极其细小的过渡碳化物薄片(与基体的界面是共格界面)的复相组织;这种组织在金相(光学)显微镜下即使放大到最大倍率也分辨不出其内部构造,只看到其整体是黑针(黑针的外形与淬火时形成的片状马氏体(亦称〝α马氏体〞)的白针基本相同),这种黑针称为〝回火马氏体〞.晶粒? grain:多晶体金属材料内的每个晶体,由于它们在形核后的长大过程中都受到相邻的.也在长大着的晶体的妨碍,以致都不能在三维空间自由地长大,所以最后长到相互接触时都没有规则的外形,故称晶粒.亚晶[粒] subgrain:晶粒之内所存在的.相互间的晶体学取向差很小(? 2_3o)的任一小晶块,每个小晶块之内其晶体点阵基本上是规则的.晶粒度 grain size:多晶体内给定显微组织或组分的晶粒的平均尺寸.?。

中科院理化所 抗菌实验认证 英语

中科院理化所 抗菌实验认证 英语

中科院理化所抗菌实验认证英语全文共3篇示例,供读者参考篇1Antibacterial Experimental Verification at Institute of Physics, Chinese Academy of SciencesIntroductionThe Institute of Physics (IOP), Chinese Academy of Sciences (CAS), is a prestigious research institution that focuses on the study of physical sciences. Recently, the institute has conducted a series of experiments to verify the antibacterial properties of various materials. The goal of these experiments is to develop new antimicrobial technologies that can be used to combat the growing threat of drug-resistant bacteria. In this document, we will provide an overview of the antibacterial experimental verification conducted at the IOP.Experimental SetupThe antibacterial experiments were conducted in the laboratory facilities at the IOP. The researchers used a variety of test materials, including metals, ceramics, and polymers, to determine their antibacterial properties. Each material wasexposed to a culture of bacteria, and the researchers monitored the growth of the bacteria over a specified period of time. The experiments were repeated multiple times to ensure the accuracy of the results.ResultsThe results of the antibacterial experiments were very promising. Several of the materials tested showed significant antibacterial activity, inhibiting the growth of the bacteria and preventing the formation of biofilms. These materials could be potentially used in the development of new antibacterial coatings for medical devices, or in the production of antimicrobial textiles for use in hospitals and other healthcare settings.CertificationThe antibacterial experimental verification conducted at the IOP has been certified by an independent scientific panel. The panel reviewed the experimental data and confirmed that the results were valid and reliable. This certification gives credibility to the research conducted at the IOP and demonstrates the institute's commitment to advancing the field of antibacterial research.Future ImplicationsThe successful antibacterial experimental verification at the IOP opens up new possibilities for the development of novel antimicrobial technologies. The materials that showed antibacterial activity in the experiments could be further studied and optimized for commercial applications. In addition, the research conducted at the IOP could lead to collaborations with industry partners to bring new antibacterial products to market.ConclusionThe antibacterial experimental verification conducted at the Institute of Physics, Chinese Academy of Sciences, represents a significant advancement in the field of antimicrobial research. The promising results of the experiments demonstrate the potential for the development of new antibacterial technologies that could have a profound impact on healthcare and other industries. The certification of the research by an independent scientific panel further validates the credibility of the work conducted at the IOP. As we move forward, the institute will continue to explore new avenues for research and innovation in the field of antibacterial materials.篇2The Chinese Academy of Sciences (CAS) Institute of Physical Chemistry (IPC) has recently received certification for its antimicrobial testing experiments. This accreditation demonstrates the institute's commitment to high-quality research and its capability to contribute to the field of antimicrobial research.The IPC is renowned for its cutting-edge research in physical chemistry, with a focus on understanding the fundamental principles underlying chemical interactions and reactions at the molecular level. The institute's research has broad applications, ranging from materials science to environmental chemistry.The certification for antimicrobial testing experiments is a significant milestone for the IPC, as it showcases the institute's expertise in studying the mechanisms of antimicrobial action and resistance. With the rise of antimicrobial resistance posing a global health threat, the IPC's research is crucial for developing new antimicrobial agents and strategies to combat infectious diseases.The certification process involved rigorous evaluation of the IPC's experimental procedures, equipment, and data analysis methods. The institute's researchers demonstrated their proficiency in conducting antimicrobial assays, includingdetermining