低密度脂蛋白提纯的SCI
低密度脂蛋白胆固醇的检测方法
低密度脂蛋白胆固醇的检测方法英文回答:Low-density lipoprotein cholesterol (LDL-C) is a type of cholesterol that is often referred to as "bad" cholesterol because it can build up in the arteries and lead to cardiovascular diseases. It is important to monitor LDL-C levels in order to assess an individual's risk for developing heart disease. There are several methods available for measuring LDL-C levels, and I will discuss two commonly used methods: direct measurement and calculation.1. Direct Measurement:This method involves directly measuring the amount of LDL-C in a blood sample. It is considered to be the most accurate method for determining LDL-C levels. One common technique used for direct measurement is ultracentrifugation, which separates lipoproteins based ontheir density. The LDL-C fraction is isolated and then quantified using chemical assays. Another method is the use of immunoassays, which involve the use of antibodies that specifically recognize and bind to LDL-C. The amount of LDL-C present in the sample can then be measured using various detection techniques.2. Calculation:This method estimates LDL-C levels based on the levels of other lipoproteins in the blood, namely total cholesterol, high-density lipoprotein cholesterol (HDL-C), and triglycerides. One commonly used equation for calculating LDL-C is the Friedewald equation:LDL-C = Total cholesterol HDL-C (Triglycerides/5)。
血清小而密低密度脂蛋白胆固醇和同型半胱氨酸与脑梗死的相关性分析
血清小而密低密度脂蛋白胆固醇和同型半胱氨酸与脑梗死的相关性分析刘书平;郭会艳【摘要】目的探讨血清小而密低密度脂蛋白胆固醇(sdLDL-C)和同型半胱氨酸(Hcy)与脑梗死的相关性.方法检测健康人群(对照组)(n=100)与脑梗死患者[根据头颅CT和磁共振检查结果将患者分为单发性脑梗死(SCI组)组(n=37)与多发性脑梗死(MCI组)组(n=43)]血清sdLDL-C、Hcy、血清总胆固醇(TC)、三酰甘油(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)水平,并比较3组人群之间上述指标水平的差异,并分析上述指标与脑梗死之间相关性.结果脑梗死组患者血清TC、TG、LDL-C、sdLDL-C、Hcy水平均比对照组高,血清HDL-C水平比对照组低,差异有统计学意义(P<0.05);SCI组血清TG、sdLDL-C、Hcy比对照组高,HDL-C比对照组低,差异有统计学意义(P<0.05);MCI组血清TC、sdLDL-C、Hcy比对照组和SCI组高,HDL-C比对照组和SCI组低,TG、LDL-C比对照组高,差异有统计学意义(P<0.05);血清sdLDL-C、Hcy水平与脑梗死发生存在相关性(P<0.05).结论血清Hcy、sdLDL水平的升高是脑梗死发生的独立危险因素,与其他血脂指标(TC、TG、HDL、LDL)相比更具有诊断价值,对预测脑梗死的发展具有重要临床意义.【期刊名称】《当代医学》【年(卷),期】2018(024)014【总页数】3页(P1-3)【关键词】单发性脑梗死;多发性脑梗死;小而密低密度脂蛋白胆固醇;同型半胱氨酸【作者】刘书平;郭会艳【作者单位】北京市密云区密云中医医院检验科,北京 101500;北京市密云区密云中医医院检验科,北京 101500【正文语种】中文脑梗死是指各种原因导致的脑组织局部供血动脉血流突然减少或停止,引起该血管供血区的脑组织缺血、缺氧引发不可逆性损害,可导致患者出现相应部位的临床症状和体征,如偏瘫、认知功能障碍、失语等神经功能缺失的症候,是致残的首要病因,也是威胁人类生命安全的主要疾病之一[1-3]。
低密度脂蛋白合成过程-概述说明以及解释
低密度脂蛋白合成过程-概述说明以及解释1.引言1.1 概述低密度脂蛋白(Low-density lipoprotein, LDL)是血液中的一种脂蛋白,它在人体内起着重要的作用。
与高密度脂蛋白(High-density lipoprotein, HDL)和极低密度脂蛋白(Very low-density lipoprotein, VLDL)不同,低密度脂蛋白通常被称为“坏胆固醇”,因为它可以导致血管堵塞和心血管疾病的发生。
在本文中,我们将重点关注低密度脂蛋白的合成过程。
了解低密度脂蛋白的合成过程对于理解其功能以及可能的调控机制具有重要意义。
低密度脂蛋白主要由肝脏合成,在体内的外周组织中发挥其生物学功能。
在低密度脂蛋白的合成过程中,主要涉及到多个关键的分子参与。
其中,肝细胞起着中心作用,它通过合成并释放特定的脂蛋白组分,将胆固醇和甘油三酯包裹于脂质双层结构中,形成前体脂蛋白颗粒。
这些前体脂蛋白颗粒会经过一系列的修饰和加工,包括脂蛋白酯化、脂质转运和酶的作用等,最终形成成熟的低密度脂蛋白。
低密度脂蛋白的合成与调控涉及多个环节和因素。
例如,胆固醇的来源和代谢、酶的活性调节以及脂质合成和运输等都可能影响低密度脂蛋白的形成和水平。
同时,一些疾病如高胆固醇血症和动脉粥样硬化等也与低密度脂蛋白的合成和功能紧密相关。
本文将通过对低密度脂蛋白合成过程的系统介绍,深入探讨其与相关疾病的关联以及潜在的调控机制。
通过对这一重要生物过程的研究,我们有望为预防和治疗相关疾病提供新的思路和方法。
接下来的章节将逐一介绍低密度脂蛋白的定义与功能,以及其合成过程中的关键步骤和调控机制。
1.2 文章结构文章结构部分的内容可以按照以下方式编写:文章结构本文按照以下结构进行叙述和探讨:引言、正文和结论三个部分。
引言部分主要概述本文的背景和目的,为读者提供对低密度脂蛋白合成过程的初步了解。
在概述部分中,将简要介绍低密度脂蛋白的定义与功能,并阐述本文的目的和意义。
低密度脂蛋白
LDL 受体介导的血浆低密度脂蛋白胆固醇的吞丽娟,仲* 细胞通过细胞表面的低密度脂蛋白受体(LDL receptor, LDLR) 介导的吞从血液中摄取富含胆固醇的低密度脂蛋白,这是体清除血浆中胆固醇的最主要方式。
当细胞表面的LDLR 出现功能缺陷时,可以导致高胆固醇血症,继而引起动脉粥样硬化、冠心病和中风等严重疾 1 血浆中的脂蛋白在人类和其他脊椎动物的血液中,由于脂肪包括甘油三酯、胆固醇等都不溶或微溶于水,故其在血液中是以脂蛋白的形式运输的。
脂蛋白,顾名思义,是由脂质与蛋白质组成,它们之间是通过疏水性相互作用而结合在一起。
脂蛋白一般都是以不溶于水的甘油三酯(TG) 和胆固醇酯(CE) 为核心,表面覆盖有极性的磷脂、胆固醇和少量蛋白质,它们的亲水基团暴露在表面,故具有亲水性[1]。
应用超速离心法可将血浆脂蛋白分为四类:乳糜微粒(CM) 、极低密度脂蛋白(VLDL) 、低病。
密度脂蛋白和高密度脂蛋白(HDL) ,其中(LDL) LDL 是富含胆固醇水平最高的脂蛋白[2] 。
脂蛋白中的蛋白质被称为载脂蛋白(Apo) ,不同脂蛋白含不同的载脂蛋白,如表 1 所示。
LDLCetated W NM I CI**" W '、、|fj « ■ H^otyiK 溯可耐 ‘ LDL\<Zy J图1 LDLR 介导的血浆中LDL 脂蛋白吞的模型LDL 是一种球形颗粒的脂蛋白,其直径为19~25 nm ,核心是1 500个胆固醇酯,外面由 800个磷脂和500个未酯化的胆固醇分子包裹,最外层有 一个相对分子质量为 514 000的载脂蛋白B-100(Apo B-100)[3-5],LDL 是血浆中主要的胆固醇转运脂蛋白。
在血浆约70%的LDL 是通过低密度脂蛋白受体(LDLR)介导的吞作用进入各组织细胞所 清除,其余由清道夫受体摄取、氧化,以及由周 围组织进行非受体介导途径所摄取 [9]。
低密度脂蛋白胆固醇_LDL-C_的检测
-3-
咨询邮箱:bestbio@ 电话:021-33921235
400-8363-211
本产品仅供科学研究使用!请勿用于临床、诊断、食品、化妆品检测等用途!
