数学模型思想在小学数学教学中的渗透论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型思想在小学数学教学中的渗透论文
数学模型思想在小学数学教学中的渗透论文
【摘要】现实生活中需要用到的數学概念及运算法则,通过抽象推理得到的数学发展,再通过模型实现数学与外部世界的联系即数学模型。

小学数学课堂教学中,老师要有意识的融入数学模型思想,以促使学生更好的体会、理解数学与外部世界的联系,激发其学习兴趣,掌握学习数学的基本方法,从而提高小学数学教学的有效性。

【关键词】数学模型思想小学数学课堂教学
数学模型是一种特殊的数学结构,有效利用数学模型可以将抽象的数学内容具象化处理,以提高数学解决现实问题的实用性;并且合理应用数学模型可以帮助学生更加准确的理解教学内容,提高学习效率。

由此可见,在小学数学教学中融入数学模型思想具有重要的现实意义。

一、小学数学中的数学模型
广义上讲,所有的数学概念、数学理论体系、数学公式、数学方程及相关的算法系统等均属于数学模型的范畴;狭义上讲,数学模型是反映特定问题或特定具体事物系统的数学关系结构。

本文所研究的小学数学教学中的数学模型是基于狭义的角度而言,即应用数学符号建立起的代数式、关系式、方程、函数、不等式、图表、图形等,而小学阶段的数学模型以公式模型、方程模型、集合模型及函数模型为主。

其中数学公式是从现实世界中抽象出来的数学模型,其不包含事物的个别属性,其所反映的是客观世界数量关系的符号,其典型意义也更加突出,比如总价=单价×数量、长方形的面积公式、周长公式等等均属于公式模型。

方程模型应用合理可降低应用题的答题难度,解答应用题时可以先将问题归结为可以确定的若干未知量,设想未知量已求出,根据条件列出已知量与未知量之间成立的一切关系式,再从已知条件中分析出部分条件,同一个量用两种不同的方式表达出来,得出一个与未知量相关的方程式或方程组,通过解答方程式或方程组获得应用题的答案,并验证其正确性。

集合模型可简化问题背影,帮
助学生用更简单的方法解决实际问题。

小学阶段的函数模型主要为正比例及反比例的问题,其中正比例为一次函数,反比例为反比例函数的初级形式,小学阶段学习正比例、反比例的知识可以使学生体会变是思想,在其后续的教学中渗透函数模型思想。

二、小学数学教学中数学模型思想的渗透策略
数学模型思想可以促使学生提高对数学知识的理解与记忆,从而提高学习效率。

在实际小学数学课堂教学中,可以从以下几个方面渗透数学模型思想:
(一)简化背景,构建数学模型
数学建模是一个“数学化”的过程,需要进行逐步抽象、逐步简化,因此教学过程中老师可以有意识的采用变式的方法不断变化数学问题的背景或非本质属性,并构建数学模型,突出数学问题的本质。

比如在学习“分数”的相关知识时,对于一个小学三年级的学生而言,充分理解“把一些物体看成一个整体平均分布若干份,其中的一份或几份也可以用几分之一或几分之几来表示”这一抽象概念有一定的难度,针对这种情况,就可以采用简化“分数”这一知识背景的方法构建数学模型。

教师在课堂上向学生展示一盘桃子,向学生提出问题:第一次,盘子里只有1只桃子,平均分给4个学生,需要将这盘桃子分成几份?每个学生可以分得几份?每个学生分得这盘桃子的几分之几?注意整个过程中教师都不断强调“盘”这一量词。

学生顺利的回答出“每个学生可分得这盘桃子的1/4”。

接着教师又展示一盘桃子:现在这个盘子里有4个桃子,现在把这盘桃子平均分成4份,分给4个学生,那么每个学生可以分得几份?每个人分到这盘桃子的几分之几?由于教师不断强调“一盘”为一个整体,学生很容易就答出来“一盘”桃子可以分成4份,分给4个学生每个学生可分得这盘桃子1/4。

依此类推,教师先后向学生又展示了2盘桃子,盘子中桃子的数量均为4的倍数,屡次重复、变化,学生逐渐发现一个规律,即无论盘子里有几颗桃,只要平均分成4份,都是这盘桃子的1/4。

这种教学操作逐渐简化了具体的教学实例,将其进行抽象化处理,应用数学模型的方法帮助学生进行理解,使学生对分数意义的本质有更加深刻的
认知。

(二)引导学生参与建模过程
新课程改革强调学生的主体参与性,突出学生的主体性,以强化素质教育的教学目标。

由此可见,在小学数学教学中学生的主体参与性会对老师的.教学效果产生决定性影响,因为学生主动习得的知识会更加深刻,而被迫灌输的知识则多是暂时性的,因此老师要有意识的调动学生的主体参与性,在数学建模过程中老师要引导学生直接参与进来。

比如在学习数学轴的相关内容时老师就可以引导学生建立数轴模型:课堂上可拿出直尺观察,直尺就是一个直观的数轴;再比如上述分数的学习过程,老师提问、学生回答的过程也是学生主动参与建模的过程。

(三)运用联想教学提高学生思维的跳跃性
小学数学课堂教学中要改变传统机械模仿、生搬硬套的教学方法,运用联想教学引导学生从复杂的数学问题中寻找知识规律,从本质上对各个数学知识点的相同及相似之处,以完成模型构建。

比如在教学过程中学习“比”的概念,直接告知概念比较简单,但是学生需要死记硬背才能掌握概念,且不一定能深入理解,而建立比的数学模型却可以大大提高教学效果。

生活中很多事物的属性均可以比较,比如物体的大小、质量、长短、高矮等均可以用一个量面积单位、质量单位、长度单位进行比较,但还有些事物无法直接比较,比如谁跑的更快,就需要抽象的时间来比较。

比如45千米的距离骑车3小时,苹果2千克一共9元,二者均可以用比的形式表达出来。

学生完成题目后会发现:不仅同类的量可以用“比”的形式表达出来,不同类的量也可以用“比”的形式表达。

这种结构链接利用知识间的联系,使学生更好的理解“比”的概念。

三、结语
总之,在小学数学教学中融入数学模型思想可加强促进学生对抽象数学知识点的理解,引导学生基于多角度、多维度解决问题。

当然,根据教师的教学实践可知,在小学数学教学中渗透数学模型思想的方法是多种多样的,无论是简化背景、引导学生的主动参与,还是运用
联想教学,都要结合实际教学情况,才能保证教学的有效性。

参考文献:
[1]屈淑静.如何提高小学数学教学的有效性[J].新课程研究(基础教育).2016(02)
[2]李爱云.实现小学数学教学生活化的策略[J].学周刊.2011(09).
[3]王俊果.小学数学教学要努力培养学生的创新意识[J].教育实践与研究.2016(03)
[4]肖光涛.小学数学教学中如何培养学生创新能力[J].四川教育学院学报.2016(10)
[5]刘大军.小学数学课堂教学有效性思考[J].新课程研究(基础教育).2016(03)。

相关文档
最新文档