the minimum inhibitory concentration of antimicrobial agents and assessing bacterial viability.In addition to showcasing the IPC's technical competence, the certification highlights the institute's commitment to upholding ethical standards in research. The IPC adheres to international guidelines for conducting antimicrobial testing experiments, ensuring the reproducibility and validity of its findings.The IPC's antimicrobial testing certification opens up new opportunities for collaboration with industry partners, government agencies, and other research institutions. By establishing itself as a trusted source for antimicrobial research, the IPC can contribute to the development of innovative solutions to combat antimicrobial resistance.In conclusion, the Chinese Academy of Sciences Institute of Physical Chemistry's certification for antimicrobial testing experiments underscores its expertise in conducting high-quality research. With this recognition, the IPC is well-positioned to make significant contributions to the field of antimicrobial research and address the global challenge of antimicrobial resistance.篇3Research on Antimicrobial Experiment Accreditation at the Institute of Physical and Chemical Research of the Chinese Academy of SciencesIntroduction:The Institute of Physical and Chemical Research of the Chinese Academy of Sciences (IPCR-CAS) is a prestigious research institution dedicated to the study of physical and chemical sciences. One of the key areas of research at IPCR-CAS is the development of antimicrobial agents to combat the growing threat of antibiotic resistance. In order to ensure the efficacy and safety of these agents, IPCR-CAS has established a rigorous accreditation process for antimicrobial experiments.Accreditation Process:The accreditation process at IPCR-CAS involves a series of steps to verify the effectiveness and safety of the antimicrobial agents under study. This process includes:1. Identification of Target Microorganisms: Researchers at IPCR-CAS first identify the target microorganisms that the antimicrobial agent is intended to combat. These may include bacteria, viruses, or fungi that pose a threat to human health.2. Selection of Antimicrobial Agents: Researchers then select the appropriate antimicrobial agents for testing based on their chemical properties and potential efficacy against the target microorganisms.3. Experimental Design: Researchers design experiments to test the effectiveness of the antimicrobial agents against the target microorganisms. These experiments may include in vitro tests using cultures of the microorganisms or in vivo tests using animal models.4. Data Collection and Analysis: Researchers collect data on the efficacy of the antimicrobial agents and analyze the results to determine their effectiveness against the target microorganisms.5. Peer Review: The results of the experiments are then subjected to peer review by other researchers at IPCR-CAS to ensure the accuracy and reliability of the data.6. Accreditation: Once the experiments have been successfully completed and the results verified, the antimicrobial agents are accredited for further study and potential use in clinical settings.Benefits of Accreditation:The accreditation process at IPCR-CAS offers several benefits to researchers and the scientific community as a whole. These include:1. Quality Assurance: By verifying the efficacy and safety of antimicrobial agents, the accreditation process ensures that only the most effective agents are used in research and clinical settings.2. Collaboration Opportunities: Accredited antimicrobial agents can be shared with other research institutions and pharmaceutical companies for further study and development.3. Public Health Impact: Accredited antimicrobial agents have the potential to make a significant impact on public health by combating antibiotic resistance and infectious diseases.Conclusion:The accreditation process for antimicrobial experiments at IPCR-CAS plays a crucial role in ensuring the effectiveness and safety of antimicrobial agents. By following a rigorous process of identification, selection, experimentation, and peer review, IPCR-CAS researchers are able to develop high-quality antimicrobial agents that have the potential to improve public health. Further research and collaboration in this area areessential to address the growing threat of antibiotic resistance and infectious diseases.。

三维电催化处理苯并噻唑反应器结构优化

三维电催化处理苯并噻唑反应器结构优化

2017年第36卷第1期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·91·化 工 进 展三维电催化处理苯并噻唑反应器结构优化丁杰,宋昭,宋迪慧,刘先树(哈尔滨工业大学市政环境工程学院,黑龙江 哈尔滨 150090)摘要:采用复极性三维电催化反应器降解苯并噻唑,通过考察三维电极反应器的结构参数,从而提高污染物处理效果的同时降低电催化反应体系的能耗。