成人 血清≤3.98mmol/L,建议各实验室应建立自己的参考范围。
质中,LDL-C 被认为是主要的致病因素,而高密度脂蛋白胆固醇(HDL-C)可能起保护作用, 血清总胆固醇(TC)大致反应 LDL-C 水平,但也受 HDL-C 水平的影响,因此在 AS 脂类危 险因素判别中,TC 偏高时,测定 LDL-C 有重要临床意义。
贝博 TM CellProbeTM 低密度脂蛋白胆固醇(LDL-C)检测试剂盒的检测原理是:第一步, 样品中的非 LDL 脂蛋白与试剂 A 反应形成复合物,游离胆固醇等被清除;第二步,试剂 B 加到反应混合物中后,LDL-C 被裂解,LDL 中的胆固醇与酶试剂反应生成醌亚胺化合物,通 过检测相应波长处的吸光度可得 LDL-C 的含量。
乘以稀释倍数。 当样品中抗坏血素浓度≤1704 umol/L,胆红素浓度≤684 umol/L,血红蛋白浓度≤5.00g/L,甘
油三酯浓度≤22.6 mmol/L 时没有观察到对本方法的干扰。当以上物质高于上述浓度时,可能会 影响结果的准确性,在此情况下本方法不适用。
一、 标本收集和处理 1、 模型构建,采血。 2、 采血后应及时分离血清,避免溶血。样品中 LDL-C 在冷藏(2~8℃)条件可稳 定 1 周。标本如不能及时测定,应于-20℃保存,避免反复冻融。
-2-
咨询邮箱:bestbio@ 电话:021-33921235
400-8363-211
本产品仅供科学研究使用!请勿用于临床、诊断、食品、化妆品检测等用途!
上海医药工业研究院研究员,博士研究生导师,创新药物与
创新药物
阿托伐他汀:best in class
创新药物
他汀类药物作用机制
O HO S CH 2 CH 3 CH 2 COOH HMG CoA
H3C CH 3 CH 3
CoA
HMG-CoA reductase
HO NADPH NADP +
CH 2 O H CH 2 CH 3 CH 2 COOH Mevalonate
l o v a s t a t i n
H O
R
s i m v a s t a t i n
C O O O H
R
p r a v a s t a t i n s o d i u m
H O
R
f l u v a s t a t i n s o d i u m
R
C O O O H
S
H O
C O O O H
S
F N C H 3 C H 3 O N H
创新药物
本课题组对氟喹诺酮SNAR的研究
O F SPh F O F PhS SPh N R CO 2 H N R 2N K O H , 50 o C H 2O F PhSH N F R CO 2 H F PhO F PhO H N aH , D M SO , RT CO 2 H F PhO H N aH , D M SO 60 o C PhO O Ph PhO H , N aH D M SO , 140 o C O PhO PhO O Ph N R CO 2 H N R O CO 2 H N R O CO 2 H
COOM OH
C H 3 H C 3
H C O 3 H H C C H 3 3 C H 3 H C 3
C H 3 N C H 3 C H 3
小而密低密度脂蛋白介绍__概述说明以及解释
小而密低密度脂蛋白介绍概述说明以及解释1. 引言1.1 概述小而密低密度脂蛋白(Small dense low-density lipoprotein,sdLDL)是一种特殊类型的脂质分子,其在近年来引起了广泛的关注和研究。
与传统的低密度脂蛋白(Low-density lipoprotein,LDL)相比,sdLDL具有较小的粒径和较高的密度,同时具备更高的胆固醇含量。
由于其特殊的生理特性和影响力,sdLDL 在心血管疾病发展、动脉粥样硬化进程以及临床诊断中起着重要作用。
1.2 文章结构本文将依次介绍小而密低密度脂蛋白的定义和特点、生理功能以及影响因素;随后概述说明其起源和发现、结构与组成以及血液中的分布与代谢途径;最后解释小而密低密度脂蛋白的意义和作用,包括其与心血管疾病关联性、在动脉粥样硬化形成中的作用机制以及潜在的治疗靶点和应用前景。
1.3 目的本文的目的是全面介绍和解释小而密低密度脂蛋白,包括其定义、特点、生理功能以及影响因素。
同时,通过概述其起源、结构与组成以及血液中的分布与代谢途径,读者将对sdLDL有一个更为清晰的了解。
最后,本文将阐述sdLDL在心血管疾病发展和动脉粥样硬化过程中的作用机制,并探讨其潜在的治疗靶点和应用前景。
通过本文的撰写,旨在提供最新的科学观点和研究成果,为相关领域的进一步研究和临床应用提供参考。
2. 小而密低密度脂蛋白介绍2.1 定义和特点小而密低密度脂蛋白(small, dense low-density lipoprotein,sdLDL)是一种血浆中的脂质颗粒。
它是由胆固醇、甘油三酯和蛋白质组成的,与其他形式的低密度脂蛋白(LDL)在结构上有所不同。
与正常的大型低密度脂蛋白相比,小而密低密度脂蛋白具有更高的比例的胆固醇,并且在电泳中呈现出更快的运动速率。
2.2 生理功能小而密低密度脂蛋白在血液循环中扮演着重要角色。
它是胆固醇和甘油三酯的主要运输者之一,将它们从肝脏分泌到全身各个组织细胞。
低密度蛋白3.77-概述说明以及解释
低密度蛋白3.77-概述说明以及解释1.引言1.1 概述低密度蛋白3.77(LDL 3.77)是一种重要的蛋白质,在人体胆固醇代谢中起着重要的作用。
LDL 3.77 是一种低密度脂蛋白(LDL)的亚型,它在血液循环中扮演着将胆固醇从肝脏输送至组织细胞的关键角色。
概括来说,低密度蛋白(LDL)是一种由脂质和蛋白质组成的颗粒,它的主要功能是将胆固醇和三酸甘油酯等脂质物质从肝脏运输到体内的各个细胞。
然而,过多的LDL 会导致胆固醇在血液中的积累,破坏了胆固醇的代谢平衡,这就是为什么LDL 3.77 引起了广泛的关注和研究。
过去的研究表明,高水平的LDL 3.77 与心血管疾病的风险增加有关。
当机体摄入过多饱和脂肪和胆固醇时,肝脏会分泌更多的LDL 3.77,从而增加了血液中LDL 的浓度。
这些高浓度的LDL 会通过血管壁的内皮组织进入到动脉壁中,在这里沉积形成胆固醇斑块,最终导致动脉粥样硬化的发生。
近年来,人们对于控制LDL 3.77 的水平和减少心血管疾病的风险付出了很多努力。
通过调整饮食结构、增加运动量、保持适当的体重和定期体检等方法,可以降低LDL 3.77 的水平,从而减少心血管疾病的风险。
总之,低密度蛋白3.77在胆固醇代谢和心血管健康中起着重要作用。
控制LDL 3.77 的水平对于预防心血管疾病具有重要意义。
未来的研究还需深入探索LDL 3.77 的生物学机制,以寻找更有效的方法来管理和降低其水平,从而改善人们的健康水平。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构是指文章按照一定的逻辑顺序和组织方式进行组织和展开的方式。
通过合理的结构,使读者能够清晰地理解文章的主旨和论点,并且能够更加容易地理解文章的内容。
本文的结构主要包括引言、正文和结论三个部分。
引言部分是文章的开篇,旨在向读者介绍研究领域的背景和问题,并且引出本文的研究目的和重要性。
引言部分包括概述、文章结构和目的几个小节。
低密度脂蛋白胆固醇(LDL)的检测
低密度脂蛋白胆固醇(LDL)的检测摘要】低密度脂蛋白胆固醇是血清中携带胆固醇的主要颗粒,主要由极低密度脂蛋白胆固醇分解而来,低密度脂蛋白直接向组织和细胞内运输胆固醇,因此LDL增高是动脉粥样硬化发生发展的主要脂类危险因素,其血清水平越高,发生动脉粥样硬化的危险性越大。
【关键词】低密度脂蛋白胆固醇血清检测直接测定血清(或血浆)LDL-C的经典方法是超速离心分离 LDL,或超速离心(去除VLDL)结合沉淀法,均非一般实验室所能采用。
电泳分离LDL的方法也不够简单。
十多年来发展起来的简单方法有两类:一类是用化学法分离VLDL,然后测定HDL与 LDL部分的胆固醇,减去HDL-C得LDL-C;另一类是选择沉淀 LDL法。
该法在LDL沉淀后,可测出上清液的HDL+VLDL部分的胆固醇,然后计算出LDL-C,或直接取沉淀物测定LDL-C,这类方法有3种沉淀剂:①肝素-枸橼酸;②聚乙烯硫酸;③多环表面活化阴离子(法国试剂盒,未具体指名化学名称)。
目前多用PVS沉淀法,美国LRC各实验室也统一采用此法(Boehringer试剂盒)。
但国内还很少用LDL-C直接测定,而是用Friedewald公式用TC、 TG、HDL-C 3项测定计算LDL-C,不如直接测定法可靠。
新近,中华医学会检验学会已推荐匀相法作为临床实验室测定LDL-C的常规方法。
1 临床资料一般资料 48份血脂测定标本为本院的血脂门诊病人标本,早晨空腹采血,室温自行凝固后经离心分离血清,当天完成总胆固醇(TC)、HDL-C和甘油三酯(TG)测定,48份标本的TC平均浓度为5.93±1.37(3.40~9.03)mmol/L,TG的平均浓度为2.04±1.04(0.45~5.88)mmol/L,HDL-C的平均浓度为1.56±0.46(0.68~2.52)mmol/L。
2 聚乙烯硫酸沉淀法2.1 原理用聚乙烯硫酸(PVS)选择沉淀血清中LDL,测出上清液中的胆固醇代表HDL-C与VLDL-C之和,所以TC减去上清液胆固醇即得LDL-C值。
氧化低密度脂蛋白制备
氧化低密度脂蛋白制备氧化低密度脂蛋白(oxidized low-density lipoprotein, Ox-LDL)是一种重要的生物标志物,与多种疾病的发生和发展密切相关。
因此,制备氧化低密度脂蛋白成为了许多研究人员关注的重点。
本文将介绍氧化低密度脂蛋白制备的方法、应用以及相关领域的研究进展。
第一章关于氧化低密度脂蛋白制备方法氧化低密度脂蛋白(OxLDL)在生物学和医学研究中具有重要的研究价值。
目前,制备氧化低密度脂蛋白的方法主要有两种:铜离子催化法和二次过氧化物法。
这两种方法各有特点,并在一定程度上互补。
下面将对这两种方法进行详细介绍。
一、铜离子催化法(copper ion-catalyzed method)铜离子催化法是最早被使用且广泛应用于制备氧化低密度脂蛋白的方法之一。
该方法的主要原理是通过添加铜离子和过硫酸盐作为催化剂,引发低密度脂蛋白(LDL)发生氧化反应。
在反应过程中,铜离子具有催化作用,促使过硫酸盐分解产生自由基,进而引发LDL中的多不饱和脂肪酸发生氧化反应。
氧化后的低密度脂蛋白具有生物学活性,可引发细胞内胆固醇沉积、泡沫细胞形成等生理反应。
二、二次过氧化物法(secondary peroxidation method)二次过氧化物法是另一种制备氧化低密度脂蛋白的方法。
该方法的主要步骤是在已经存在一定量已经部分酸处理的氧化低密度脂蛋白的基础上,再次加入过氧化物,使其继续发生氧化反应。
这个过程可以进一步增加氧化低密度脂蛋白的产量和纯度。
与铜离子催化法相比,二次过氧化物法具有更高的氧化程度和更低的金属离子污染风险。
两种方法优缺点对比1.铜离子催化法:优点:-操作简便,反应条件温和;-氧化程度较好,具有较高的生物学活性;-适用于大规模制备氧化低密度脂蛋白。
缺点:-金属离子残留可能导致实验误差;-纯度较低,需要进一步分离和纯化。
2.二次过氧化物法:优点:-氧化程度较高,纯度较好;-金属离子污染风险较低;- 可以获得较高纯度的氧化低密度脂蛋白。
小鼠低密度脂蛋白(LDL)说明书
小鼠小鼠低密度脂蛋白低密度脂蛋白(LDL)酶联免疫酶联免疫分析分析分析((ELISA )试剂试剂盒使用说明书盒使用说明书盒使用说明书本试剂仅供研究使用 目的:本试剂盒用于测定小鼠血清,血浆及相关液体样本中低密度脂蛋白(LDL)含量。
实验原理实验原理::本试剂盒应用双抗体夹心法测定标本中小鼠低密度脂蛋白(LDL)水平。
用纯化的小鼠低密度脂蛋白(LDL)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入低密度脂蛋白(LDL),再与HRP 标记的低密度脂蛋白(LDL)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB 显色。
TMB 在HRP 酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。
颜色的深浅和样品中的低密度脂蛋白(LDL)呈正相关。
用酶标仪在450nm 波长下测定吸光度(OD 值),通过标准曲线计算样品中小鼠低密度脂蛋白(LDL)浓度。
试剂盒组成试剂盒组成: 试剂盒组成 48孔配置96孔配置保存 说明书 1份 1份 封板膜 2片(48) 2片(96) 密封袋 1个 1个酶标包被板 1×48 1×96 2-8℃保存 标准品:180µmol/L 0.5ml ×1瓶 0.5ml ×1瓶 2-8℃保存 标准品稀释液 1.5ml ×1瓶 1.5ml ×1瓶 2-8℃保存 酶标试剂 3 ml ×1瓶 6 ml ×1瓶 2-8℃保存 样品稀释液 3 ml ×1瓶 6 ml ×1瓶 2-8℃保存 显色剂A 液 3 ml ×1瓶 6 ml ×1瓶 2-8℃保存 显色剂B 液 3 ml ×1瓶 6 ml ×1瓶 2-8℃保存 终止液3ml ×1瓶 6ml ×1瓶 2-8℃保存 浓缩洗涤液(20ml ×20倍)×1瓶(20ml ×30倍)×1瓶2-8℃保存样本处理及要求样本处理及要求: 1.血清:室温血液自然凝固10-20分钟,离心20分钟左右(2000-3000转/分)。
低密度脂蛋白英文字母
低密度脂蛋白英文字母Low-density lipoprotein (LDL) is a type of lipoprotein that carries cholesterol and other lipids in the blood. It is considered as one of the major risk factors for cardiovascular diseases, including coronary heart disease and stroke. LDL carries cholesterol from the liver to other parts of the body, where it can accumulate in the walls of arteries, leading to the formation of plaques and narrowing of the vessel lumen. This process is known as atherosclerosis, which can increase the risk of heart attack and stroke.LDL is classified into different subclasses based on their density and size. The smaller and denser LDLparticles are more atherogenic (capable of causing atherosclerosis) than the larger and less dense particles. The main factors that affect LDL levels in the blood include genetics, diet, and lifestyle habits such as smoking and physical activity.Genetics plays a significant role in determining LDL levels. Some people inherit genes that lead to higher LDL production or reduced LDL receptor activity, which canresult in higher LDL levels. On the other hand, somegenetic variants can protect against high LDL levels and cardiovascular disease.Diet also has a significant impact on LDL levels. Adiet high in saturated fats and trans fats can lead to increased LDL levels, while a diet rich in unsaturated fats, fruits, vegetables, and whole grains can help lower LDL levels. Soluble fiber, found in foods like oats and beans, can also help reduce LDL levels by binding to cholesterolin the intestine and preventing its absorption.Lifestyle habits also affect LDL levels. Smoking is a major risk factor for cardiovascular disease and can leadto increased LDL levels. Regular physical activity can help lower LDL levels and improve cardiovascular health. Obesity and lack of physical activity are associated with higherLDL levels and increased risk of cardiovascular disease.In addition to genetic, dietary, and lifestyle factors, certain medical conditions can also affect LDL levels. For example, hypothyroidism (insufficient thyroid hormone production) can lead to increased LDL levels, while hyperthyroidism (excessive thyroid hormone production) can cause decreased LDL levels. Diabetes mellitus is also associated with higher LDL levels and increased risk of cardiovascular disease.To manage LDL levels and reduce the risk of cardiovascular disease, it is important to maintain a healthy lifestyle. This includes eating a balanced diet low in saturated fats and trans fats, increasing intake of fruits, vegetables, and whole grains, and limiting salt and sugar intake. Regular physical activity, smoking cessation, and maintaining a healthy weight are also crucial for maintaining healthy LDL levels.In addition to lifestyle changes, some people may require medication to lower their LDL levels. Statins are a class of drugs commonly used to lower LDL levels by inhibiting the production of cholesterol in the liver.Other drugs, such as ezetimibe and PCSK9 inhibitors, may also be used to further lower LDL levels in certain cases.In conclusion, LDL is an important lipoprotein that plays a crucial role in maintaining cholesterol levels in the blood. High LDL levels are a major risk factor for cardiovascular diseases, but lifestyle changes and medication can help lower LDL levels and reduce the risk of these diseases. It is important to maintain a healthy lifestyle and consult with a healthcare provider to develop an individualized plan for managing LDL levels.。
阴离子交换树脂纯化低密度脂蛋白
阴离子交换树脂纯化低密度脂蛋白
阴离子交换树脂是一种用于分离和纯化生物分子的常见方法。
在低密度脂蛋白纯化中,阴离子交换树脂可以有效地去除其他杂质,使低密度脂蛋白得到纯化。
阴离子交换树脂上通常带有正电荷的功能基团,如胺基或季铵基团。
这些功能基团具有吸附和释放带负电荷的分子的能力。
在低密度脂蛋白纯化过程中,阴离子交换树脂可以选择性地吸附带有负电荷的杂质分子,如酸性蛋白、核酸和其他阴离子,而低密度脂蛋白则可以被选择性地释放出来。
纯化低密度脂蛋白的过程通常涉及样品的预处理,如去除脂肪和高密度脂蛋白。
然后,样品与阴离子交换树脂接触,低密度脂蛋白被吸附在树脂上,而其他杂质则被留在溶液中。
之后,树脂通常经过洗脱步骤来去除非特异性吸附的杂质。
最后,低密度脂蛋白可以从树脂上进行洗脱。
阴离子交换树脂纯化低密度脂蛋白的方法可以应用于生物研究和医学领域,以提高低密度脂蛋白的纯度和浓度,从而更好地进行相关实验和分析。
低密度脂蛋白亚组分及分离检测方法的研究进展
低密度脂蛋白亚组分及分离检测方法的研究进展孙浩行;汪骅;王长城【期刊名称】《检验医学与临床》【年(卷),期】2018(015)016【总页数】4页(P2505-2508)【关键词】低密度脂蛋白;动脉粥样硬化;心血管疾病;危险因素【作者】孙浩行;汪骅;王长城【作者单位】上海理工大学医疗器械与食品学院 ,上海 200093;上海迪申生物技术有限公司研发部 ,上海 201201;上海交通大学医学院附属仁济医院检验科 ,上海200025;上海迪申生物技术有限公司研发部 ,上海 201201【正文语种】中文【中图分类】R446以低密度脂蛋白胆固醇(LDL-C)升高为特点的血脂异常是引起动脉粥样硬化性心血管疾病(ASCVD)的重要危险因素[1]。
目前,国际专家组和科学指南均声明LDL-C 为ASCVD的独立危险因素,并将减少ASCVD发病率及病死率的治疗方针专注于降低LDL-C上[2]。
然而,部分研究发现,对ASCVD患者进行降脂治疗后,ASCVD发病风险却只减少了不到30%,部分患者LDL-C水平虽已降低至正常范围仍会发生ASCVD[1-2]。
可见,单从LDL-C定量评估ASCVD发病风险和病情严重存在局限性。
近来,低密度脂蛋白(LDL)亚组分颗粒大小的变化引起了人们关注。
LDL为多分子复合物,在物理特性上具有异质性,可分为一系列密度、体积和动力学行为各不同的亚组分,密度为1.006~1.063 g/mL[3]。
LDL异质性会导致各亚组分胆固醇水平不同,如LDL亚型颗粒直径减少3 nm,胆固醇减少约40% [4]。
研究表明,LDL亚组分与ASCVD密切相关,同LDL-C相比,LDL亚组分能更好地评估ASCVD的发生和发展[2,5]。
因此,ASCVD的临床血脂检测研究应注重LDL亚组分的检测分析。
本文就LDL亚组分的分型及其与ASCVD的关系和最新分离检测方法等方面予以综述。
1 LDL亚组分1.1 LDL亚组分的分型 LDL亚组分主要是依据颗粒直径和密度进行分型。
血清低密度脂蛋白含量的测定实验报告
血清低密度脂蛋白含量的测定实验报告
实验目的
本实验旨在测定血清中的低密度脂蛋白(LDL)含量,并探究其与血液中脂质水平的关系。
实验原理
低密度脂蛋白是一种负责携带胆固醇和三酰甘油的脂质组分。
本实验利用一种测量方法,通过比色反应来定量测定血清中的LDL 含量。
实验步骤
1. 准备实验所需材料,包括血清样本、试剂和比色皿。
2. 向比色皿中加入一定量的血清样本。
3. 加入试剂,与血清样本中的LDL发生反应。
4. 等待一定时间,使反应充分进行。
5. 使用比色计测定比色皿中的吸光度。
6. 根据标准曲线,计算出血清样本中的LDL含量。
实验结果
根据我们的测定,不同血清样本中的LDL含量存在差异。
该差异可能与个体的脂质代谢有关。
实验结论
通过本实验测定了血清中的LDL含量,并发现其存在个体差异。
进一步研究可能揭示脂质代谢异常与各类疾病的关系。
参考文献
[1] 李明等. 血清LDL含量测定方法的比较研究. 中国医学检验杂志, 2010, 34(3): 215-218.
注释
- 本实验中使用的试剂和方法应根据实验室的具体情况进行调整和改进。
- 实验结果和结论应结合实际情况进行分析和解释。
分离纯化脂蛋白的方法
分离纯化脂蛋白的方法
分离纯化脂蛋白的方法主要有超速离心法和脱脂法。
超速离心法是一种常用的分离纯化脂蛋白的方法,根据所用的介质密度不同,可以分为等密度离心和密度梯度离心等。
密度梯度离心法是采用自动形成器或手工操作形成密度梯度,将样品加入超离心管中,使其形成不同密度梯度的液体。
在离心后,根据不同密度的脂蛋白在离心管中分布的位置不同,收集不同区带的样品即可得到纯化的脂蛋白。
脱脂法则是通过去除脂蛋白中的脂质,从而得到载脂蛋白的混合物。
常用的脱脂方法有Warnick等法,将纯化的脂蛋白慢慢加入到预冷的脱脂剂中,
通过搅拌、离心、洗涤等步骤去除脂质,最后得到脱脂的载脂蛋白混合物。
需要注意的是,分离纯化脂蛋白的过程比较复杂,需要使用专业的实验设备和试剂,并且需要严格控制实验条件和操作步骤。
因此,在进行分离纯化实验前,需要仔细阅读实验操作规程和注意事项,并按照规定进行操作,以保证实验的准确性和安全性。
低密度脂蛋白(ldl)复合物
低密度脂蛋白(ldl)复合物
低密度脂蛋白(Low Density Lipoprotein,简称LDL)复合物是一种血液中的脂蛋白复合物,主要由蛋白质、胆固醇、甘油三酯和磷脂等组成。
LDL是一种由肝脏合成并在血液中运输胆固醇到各个组织和细胞的脂蛋白。
它在血液中的浓度过高,特别是其胆固醇含量过高,被认为是动脉粥样硬化和心血管疾病的重要危险因素。
LDL复合物通常由LDL颗粒和其他脂蛋白、蛋白质以及其他生物活性分子组成。
这些复合物可以通过血液循环到达血管壁,导致血管内膜损伤和炎症反应,最终导致动脉粥样硬化的形成。
LDL复合物的血液浓度可以通过改变饮食和生活方式来控制。
减少饱和脂肪酸和胆固醇的摄入,增加纤维素和多不饱和脂肪酸的摄入,以及进行适量的体育锻炼等都可以有助于降低LDL复合物的浓度。
此外,一些药物如他汀类药物也可以用于调节LDL复合物的水平。
极低密度脂蛋白胆固醇检测原理
极低密度脂蛋白胆固醇检测原理极低密度脂蛋白胆固醇(Very Low Density Lipoprotein Cholesterol,简称VLDL-C)是一种血液中的脂质,它在人体内主要负责运输三酰甘油和胆固醇。
VLDL-C的检测是评估人体脂质代谢的重要指标之一,有助于了解人体血液中脂质的水平,从而判断是否存在相关的代谢紊乱和心血管疾病的风险。
极低密度脂蛋白(VLDL)是由肝脏合成的一种复合脂质,它主要由三酰甘油、胆固醇和磷脂组成。
与其他脂质一样,VLDL无法直接溶解在血浆中,因此它需要与蛋白质结合形成脂蛋白复合物,以便在血液中进行运输。
VLDL-C是其中的一个组分,它主要负责运输三酰甘油和胆固醇到全身各个组织和细胞,以满足其能量需求和细胞膜的合成。
VLDL-C的检测可以通过血液样本进行,一般采用生化分析仪器进行测定。
测定的原理是利用生化分析仪器对血液样本中的VLDL进行分离和测量。
在测定过程中,首先需要将血液样本离心分离,以得到血浆。
随后,通过添加一定的试剂和反应物,使VLDL与其他脂蛋白分开。
最后,利用生化分析仪器对VLDL中的胆固醇进行测量,从而得到VLDL-C的含量。
VLDL-C的测定结果可以用于评估人体内脂质代谢的情况。
正常情况下,VLDL-C的含量较低,而异常的VLDL-C水平可能会导致血液中脂质的积累,增加心血管疾病的风险。
因此,通过检测VLDL-C的含量,可以及早发现脂质代谢紊乱和心血管疾病的风险,从而采取相应的治疗措施。
除了VLDL-C,人体内还存在其他脂蛋白胆固醇,如低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)。
LDL-C被称为“坏胆固醇”,其过高的含量会导致胆固醇在血管壁上的沉积,增加动脉粥样硬化的风险。
HDL-C被称为“好胆固醇”,它可以促进胆固醇从血管壁上的沉积物中运输出来,减少动脉粥样硬化的风险。
综合考虑这些脂蛋白胆固醇的含量和比例,可以更加全面地评估人体脂质代谢的情况,并判断心血管疾病的风险。
EPA、DHA的生理功能及提取方法的研究进展
EPA、DHA的生理功能及提取方法的研究进展石雨;田媛;李磊;李国巍;阚侃【摘要】近年来,EPA和DHA已经成为人们关注的热点。
本文叙述了EPA和DHA的生理功能和正确摄入的重要性,提出采用不同传统方法相结合的方式来高纯度分离提取EPA和DHA。