首先以反应体系的矿化率、矿化电流效率及能耗为评价指标,优化了反应器的电极型式。

然后利用Design-Expert 软件中的Box-Behnken 响应曲面法,以外加电压、电极间距和粒子电极填充比例为自变量,TOC 去除率为响应值,研究了各变量及其相互作用对TOC 去除率的影响,并通过求解回归方程得到多元二次回归方程的预测模型。

结果表明,电极间距和外加电压对TOC 的影响最大,且电极间距和外加电压具有明显的交互性作用。

预测分析最大TOC 去除率为98.18%,相应的最优结构参数为:外加电压9.9V ,电极间距4.2cm ,粒子电极填充比60%,在最优条件下进行试验,实际值与预测值具有良好的一致性,偏差为1.71%。

关键词:电化学;降解;模型;结构参数;苯并噻唑;响应曲面分析法中图分类号:X703.1 文献标志码:A 文章编号:1000–6613(2017)01–0091–09 DOI :10.16085/j.issn.1000-6613.2017.01.012Structural optimization of three-dimensional electrocatalytic reactor forbenzothiazole treatmentDING Jie ,SONG Zhao ,SONG Dihui ,LIU Xianshu(School of Municipal and Environmental Engineering ,Harbin Institute of Technology ,Harbin 150090,Heilongjiang ,China )Abstract :In this study ,bipolar three-dimensional electrocatalytic reactor was applied to benzothiazole degradation and its structural parameters were investigated in order to improve the pollutant removalefficiency and reduce the energy consumption of electrochemistry reactor .Firstly ,the electrode form was improved by comparing the degree of mineralization ,mineralization current efficiency and energy consumption in the reaction system .Then response surface methodology based on Box-Behnken design was successfully applied to analyze the effect of the structural parameters and their interaction on benzothiazole degradation .The effects of three variables ,impressed voltage ,electrode distance and particle electrodes filling ratio upon the total organic carbon removal were evaluated and the prediction model of multivariate quadratic regression equation was acquired .The results showed that electrode distance played the most important role in total organic carbon removal ,followed by impressed voltage and particle electrodes filling ratio ,among which the interaction of electrode distance and the impresses voltage was remarkable .Optimized condition was obtained at 9.9V ,4.2cm and 60% particle electrodes for the reactor .Under the optimal condition ,98.18% of total organic carbon removal was achieved and第一作者及联系人:丁杰(1972—),女,教授,博士生导师,主要从事发酵法生物制氢技术、工业废水处理资源化与综合技术的研究。

电感耦合等离子体原子发射光谱法测定工业氢氧化铍中杂质元素

电感耦合等离子体原子发射光谱法测定工业氢氧化铍中杂质元素

体 浓度 的增加 , 背景信 号强 度相应 增 强 , 4种 待 其 对 测 元 素产 生 的干 扰 强度 也 相应 增 大 , 在绘 制 工作 曲 线 时进行基 体匹配 以消 除基体干扰 。 2 4 共存 元素 的影响 .
l l m、A 9 .5l 1 6 1 l 3 m、Mg2 9O m、 a3 79 m 7 .0F c l .On l
铍 作为 一种新兴 材 料 日益 被重 视 , 是原 子 能 、 铍 火箭、 弹、 空 、 导 航 宇宙 航 行 以及 冶 金 工 业 中不 可 缺
少 的宝 贵材料 。工业 氢 氧化 铍作 为 铍 生产 的一种 中
4 .高纯 氢氧化 铍 ( 9 9 , 9 . % 国家 标物 中心 ) 。
D tr n t n o u i l n si n u til e 0H) b C eemia i f mp rt E e o I y me t I d sra ( n B , v I P—A S E
XI Yib n W EN — o g , E — i , Ya y n PANG e —i W n ln
// (  ̄ mL 国家标 物 中心 ) g 。 3 .盐酸 ( 优级 纯 ) 。
作者简介 : 奕斌(91 , , 谢 17 一) 男 工程 师 , 主要 从 事 分 析 检 测 工 作 。
溶解 至 清亮 。冷 却 到室 温 , 入 1 0mL容 量 瓶 中 , 移 0
用稀 盐 酸 ( +1 ) 释 至刻 度 , 混 匀 。试 剂空 白与 1 9稀 并 试样 同步操作 , 在选 定 的波长 及仪 器条件 下测定 。
5 试 验用 水为 去离 子水 。 . 12 仪器 工作 参数 .
间 产 品 , 年来 一 直 采 用化 学 分 析 方 法 和发 射 光 谱 多