%EPA and DHA have been in focus in recent years. This paper describes the physiological function of EPA andDHA,notes the importance of proper intake,and combines different isolation principles to extract high-purity EPA and DHA.【期刊名称】《黑龙江科学》【年(卷),期】2014(000)010【总页数】3页(P24-25,23)【关键词】EPA;DHA;生理功能;分离提取【作者】石雨;田媛;李磊;李国巍;阚侃【作者单位】黑龙江省科学院大庆分院,黑龙江大庆163319;黑龙江省科学院大庆分院,黑龙江大庆163319;黑龙江省科学院大庆分院,黑龙江大庆163319; 黑龙江省八一农垦大学,黑龙江大庆163319;黑龙江省科学院大庆分院,黑龙江大庆163319;黑龙江省科学院大庆分院,黑龙江大庆163319【正文语种】中文【中图分类】TQ041.8EPA和DHA作为人体必需脂肪酸,因具有独特的生理活性而受到了广泛关注。
它们都属ω-3系列多不饱和脂肪酸,其从甲基端数第1个双键的位置在第3碳位。
这类多不饱和脂肪酸无法在动物体内与ω-6系列脂肪酸相互转化,人体自身也无法合成。
一般人健康所需的EPA和DHA能够从植物中摄取的α-亚麻酸微量转化,但对于不能将α-亚麻酸有效转化的人群来说,从食物中直接摄取是很有必要的。
1 EPA和DHA的生理功能1.1 预防心血管疾病心脑血管疾病严重威胁人类健康,我国每年有近300万人死于心脑血管疾病,占我国每年总死亡病因的一半以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chemical and structural characterisation of low-density lipoproteinspurified from hen egg yolkM.Anton *,V.Martinet,M.Dalgalarrondo,V.Beaumal,E.David-Briand,H.RabesonaInstitut National de la Recherche Agronomique,Laboratoire d’Etude des Interactions des Mole´cules Alimentaires,Groupe Physico-chimie des Emulsions,BP 71627,44316Nantes cedex 3,FranceReceived 5September 2002;received in revised form 22January 2003;accepted 22January 2003AbstractLow-density lipoproteins (LDL)are considered to be the main contributors to the exceptional emulsifying activity of hen egg yolk.However,the lack of understanding of the molecular basis for LDL functionality is a significant obstacle for good control of yolk emulsions.Consequently,we have attempted to link the structure and the characteristics of LDL with their emulsifying properties.After purification of LDL,we have determined their protein and lipid compositions,their ultrastructure,and then extracted their apoproteins for physicochemical characterisation.LDL are composed of about 12%of proteins and 87%of lipids and present a spherical shape with a mean diameter of about 35nm.LDL solubility is high,whatever the medium conditions,because of their low density.LDL contain five major apoproteins out of which the apoprotein of 15kDa is considered to be the most surface-active.After extraction,this apoprotein showed a high proportion of amphipathic a -helix chains,explaining the high capacity of this apoprotein to adsorb at the oil–water interface.#2003Elsevier Science Ltd.All rights reserved.Keywords:Hen egg yolk;Low-density lipoproteins;Purification;Apoprotein structure1.IntroductionHen egg yolk is an essential ingredient for the pre-paration of a large variety of food emulsions,such as mayonnaises,salad dressings and creams.Particularly,it contributes to the formation and the stability of these emulsions by constituting an interfacial film between oil and water.However,yolk is still used empirically and physical properties of yolk emulsions are not entirely controlled because yolk is a complex mixture of several lipoproteins and proteins,the roles of which are not well understood.Egg yolk consists mainly of 68%low-density lipo-proteins (LDL),16%high-density lipoproteins (HDL),10%livetins and 4%phosvitins (McCully,Mok,&Common,1962).All the constituents of yolk have high abilities to adsorb at the oil–water interface and to form films around oil droplets (Anton,1998;Anton &Gan-demer,1999;Kiosseoglou &Sherman,1983;Shenton,1979).Recent works (Anton &Gandemer,1997;Dyer-Hurdon &Nnanna,1993;Le Denmat,Anton,&Beau-mal,2000;Martinet,Beaumal,Dalgalarrondo &Anton,2002)have shown that LDL are likely to play primary roles in the formation and stabilisation of yolk-based emulsions.Consequently,LDL are considered to con-tribute mainly to yolk emulsifying properties.Further-more,it has been demonstrated that LDL show better emulsifying properties than other proteins,such as bovine serum albumin (Mizutani &Nakamura,1985).LDL are large spherical particles of about 35nm dia-meter with a core of triglycerides,cholesterol,and cho-lesteryl esters surrounded by a layer of apoproteins and phospholipids (Martin,Augustyniak,&Cook,1964).Among LDL components,apoproteins are the main molecules that take part in the adsorption at the oil–water interface (Kiosseoglou and Sherman,1983;Mizutani &Nakamura,1984).Shenton (1979)and Kiosseoglou and Sherman (1983)hypothesised that,at the oil–water interface,LDL are disrupted and then,apoproteins and phospholipids adsorb whereas neutral lipids coalesce with oil droplets.The role of phospholi-pids in adsorption of yolk components is not completely0308-8146/03/$-see front matter #2003Elsevier Science Ltd.All rights reserved.doi:10.1016/S0308-8146(03)00060-8Food Chemistry 83(2003)175–183/locate/foodchem*Corresponding author.Tel.:+33-240-6570-80;fax:+33-240-6750-84.E-mail address:anton@nantes.inra.fr (M.Anton).understood because phospholipids can interact with adsorbed apoproteins or are adsorbed themselves.It is suggested that only a small amount of the phospholipids of LDL takes part in the adsorption at the oil–water interface(Kiosseoglou and Sherman,1983;Mizutani& Nakamura,1984,1985).In a recent study(Martinet et al.,2001),we have confirmed the driving contribution of the proteinaceous part of yolk,especially apoprotein of LDL,in the formation and stability of emulsions made with yolk.Proteins constituting mainly the interfacialfilm,have two major roles:(1)to cause a substantial decrease in the interfacial tension due to the adsorption of the pro-teins at the oil–water interface and(2)to form a mechanical barrier due to the viscoelastic properties of this proteinfilm,which protects against disruption. They also control the colloidal interactions between coated oil droplets,thus regulating aggregation and flocculation.Many studies have focussed on the relationships between protein structure and composition,and emul-sifying properties(Kato&Nakai,1980;Shimizu, Takahashi,Kaminogawa,&Yamauchi,1983).The most important factors influencing emulsifying proper-ties of proteins appear to be molecularflexibility,solu-bility and hydrophobicity(Graham&Phillips,1979; Kinsella,1979;Nakai,1984).These factors are derived from physicochemical characteristics,such as molecular size,amino acid composition and sequence,conforma-tion and net charge.In addition to intrinsic molecular factors,several extrinsic factors,such as method of iso-lation,pH,ionic strength,interactions with other com-ponents,and technological treatments,also affect functional properties of proteins(Kinsella,1979).Most studies on protein emulsifiers have concerned milk pro-teins(casein,b-lactoglobulin)and also bovine serum albumin and lysozyme as model proteins(Dickinson, 1994).Until recently,research concerning the emulsify-ing properties of LDL apoproteins has been hindered by the difficulties in extracting individual apoproteins from these particles(Dalgleish,1996).We know that apo-proteins of LDL consist of5major polypeptides between15to130kDa,the principal one of which is the apoprotein of130kDa(Nakamura,Hayakawa&Sato, 1977).Their average isoelectric points are situated in the range of6.5–7.3(Kojima&Nakamura,1985).Amino acid compositions of LDL apoproteins consist of about 40%hydrophobic amino acids(Tsutsui&Obara,1982) but the structure of these apoproteins has not been intensively studied.Despite the wide use of yolk as an emulsifier in food emulsions,the relationship between yolk LDL apoprotein structure and composition,and lipoprotein emulsifying properties in oil-in-water emul-sions remains unclear because of a lack of specific studies. The aim of this study was to purify LDL from egg yolk and study the composition and structure of LDL and their apoproteins from the specific perspective of emulsifying properties.2.Materials and methods2.1.Purification of LDL from egg yolkFresh hen eggs were manually broken and albumen was eliminated.Yolks were carefully rolled on afilter paper(Whatman,Springfield Mill,England)to remove albumen and chalazes adhering to the vitellin mem-brane.This membrane was then perforated to collect unspoiled egg yolk in a beaker cooled in iced water. Yolk was fractionated into plasma and granules according to the method of McBee and Cotterill(1979). Yolk was diluted with an equal volume of a0.17M NaCl solution and stirred with a magnetic stirrer for1h at4 C.This solution was then centrifuged at10,000Âg for45min at4 C and the supernatant(plasma)was separated from the sediment(granules).Plasma was again centrifuged under the same conditions for a com-plete removal of granules.Ammonium sulphate(40%)was added to the plasma which was then stirred for1h at4 C and centrifuged at 10,000Âg for30min at4 C.The precipitate was dis-carded and the supernatant was dialysed against deio-nized water for at least6h(the bath being changed every2h),and then centrifuged at10,000Âg for30 min at4 C.The resultingfloating material containing LDL was pooled.Thefloating material was dissolved in0.05M Tris–HCl buffer(pH7)and applied to a glass column (4.5Â100cm)of Ultrogel AcA34(Sepracor/IBF,Ville-neuve-La-Garenne,France).Absorbancy at220nm was recorded and samples were eluted with0.05M Tris-HCl buffer(pH7).Ribonuclease A(1.37Â104Da),ovalbu-min(4.3Â104Da),bovine serum albumin(6.7Â104Da), aldolase(1.58Â105Da),catalase(2.32Â105Da),ferritin (4.4Â105Da),thyroglobulin(6.69Â105Da)and blue dextran(2Â106Da)were used for column calibration.2.2.SDS-polyacrylamide gel electrophoresisSDS-polyacrylamide gel electrophoresis was used to determine the composition and the relative quantity of apoproteins from LDL.Electrophoreses were run on polyacrylamide gels(stacking: 3.5%and resolving: 10%)with a migration buffer consisting of a0.05M Tris–HCl(pH8.8),0.4M glycine and0.1%SDS solu-tion.The samples were diluted(1:1v/v)in a dissociation buffer consisting of a0.125M Tris–HCl(pH6.8),20% glycerol,10%2-mercaptoethanol and4%SDS solution. The proteins were stained with a Coomassie blue solu-tion(0.05%Coomassie blue,25%ethanol and10% acetic acid).Destaining procedure used a7%acetic acid176M.Anton et al./Food Chemistry83(2003)175–183聚丙烯酰氨凝胶电泳and40%ethanol solution.Molecular weights were estimated with the low-molecular weight calibration kit for SDS electrophoresis from Amersham Pharmacia Biotech(Upsalla,Sweden).The gels were scanned on an imaging densitometer Biorad GS710(Ivry-sur-Seine, France)and the molecular weights and relative quan-tities were estimated with the Quantity One4.1software (Biorad,Ivry-sur-Seine,France).2.3.Chemical analysisDry matter of LDL was determined after desiccation for48h at104 C and expressed as g of dry matter per 100g of fresh sample.Protein content was determined by the procedure of Markwell,Haas,Bieber,and Tolbert(1978).Protein content(between10and100m g/ml)was calculated using a linear regression equation giving the absorbency of bovine serum albumin solutions as a function of their concentrations.Results were expressed as g of protein per100g of dried matter.Lipid content of LDL was determined after extraction by hexane/isopropanol.Eight millilitres of a0.73% NaCl solution was added to1g of sample,and then10 ml of hexane/isopropanol(3:2v/v)were added and mixed before centrifugation at1000Âg during10min. The upper organic phase was collected and solvents were evaporated with a rotavapor.Lipid content was estimated by weighing lipid extract after solvent eva-poration.Results were expressed as g of lipid per100g of dried matter.Total lipids were fractionated into neutral lipids and phospholipids on Sep-pack silica cartridges(Waters, Milford,USA)by the procedure of Juaneda and Roc-quelin(1985).Phospholipid content(PL)was determined by the measure of phosphorus content(P)in lipid extract (PL=PÂ25)(Leseigneur-Meynier&Gandemer,1991). Results were expressed as g of phospholipid per100g of dried matter.Phospholipid composition was determined by high performance liquid chromatography,using a light scattering detector as described by Leseigneur-Meynier and Gandemer(1991).Extracted phospholipid (100m g)were injected in a silica column(SI60;5m m; 25cm lengthÂ4.4mm internal diameter).The column was equilibrated in chloroform.Phospholipids were separated by a gradient of methanol/water/conc. ammonia/chloroform(92:5:2:1)at aflow rate of1.5ml/ min.Only two phospholipid classes were present in a significant amount:phosphatidylcholine(PC)and phosphatidylethanolamine(PE).The results were expressed as g of PC or PEper100g of dried matter. Cholesterol of LDL was quantified by gas liquid chromatography,as described by Beyer,Milani, Dutelle,and Bradley(1989).Trimethylsilyl derivatives of cholesterol were prepared from0.5g of LDL and5a-cholestan was added as internal standard.The gas chromatograph(HP5890)was equipped with aflame ionization detector,a split injector and a7.5mÂ0.32 mm diameter DB5capillary column(J&W Scientific, Millstadt,USA).The bound stationary phase was a5% diphenyl–95%dimethyl-polysilicone and thefilm thick-ness was0.1m m.The operating conditions were: hydrogen carrier gasflow2ml/min,split ratio1/10, injector and detector temperature300 C,oven tem-perature raised from170to230 C in10min.Choles-terol content was calculated using1.12as the relative response factor of cholesterol to standard.Results were expressed as g of cholesterol per100g of dried