p区金属氧化物Ga_(2)O_(3)和Sb_(2)O_(3)光催化降解盐酸四环素性能差异

p区金属氧化物Ga_(2)O_(3)和Sb_(2)O_(3)光催化降解盐酸四环素性能差异

收稿日期:2020⁃09⁃29。

收修改稿日期:2020⁃12⁃28。

国家自然科学基金(No.21875037,51502036)和国家重点研发计划(No.2016YFB0302303,2019YFC1908203)资助。

*通信联系人。

E⁃mail :***************.cn ,***************第37卷第3期2021年3月Vol.37No.3509⁃515无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRYp 区金属氧化物Ga 2O 3和Sb 2O 3光催化降解盐酸四环素性能差异毛婧芸1黄毅玮2黄祝泉1刘欣萍1薛珲*,1肖荔人*,3(1福建师范大学环境科学与工程学院,福州350007)(2福建师范大学生命科学学院,福州350007)(3福建师范大学化学与材料学院,福州350007)摘要:对沉淀法合成的p 区金属氧化物Ga 2O 3和Sb 2O 3紫外光光催化降解盐酸四环素的性能进行了研究,讨论了制备条件对光催化性能的影响。

最佳制备条件下得到的Ga 2O 3⁃900和Sb 2O 3⁃500样品光催化性能存在巨大差异,通过X 射线粉末衍射、傅里叶红外光谱、N 2吸附-脱附测试、荧光光谱、拉曼光谱、电化学分析及活性物种捕获实验等对样品进行分析,研究二者光催化降解盐酸四环素的机理,揭示影响光催化性能差异的本质因素。

结果表明,Ga 2O 3和Sb 2O 3光催化性能差异主要归结于二者不同的电子和晶体结构、表面所含羟基数量及光催化降解机理。

关键词:p 区金属;氧化镓;氧化锑;光催化;盐酸四环素中图分类号:O643.36;O614.37+1;O614.53+1文献标识码:A文章编号:1001⁃4861(2021)03⁃0509⁃07DOI :10.11862/CJIC.2021.063Different Photocatalytic Performances for Tetracycline Hydrochloride Degradation of p ‑Block Metal Oxides Ga 2O 3and Sb 2O 3MAO Jing⁃Yun 1HUANG Yi⁃Wei 2HUANG Zhu⁃Quan 1LIU Xin⁃Ping 1XUE Hun *,1XIAO Li⁃Ren *,3(1College of Environmental Science and Engineering,Fujian Normal University,Fuzhou 350007,China )(2College of Life and Science,Fujian Normal University,Fuzhou 350007,China )(3College of Chemistry and Materials Science,Fujian Normal University,Fuzhou 350007,China )Abstract:The UV light photocatalytic performances of p ⁃block metal oxides Ga 2O 3and Sb 2O 3synthesized by a pre⁃cipitation method for the degradation of tetracycline hydrochloride were explored.The effects of synthesis conditions on the photocatalytic activity were discussed.The Ga 2O 3⁃900and Sb 2O 3⁃500samples prepared under optimal condi⁃tions exhibited a remarkable photocatalytic activity difference,which were characterized by X⁃ray diffraction,Fouri⁃er transform infrared spectroscopy,N 2adsorption⁃desorption tests,fluorescence spectrum,Raman spectrum,electro⁃chemical analysis and trapping experiment of active species.The photocatalytic degradation mechanisms of tetracy⁃cline hydrochloride over the photocatalysts were proposed and the essential factors influencing the difference of pho⁃tocatalytic performance were revealed.The results show that the different photocatalytic activities observed for Ga 2O 3and Sb 2O 3can be attributed to their different electronic and crystal structures,the amount of hydroxyl groupin the surface and the photocatalytic degradation mechanisms.Keywords:p ⁃block metal;Ga 2O 3;Sb 2O 3;photocatalysis;tetracycline hydrochloride无机化学学报第37卷0引言盐酸四环素(TC)作为一种四环素类广谱抗生素,被广泛应用于治疗人体疾病及预防畜禽、水产品的细菌性病害,其在世界范围的大量使用致使其在环境中积累[1]。

热浸镀Zn-11Al-3Mg_镀层黑点缺陷形成机理研究

热浸镀Zn-11Al-3Mg_镀层黑点缺陷形成机理研究

表面技术第52卷第7期热浸镀Zn-11Al-3Mg镀层黑点缺陷形成机理研究彭俊1,金鑫焱2,3,钱洪卫1(1.宝山钢铁股份有限公司冷轧厂,上海 200941;2.宝山钢铁股份有限公司研究院,上海 201999;3.汽车用钢开发与应用技术国家重点实验室(宝钢),上海 201999)摘要:目的研究Zn-11Al-3Mg镀层黑点缺陷位置与正常位置组织特征差异,阐明黑点缺陷的形成机理,寻找导致黑点缺陷的原因,从而控制和消除黑点缺陷。

方法以工业生产的Zn-11Al-3Mg镀层钢板表面的黑点缺陷为研究对象,综合运用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、双束聚焦离子束显微镜(FIB-SEM)等,详细对比了缺陷位置和正常位置镀层显微组织的差异,分析了引起镀层组织差异的根本原因,揭示了Zn-11Al-3Mg镀层表面黑点缺陷的形成机理。

结果Zn-11Al-3Mg镀层组织由初生Al枝晶和枝晶间第二相组成,缺陷位置和正常位置枝晶间第二相显微组织存在明显差异,宏观上表现为局部黑点缺陷。

缺陷位置枝晶间第二相的平均成分与原始镀液成分接近,组织为细小的颗粒状Zn/Al/MgZn2三元组织,未出现明显的Zn/MgZn2二元共晶;而正常位置枝晶间第二相由大量的层片状Zn/MgZn2二元共晶及少量Zn/Al/MgZn2三元共晶组成。

造成上述镀层组织差异的根本原因是镀后凝固过程中冷却速率不均匀。

结论在镀后冷却速率局部过高的位置,在初生Al枝晶析出后,剩余液相被快速冷却至三元共晶反应温度以下,促使熔融态的镀层快速凝固,从而形成了与镀液成分相近、组织细小的枝晶间第二相。

而在镀后冷却速率较低的区域,依次发生了初生Al枝晶析出、二元共晶反应、三元共晶反应,形成了不同的镀层组织。

关键词:锌铝镁;黑点缺陷;镀层组织;冷却速率;热浸镀中图分类号:TG174.441 文献标识码:A 文章编号:1001-3660(2023)07-0208-09DOI:10.16490/ki.issn.1001-3660.2023.07.018Formation Mechanism of Dark Spot Defects onHot-dip Galvanized Zn-11Al-3Mg CoatingPENG Jun1, JIN Xin-yan2,3, QIAN Hong-wei1(1. Baosteel Cold Rolling Plant, Shanghai 200941, China; 2. Baosteel Research Institute, Shanghai 201999, China;3. State Key Laboratory of Development and Application Technology of Automotive Steels, Baosteel, Shanghai 201999, China)ABSTRACT: Hot-dip galvanized zinc aluminum magnesium (ZnAlMg) coated steel sheets have been developed rapidly and applied widely in different industries in recent years due to their high corrosion resistance. However, it is still a great challenge to make ZnAlMg coated steel sheets with high surface quality. Different surface defects frequently appear on the industrially produced hot-dip galvanized ZnAlMg coated steel sheets. The work aims to study the difference between the microstructures of收稿日期:2022–05–26;修订日期:2022–11–01Received:2022-05-26;Revised:2022-11-01作者简介:彭俊(1973—),男,硕士,高级工程师,主要研究方向为冷轧带钢产品制造。

欧洲药典7.5版

欧洲药典7.5版
EUROPEAN PHARMACOPOEIA 7.5
INDEX
To aid users the index includes a reference to the supplement in which the latest version of a text can be found. For example : Amikacin sulfate...............................................7.5-4579 means the monograph Amikacin sulfate can be found on page 4579 of Supplement 7.5. Note that where no reference to a supplement is made, the text can be found in the principal volume.
English index ........................................................................ 4707
Latin index ................................................................................. 4739
EUROPEAN PHARMACOPபைடு நூலகம்EIA 7.5
Index
Numerics 1. General notices ................................................................... 7.5-4453 2.1.1. Droppers...................