matter. Triglyceride content was calculated as the difference between total lipid,phospholipid and cholesterol con-tents.Results were expressed as g of triglyceride per100 g of dried matter.Fatty acid composition of total,neutral and polar lipids was determined by gas chromatography of fatty acid methyl esters(fame),prepared as described by Morrison and Smith(1964).The gas chromatograph (HP5890)was equipped with aflame ionization detec-tor,a split injector and a DB225capillary column(J&W Scientific,Millstadt,USA):30mÂ0.32mm diameter, 100%cyanopropylphenyl,1m mfilm thickness.The operating conditions were:hydrogen carrier gasflow1.5 ml/min,split ratio1/10,injector and detector tempera-ture250 C,oven temperature raised from150to210 C at a rate of5 C/min.Fatty acid peaks were identified by comparing their retention times with those of known standards and expressed as percent of fame.2.4.Lipoprotein and apoprotein solubilityLDL and apoLDL were diluted with different buffers corresponding to different pH and ionic strength com-binations to afinal protein concentration of1mg/ml. The diluted samples(24ml)were equilibrated for1h at ambient temperature.Four milllitres were taken aside (initial dilution)and20ml were centrifuged at10,000Âg for20min at10 C.Protein content was determined on the initial dilution and the supernatant after cen-trifugation according to the procedure of Markwell et al.(1979).A calibration curve was established with bovine serum albumin and an index of protein solubility was calculated as mg protein in supernatant/mg protein in initial dilutionÂ100.To measure the combined effects of pH and ionic strength,we have used a central composite model design. It is constituted of10tries distributed on a circle.The central try is replicated twice to estimate the repeatability.A response surface is thenfitted to the experimental points following a quadratic equation.The validity of the surface response is rendered by the R2coefficient,expressing the proportion of experimental variance reproduced by the model.The range used for pH was3–10and0.05–0.55MM.Anton et al./Food Chemistry83(2003)175–183177for NaCl.The pH–NaCl associations were:pH6.5–0.05 M NaCl, 6.5–0.3, 6.5–0.55,3–0.3,10–0.3, 4.03–0.12, 8.97–0.12,4.03–0.48,and8.97–0.48.The buffers used were:glycine-HCl for pH3.00,sodium acetate for pH 4.03,imidazole-HCl for pH6.5,Tris–HCl for pH8.97, and sodium carbonate for pH10.2.5.Transmission electron microscopy of LDLThe LDL solutions(1mg protein/ml in0.05M Tris–HCl pH7,0.1M NaCl buffer)were observed using transmission electron microscopy with a JEOL JEM 1010(Tokyo,Japan)at80kV.The LDL solutions were diluted with an equal volume of2%sodium phospho-tungstate(pH7.4);then a small droplet of this mixture was placed on a Formvar carbon-coated grid and observed with the electron microscope.The following technological treatments were performed on LDL solu-tions before microscopy preparation:heating at75 C/ 10min,freezing atÀ80 C,hydrostatic high-pressure (5000bars),and high-pressure homogenisation(165bars).2.6.Apoprotein extraction and separationThe LDL solutions were extracted with ether-ethanol (1:3v/v)for12h atÀ20 C and centrifuged at1500g for10min atÀ20 C.The solvent was removed and the precipitate was extracted again with several volumes of ether-ethanol for10min,then centrifuged under the same conditions.Three extractions were carried out and the resulting protein sediment was dried under nitrogen flow.The protein mixture(2mg/ml)was dissolved in a0.05 M Tris–HCl buffer(pH8.2)containing0.5%SDS and separated by gelfiltration.Samples were applied to a glass column(1.5cmÂ50cm)of Ultrogel AcA34 (Sepracor/IBF,Villeneuve-La-Garenne,France)and eluted with the same buffer as above.Optical density was recorded at220nm to monitor the column effluent. SDS-polyacrylamide gel electrophoresis was used to identify fractions from the gelfiltration.2.7.N-terminal sequence determinationThe exact identity of purified apoprotein C was determined by sequencing the N-terminal extremity fol-lowing the method of Edman with an Applied Biosys-tem477A(Perkin-Elmer,Foster City,USA)sequencer. The hydropathy profile was deducted from the N-term-inal sequence of apoprotein C according to the method of Kyte and Doolitle(1982).2.8.Secondary structure determinationCircular dichroısm spectra of apoprotein C solution were recorded on a Jobin-Yvon CD6spectrometer (Longjumeau,France).Measurements were carried out at25 C in0.01cm path length quartz plates with pro-tein concentration of1.2mg/ml in a0.05M Tris–HCl buffer(pH8.2)containing0.5%SDS.Spectra were recorded over the190–250nm wavelength range with 0.2nm increments and an integration time of2s.The baseline-corrected spectra were smoothed by using a third-order least-squares polynomialfit.2.9.Statistical analysisExcept for the experimental design,three replicates were made for all the measurements.The results of chemical analysis and solubility were subjected to a 1-way analysis of variance using STATGRAPHICS software(Statistical Graphics Corporation,Rockville, USA).Confidence intervals were set at95%(P<0.05).3.Results3.1.LDL compositionComplete purification of LDL was achieved by sub-mitting thefloating material extracted with ammonium sulphate to gelfiltration chromatography.This step allowed the separation of contaminants corresponding to a,b,and g livetins(results not shown).We obtained 37.5g of pure LDL from100g of dry yolk.The electrophoretic pattern showed that LDL consists offive major apoproteins with molecular weights of about130,80,65,60and15kDa(Fig.1).Densitometric Fig.1.SDS-polyacrylamide gel electrophoresis of yolk(Y)and LDL solution.Low-molecular weight calibration Kit(Amersham Pharma-cia Biotech)was used as protein standard(Std).Stacking and running gels:3.5%and10%acrylamide,respectively.178M.Anton et al./Food Chemistry83(2003)175–183analysis revealed that the relative proportions of the apoproteins were:34,16,16,19,and 15%.One hundred grams of dried LDL contain about 12g of proteins and 87g of lipids (Table 1).The lipids are composed of about 62g of triglycerides,and 22g of phospholipids [out of which 18.4g was phosphati-dylcholine (PC),3.0g phosphatidylethanolamine (PE)]and 3.2g of cholesterol.This corresponds to 71%of triglycerides,25%of phospholipids and 4%of choles-terol on the basis of total lipids.Consequently,the ratios PL/TG and PC/PEwere,respectively,0.35and 6.1.LDL total lipids were composed of about 34%of saturated fatty acids (SFA),45%of monounsaturated fatty acids and 21%of polyunsaturated fatty acids (PUFA).The main fatty acids were 41%oleic acid (C18:1),25%palmitic acid (C16:0)and 16%linoleic acid (C18:2).The PUFA to SFA ratio was 0.60.3.2.LDL solubilityLDL solubility was high (more than 90%),whatever the pH and salt concentration (Fig.2).With a density close to that of water (0.98;Martin et al.,1964),LDL do not sediment on centrifugation.This point is relevant as it means that LDL particles do not precipitate and hence are available,whatever the medium conditions,to participate at the formation of the interfacial film between oil and water.3.3.LDL ultrastructureAn electron micrograph (TEM)of LDL,negatively stained with 2%sodium phosphotungstate,is shown in Fig.3.Particles of non treated LDL (Fig.3A )appeared spherical,with heterogeneous sizes between 20and 60nm diameter and the average diameter was situated between 35and 40nm.Contiguous particles have flat-tened edges,and these polygonal shapes could be the result of particle aggregation due to dehydration on grids or to vacuum in the electron microscope during analysis.Furthermore,the same sample of LDL was analysed by photon correlating spectroscopy (results not shown)and gave an average particle diameter of 35nm,which was in close agreement with the average value obtained from the present electron micrograph of LDL solution.Our results agree with typical values found in the literature.Martin et al.(1964)gave dia-meters ranging from 17to 60nm.Furthermore,we observed some structures of about 200nm diameter surrounded by aggregated LDL.It is possible that these structures are very low density lipoproteins,as observed by Martin et al.(1964)or merged LDL,as noticed for human plasma LDL (Ala-Korpela,Pentika inen,Kor-honen,Hevonoja,Lounila,&Kovanen,1998).Considering the technological treatments,when LDL are heated for 10min at 75 C,we observed (Fig.3B )Table 1Composition of LDL (g/100g dry matter)LDLProteins 12.0Lipids 86.7Triglycerides (TG)62.0Phospholipids (PE)21.5Phosphatidylcholine (PC)18.4Phosphatidylethanolamine (PE) 3.0Cholesterol 3.2Lipids/proteins 7.2PL/TG 0.35PC/PE6.1Fatty acid composition of LDL (%of fatty acids of total lipids)Palmitic acid (C16:0)24.7Oleic acid (C18:1)41.1Linoleic acid (C18:2)16.0PUFA/SFA0.60Polyunsaturated fatty acids=PUFA.Saturated fattyacids=SFAFig.3.Electron micrographs (TEM)of different LDL solutions after physical treatments.LDL solutions:1mg protein/ml in 0.05M tris–HCl pH 7,0.1M NaCl buffer,coloration with 2%sodium phospho-tungstate (pH 7.4).A:LDL control (Â50,000).B:75 C/10min (Â50,000).C:5000bars/10min (Â30,000).D:À80 C (Â60,000).M.Anton et al./Food Chemistry 83(2003)175–183179the result of a disruption and a rearrangement of the fragments into big clusters(average size of about300 nm).The treatment by high hydrostatic pressure(5000 bars)also brought about a disruption,followed by a rearrangement of the fragments into clusters of about 90nm diameter(Fig.3C).Conversely,the electron micrograph of LDL,frozen for12h atÀ80 C and subsequently thawed at room temperature,showed(Fig.3D)that this treatment did not change the structure of LDL.Furthermore,(results not shown)the structure of LDL was not altered by passage through a high pres-sure homogeniser at up to250bars or through a rotor/ stator homogeniser.This meant that,during emulsion formation,the homogenisation step did not destroy LDL.3.4.Apoprotein solubilityApoproteins extracted from LDL with ether-ethanol were re-hydrated with different buffers of varying pH and ionic strength.Protein solubility of these disper-sions was analysed(Fig.4).It was observed that acidic and neutral pH were not favourable to an efficient solubilisation of LDL apoproteins,whatever the ionic strength.Conversely,at basic pH(12)and at low ionic strength(0.1M NaCl),there was a maximum protein solubility of about30%.3.5.Apoprotein separationApoproteins extracted from LDL by delipidation with ether-ethanol were completely solubilised in a0.1M Tris–HCl buffer(pH8.6)containing0.5%SDS.Gel chromatography resolved apoproteins of LDL into three distinct peaks(Fig.5).Thefirst peak(A)con-tained apoproteins from80to130kDa(apoproteins A), the second(B)contained two apoproteins:60and65 kDa(apoproteins B),and the third(C)contained the apoprotein of15kDa in a nearly pure state(apoprotein C),as demonstrated by SDS gel electrophoresis(Fig.5).3.6.Apoprotein C sequenceThe N-terminal amino acid sequence of apoprotein C of yolk LDL was established from sequence determina-tion of peptides derived from Edman degradation (Fig.6).The sequence has been established as far as the 49th amino acid.After screening banks of protein sequences,we observed over90%homologies with the known sequence of hen blood apo VLDL-II.Conse-quently,apo VLDL-II could be an efficient model for studying apoprotein C of yolk LDL.According to the N-terminal amino acid sequence of apoprotein C of yolk LDL and apo VLDL II of hen blood,their hydropathy profiles(Fig.7)have been deduced.The profiles exhibited an amphipolar structure with a succession of hydrophobic and hydrophilic domains,making these apoproteins potentially good surface active agents.3.7.Secondary structure of apoproteinsCircular dichroısm,showed(Fig.8),whatever the apoprotein,a double minimum at208and222nm,and a maximum at191–193nm,synonymous with a con-siderable proportion of a-helix chain.Sodium dodecyl sulphate(SDS)was used to solubilize apoproteins and it is suggested that SDS could lead to a denaturationandFig.5.Gelfiltration chromatography of apoproteins extracted fromLDL and SDS-polyacrylamide gel electrophoresis of LDL and LDLapoproteins.Chromatography:Ultrogel AcA34column(Sepracor/IBF),protein concentration:2mg/ml,in a0.05M Tris–HCl buffer(pH8.2)containing0.5%SDS.Electrophoresis:Low-molecularweight calibration Kit(Amersham Pharmacia Biotech)was used asprotein standard(Std).Stacking and running gels:3.5%and10%acrylamide,respectively.180M.Anton et al./Food Chemistry83(2003)175–183a loss of biological activity of proteins,and indeed an induction of a -helix structures (Montserret,McLeish,Bockmann,Geourjon,&Penin,2000).But,in the case of membrane proteins or amphiphilic proteins,such as LDL apoproteins,SDS is known to mimic the hydro-phobic environment existing in biological membranes without changing protein conformation (Montserret et al.,2000).4.Discussion4.1.Structure and composition of yolk LDLThe bulk composition,the proportions of proteins,total lipids and phospholipids are in good agreement with those noticed previously (Martin et al.,1964).The fatty acid composition of total lipids was also in accor-dance with the literature (Kuksis,1992).However,it isknown that the nature of dietary fatty acids significantly influences the fatty acid composition of total lipids of yolk LDL (Kuksis,1992).There were five major apoproteins for LDL,in accordance with previous studies (Itoh,Abe &Adachi,1983;Yamauchi,Kurisaki &Sasago,1976).Yamauchi et al.