材料英语词汇

材料英语词汇

材料英语词汇专业词汇列表晶体结构(structure of crystal)原子质量单位Atomic mass unit (amu)原子量Atomic weight键能Bonding energy共价键Covalent bond电子构型electronic configuration正电的Electropositive氢键Hydrogen bond同位素Isotope摩尔Mole泡利不相容原理Pauli exclusion principle原子atom分子量molecule weight量子数quantum number范德华键van der waals bond点群point group波尔原子模型Bohr atomic model库仑力Coulombic force分子的构型molecular configuration负电的Electronegative基态Ground state离子键Ionic bond金属键Metallic bond分子Molecule元素周期表Periodic table极性分子Polar molecule价电子valence electron电子轨道electron orbitals对称要素symmetry elements原子堆积因数atomic packing factor(APF)面心立方结构face-centered cubic (FCC)配位数coordination number晶系crystal system衍射diffraction电子衍射electron diffraction六方密堆积hexagonal close-packed (HCP)NaCl型结构NaCl-type structure闪锌矿型结构Blende-type structure金红石型结构Rutile structure钙钛矿型结构Perovskite-type structure硅酸盐结构Structure of silicates链状结构Chain structure架状结构Framework structure叶蜡石pyrophyllite石英quartz美橄榄石forsterite各向异性的anisotropy晶格参数lattice parameters非结晶的noncrystalline多晶形polymorphism单晶single crystal电位electron states电子electrons金属键metallic bonding极性分子polar molecules衍射角diffraction angle粒度,晶粒大小grain size显微照相photomicrograph透射电子显微镜transmission electron microscope (TEM)四方的tetragonal配位数coordination number 晶胞unit cell(化合)价valence共价键covalent bonding离子键Ionic bonding 原子面密度atomic planar density合金alloy显微结构microstructure扫描电子显微镜scanning electron microscope (SEM)重量百分数weight percent单斜的monoclinic 晶体结构缺陷(defect of crystal structure)缺陷defect, imperfection线缺陷line defect, dislocation体缺陷volume defect位错线dislocation line螺位错screw dislocation晶界grain boundaries小角度晶界tilt boundary,位错阵列dislocation array位错轴dislocation axis位错爬移dislocation climb位错滑移dislocation slip位错裂纹dislocation crack位错密度dislocation density间隙原子interstitial atom间隙位置interstitial sites弗伦克尔缺陷Frenkel disorder主晶相the host lattice缔合中心Associated Centers.电子空穴Electron Holes克罗各-明克符号Kroger Vink notation固溶体solid solution化合物compound置换固溶体substitutional solid solution不混溶固溶体immiscible solid solution有序固溶体ordered solid solution固溶强化solid solution strengthening点缺陷point defect面缺陷interface defect位错排列dislocation arrangement刃位错edge dislocation混合位错mixed dislocation大角度晶界high-angle grain boundaries孪晶界twin boundaries位错气团dislocation atmosphere位错胞dislocation cell位错聚结dislocation coalescence位错核心能量dislocation core energy位错阻尼dislocation damping原子错位substitution of a wrong atom晶格空位vacant lattice sites杂质impurities肖脱基缺陷Schottky disorder错位原子misplaced atoms自由电子Free Electrons伯格斯矢量Burgers中性原子neutral atom固溶度solid solubility间隙固溶体interstitial solid solution金属间化合物intermetallics转熔型固溶体peritectic solid solution无序固溶体disordered solid solution取代型固溶体Substitutional solid solutions过饱和固溶体supersaturated solid solution非化学计量化合物Nonstoichiometric compound表面结构与性质(structure and property of surface)表面surface同相界面homophase boundary晶界grain boundary小角度晶界low angle grain boundary共格孪晶界coherent twin boundary 错配度mismatch重构reconstuction表面能surface energy扭转晶界twist grain boundary共格界面coherent boundary非共格界面noncoherent boundary 应变能strain energy惯习面habit plane界面interface异相界面heterophase boundary表面能surface energy大角度晶界high angle grain boundary晶界迁移grain boundary migration驰豫relaxation表面吸附surface adsorption倾转晶界titlt grain boundary倒易密度reciprocal density半共格界面semi-coherent boundary界面能interfacial free energy晶体学取向关系crystallographic orientation非晶态结构与性质(structure and property ofuncrystalline)熔体结构structure of melt玻璃态vitreous state粘度viscosity介稳态过渡相metastable phase淬火quenching玻璃分相phase separation in glasses 过冷液体supercooling melt软化温度softening temperature表面张力Surface tension组织constitution退火的softened体积收缩volume shrinkage扩散(diffusion)活化能activation energy浓度梯度concentration gradient 菲克第二定律Fick’s second law 稳态扩散steady state diffusion扩散系数diffusion coefficient填隙机制interstitalcy mechanism 短路扩散short-circuit diffusion 下坡扩散Downhill diffusion扩散通量diffusion flux菲克第一定律Fick’s first