(1976)indicated that 130and 65kDa apoproteins were glycoproteins and that the apoprotein of 15kDa (apoprotein C)was unique in containing SH groups.Furthermore,in the present study,after sequencing the N-terminal chain of apoprotein C,there was a very important homology with apo VLDLII,a blood apo-protein of laying hen.Apo VLDL II contains two iden-tical polypeptide chains of 82amino acid residues which are linked by a single disulfide bond at residue 76(Jackson,Lin,Chan,&Means,1977).Consequently,we consider that apo VLDL II could be a good model for improving understanding of the structure-function rela-tionships of yolk LDL apoproteinC.4.2.Relationship between structure/composition and emulsifying properties of yolk LDLIt seems that LDL are soluble whatever the pH and ionic strength conditions,and that heat treatment (75 C)or static high-pressure(5000bars)alter the integrity of yolk LDL,while homogenisation(rotor/ stator or dynamic high-pressure)has very limited effects.These results mean that LDL can be used to prepare emulsions under a wide range of conditions, due to their excellent solubility and that,after homo-genisation,LDL micelles are in their native state. Further evidence shows that LDL are disrupted at the oil–water interface(Kiosseoglou and Sharman,1983; Shenton,1979),and thesefindings have recently been confirmed using a Langmuir balance(Martinet,Saul-nier,Beaumal,Courthaudon,&Anton,2002).The mechanism whereby LDL micelles are disrupted at the oil–water interface is not known but it is likely that LDL protein–protein bonds are weakened by surface forces(Kiosseoglou and Sherman,1983).Then,liber-ated triglycerides merge with the oil phase whereas phospholipids and apoproteins compete to adsorb at the oil-water interface.The liberated apoproteins are supposed to be totally insoluble and the adsorption process almost irreversible.This is corroborated in the present study,as it is demonstrated that level and range of LDL apoprotein solubility are very limited(30%at basic pH and low ionic strength).Under turbulent con-ditions occurring during homogenisation,adsorption of non-soluble proteins is generally observed,due to con-vective movements(Walstra,1983).Under these condi-tions,the poor solubility observed for LDL apoproteins would not be a drawback for emulsion formation. Previous studies(Martinet et al.,2001),have demon-strated the preferential adsorption at the oil–water interface of the15kDa yolk LDL apoprotein(apopro-tein C).The strong amphipathic nature of apoprotein C, results in a high adsorbing activity at the oil–water interface.The yolk apoproteins bound to the phospholipid layer of LDL particles are very different from aqueous pro-teins.In this phospholipid layer,the majority of apo-protein hydrophobic groups,are in exposed sites over the outer surface,whilst hydrophilic groups tend to face inwards,protected from the lipidic medium.This inver-ted configuration would account for the great affinity of the apoproteins for the lipid phase,once liberated. Generally,a-helices are amphipathic,containing two clearly defined faces,one of which is hydrophilic(due to distribution of charged amino acid residues)and the other hydrophobic(Segrest,Garber,Brouillette,Har-ver,&Anantharamaian,1994).It is likely that a-helices are spread on the hydrophobic side at the oil–water interface,covering a majority of the interfacial area and therefore controlling the decrease of interfacial tension and the interactions between oil droplets.Thesefindings are supported by results of Camejo,Colacocco,and Rapport(1968),showing that apoproteins of lipopro-teins have an exceptionally great penetrating power at the oil–water interface as compared to globular albu-min.Furthermore,competition studies have shown that capacities of LDL apoproteins to displace other pro-teins from the oil–water interface were characteristic of veryflexible proteins(Mine&Keeratiurai,2000).It is likely that disordered structures,existing between a-helix domains,improve theflexibility of apoprotein C. Therefore,it appears that apoprotein C may be able to rearrange rapidly at the interface and cover the majority of the interfacial area and therefore control the interac-tions between oil droplets.Consequently,it seems that apoproteins of yolk LDL, and particularly the apoprotein of15kDa,have a great capacity to adsorb at the oil–water interface in emul-sions,due to their structure and composition,which combines amphipathic character andflexibility.This could explain the excellent emulsifying properties of egg yolk.We have now to confirm thesefindings by directly studying the adsorption capacity of the apoprotein C at the oil–water interface and also defining the role of phospholipids in this adsorption. AcknowledgementsWe thanks Pays de la Loire Province and INRA TPA Department for providing V.Martinet a Ph.D.grant to carry out this study.ReferencesAla-Korpela,M.,Pentika inen,M.O.,Korhonen,A.,Hevonoja,T., Lounila,J.,&Kovanen,P.T.(1998).Detection of low density lipoprotein particle fusion by proton nuclear magnetic resonance spectroscopy.Journal of Lipid Research,39,1705–1712.Anton,M.(1998).Structure and functional properties of hen egg yolk constituents.Recent Research Developments in Agricultural and Food Chemistry,2,839–864.Anton,M.,&Gandemer,G.(1997).Composition,solubility and emulsifying properties of granules and plasma of hen egg yolk. Journal of Food Science,62(3),484–487.Anton,M.,&Gandemer,G.(1999).Effect of pH on interface com-position and on quality of oil-in-water emulsions made with hen egg yolk.Colloids and Surface B:Biointerfaces,12,351–358.Beyer,J.D.,Milani,F.X.,Dutelle,M.J.,&Bradley,R.L.(1989). Gas chromatographic determination of cholesterol in egg products. Journal of Association of Official Analytical Chemists,72,746–748. Camejo,G.,Colacicco,G.,&Rapport,M.M.(1968).Lipid mono-layers:interactions with the apoprotein of high density plasma lipoprotein.Journal of Lipid Research,9,562–569.Dalgleish,D.G.(1996).Food emulsions.In J.Sjoblom(Ed.),Emul-sions and emulsion stability(pp.287–325).New York:Marcel Dekker Inc.182M.Anton et al./Food Chemistry83(2003)175–183。