law相关因子correlation factor非稳态扩散nonsteady-state diffusion 跳动几率jump frequency晶界扩散grain boundary diffusion 上坡扩散uphill diffusion互扩散系数Mutual diffusion渗碳剂carburizing浓度分布曲线concentration profile 驱动力driving force自扩散self-diffusion空位扩散vacancy diffusion扩散方程diffusion equation扩散特性diffusion property达肯方程Dark equation本征热缺陷Intrinsic thermal defect 离子电导率Ion-conductivity浓度梯度concentration gradient扩散流量diffusion flux间隙扩散interstitial diffusion表面扩散surface diffusion扩散偶diffusion couple扩散机理diffusion mechanism无规行走Random walk柯肯达尔效应Kirkendall equation本征扩散系数Intrinsic diffusion coefficient 空位机制Vacancy concentration腐蚀与氧化(corroding and oxidation)氧化反应Oxidation reaction还原反应Reduction reaction价电子Valence electron腐蚀介质Corroding solution电动势Electric potential推动力The driving force腐蚀系统Corroding system腐蚀速度Corrosion penetration rate 电流密度Current density电化学反应Electrochemical reaction 极化作用Polarization过电位The over voltage浓差极化Concentration polarization 电化学极化Activation polarization 极化曲线Polarization curve缓蚀剂Inhibitor原电池galvanic cell电偶腐蚀galvanic corrosion 电位序galvanic series应力腐蚀Stress corrosion冲蚀Erosion-corrosion腐蚀短裂Corrosion cracking 防腐剂Corrosion remover腐蚀电极Corrosion target隙间腐蚀Crevice corrosion 均匀腐蚀Uniform attack晶间腐蚀Intergranular corrosion焊缝破坏Weld decay选择性析出Selective leaching氢脆损坏Hydrogen embitterment阴极保护Catholic protection穿晶断裂Intergranular fracture固相反应和烧结(solid state reaction and sintering)固相反应solid state reaction烧成fire再结晶Recrystallization成核nucleation子晶,雏晶matted crystal异质核化heterogeneous nucleation铁碳合金iron-carbon alloy铁素体ferrite共晶反应eutectic reaction烧结sintering合金alloy二次再结晶Secondary recrystallization结晶crystallization耔晶取向seed orientation均匀化热处理homogenization heat treatment渗碳体cementite奥氏体austenite固溶处理solution heat treatment相变(phase transformation)过冷supercooling晶核nucleus形核功nucleation energy均匀形核homogeneous nucleation形核率nucleation rate热力学函数thermodynamics function 临界晶核critical nucleus枝晶偏析dendritic segregation平衡分配系数equilibrium distribution coefficient成分过冷constitutional supercooling共晶组织eutectic structure伪共晶pseudoeutectic表面等轴晶区chill zone中心等轴晶区equiaxed crystal zone急冷技术splatcooling单晶提拉法Czochralski method位错形核dislocation nucleation斯宾那多分解spinodal decomposition马氏体相变martensite phase transformation 成核机理nucleation mechanism过冷度degree of supercooling形核nucleation晶体长大crystal growth非均匀形核heterogeneous nucleation长大速率growth rate临界晶核半径critical nucleus radius局部平衡localized equilibrium有效分配系数effective distribution coefficient引领(领先)相leading phase层状共晶体lamellar eutectic离异共晶divorsed eutectic柱状晶区columnar zone定向凝固unidirectional solidification区域提纯zone refining晶界形核boundary nucleation晶核长大nuclei growth有序无序转变disordered-order transition 马氏体martensite成核势垒nucleation barrier相平衡与相图(Phase equilibrium and Phase diagrams)相图phase diagrams组分component相律Phase rule浓度三角形Concentration triangle成分composition相平衡phase equilibrium热力学thermodynamics吉布斯相律Gibbs phase rule吉布斯自由能Gibbs free energy吉布斯熵Gibbs entropy热力学函数thermodynamics function 过冷supercooling杠杆定律lever rule相界线phase boundary line共轭线conjugate lines相界反应phase boundary reaction相组成phase composition金相相组织phase constentuent相衬显微镜phase contrast microscope 相分布phase distribution相平衡图phase equilibrium diagram相分离phase segregation相phase组元compoonent投影图Projection drawing冷却曲线Cooling curve自由度freedom化学势chemical potential相律phase rule自由能free energy吉布斯混合能Gibbs energy of mixing 吉布斯函数Gibbs function热分析thermal analysis过冷度degree of supercooling相界phase boundary相界交联phase boundary crosslinking相界有限交联phase boundary crosslinking 相变phase change共格相phase-coherent相衬phase contrast相衬显微术phase contrast microscopy相平衡常数phase equilibrium constant相变滞后phase transition lag相序phase order相稳定性phase stability相稳定区phase stabile range相变压力phase transition pressure同素异晶转变allotropic transformation显微结构microstructures不混溶性immiscibility相态phase state相变温度phase transition temperature同质多晶转变polymorphic transformation 相平衡条件phase equilibrium conditions。

电感耦合等离子体原子发射光谱法同时测定锌电解液中铜镉钴

电感耦合等离子体原子发射光谱法同时测定锌电解液中铜镉钴

电感耦合等离子体原子发射光谱法同时测定锌电解液中铜镉钴陈希;郭方遒;黄兰芳;张洁;阳春华【摘要】The direct and simultaneous determination of copper, cadmium and cobalt in zinc electrolyte by inductively coupled plasma atomic emission spectrometry (ICP-AES) was studied. Sample did not need pretreatment. The spectral lines with wavelengths of 327. 393 nm, 226. 502 nm and 228. 616nm were selected as the analytical lines of copper, cadmium and cobalt respectively. The background interference and overlap interference were eliminated or reduced by selecting analysis line and adjusting background points. The effect of the matrix was overcomeby matrix matching method. The contents of copper, cadmium and cobaltin smelter zinc electrolyte were determined by ICP-AES in 3% (V/V) HNO3 medium. The method was simple, rapid and reliable. The measured valueof sample was consistent with the results of polarography, with the relative standard deviation of 0. 7% - 1. 3%. The method can be used for the control analysis of the contents of impurity elements in zinc electrolyte.%研究了用电感耦合等离子体原子发射光谱法(ICP-AES)直接同时测定锌电解液中的铜、镉、钴含量的方法.试样不经预处理,在3% (V/V)的HNO3介质中,以327.393 nm、226.502nm、228.616 nm波长的谱线分别作为铜、镉、钴的分析线,通过选择分析线和调扣背景点来消除或减少背景干扰和重叠干扰,采用基体匹配方法克服基体效应,用ICP-AES测定了冶炼厂锌电解液中的铜、镉、钴含量.该法操作简单,分析快速、可靠,样品的测定值与极谱法的测定值相符,相对标准偏差在0.7%~1.3%之间,可用于锌电解液中杂质元素含量的控制分析.【期刊名称】《冶金分析》【年(卷),期】2012(032)011【总页数】5页(P51-55)【关键词】锌电解液;铜;镉;钴;电感耦合等离子体原子发射光谱法(ICP-AES);基体匹配【作者】陈希;郭方遒;黄兰芳;张洁;阳春华【作者单位】中南大学化学化工学院,湖南长沙410083;中南大学化学化工学院,湖南长沙410083;中南大学化学化工学院,湖南长沙410083;中南大学化学化工学院,湖南长沙410083;中南大学信息科学与工程学院,湖南长沙410083【正文语种】中文【中图分类】O657.31在湿法炼锌厂,锌电解液中的杂质元素铜、镉、钴在10-6或10-9级[1-2],这些杂质对析出锌的质量和锌电解的电流效率影响较大[3]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档