八年级数学上册 三角形填空选择单元测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册 三角形填空选择单元测试卷附答案
一、八年级数学三角形填空题(难)
1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.
【答案】
20202α
【解析】
【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知
21211112222
a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】 解:∵∠ABC 与∠ACD 的平分线交于点A 1,
∴11118022
A ACD AC
B AB
C ∠=︒-∠-∠-∠ 1118018022
ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122
a A =∠=, 同理可得221122a A A ∠=
∠=, …
∴2020A ∠=
20202α. 故答案为:
2020
2α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.
2.如图,△ABC 中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE ,交BD 于点G ,交BC 于点H .下列结论:①∠DBE =∠F ;
②2∠BEF =∠BAF +∠C ;③∠F =∠BAC -∠C ;④∠BGH =∠ABE +∠C .其中正确个数是
( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
解:
①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;
②∵BE平分
∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;
③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,
∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;
④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.
故答案为①②④.
点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.
3.△ABC的两边长为4和3,则第三边上的中线长m的取值范围是_______.
【答案】17 22
m
<<
【解析】
【分析】
作出草图,延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,然后根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,便不难得出m的取值范围.
【详解】
解:如图,延长AD到E,使DE=AD,连接CE,
∵AD 是△ABC 的中线,
∴BD=CD ,
在△ABD 和△ECD 中,
AD DE ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩
, ∴△ABD ≌△ECD (SAS ),
∴CE=AB ,
∵AB=3,AC=4,
∴4-3<AE <4+3, 即1<AE <7, ∴1722
m <<. 故答案为:
1722m <<. 【点睛】
本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.
4.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.
【答案】720°.
【解析】
【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.
【详解】这个正多边形的边数为36060︒︒
=6, 所以这个正多边形的内角和=(6﹣2)×180°=720°,
故答案为720°.
【点睛】本题考查了多边形内角与外角:内角和定理:(n ﹣2)•180 (n≥3)且n 为整数);多边形的外角和等于360度.
5.已知a 、b 、c 为△ABC 的三边,化简:|a+b ﹣c|-|a ﹣b ﹣c|+|a ﹣b+c|=______.
【答案】3a b c --
【解析】
【分析】
根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.
【详解】
解:∵a 、b 、c 为△ABC 的三边,
∴a +b >c ,a -b <c ,a +c >b ,
∴a +b -c >0,a -b -c <0,a -b +c >0,
∴|a +b -c |-|a -b -c |+|a -b +c | =(a +b -c )+(a -b - c )+(a -b +c ) =a +b -c +a -b - c +a -b +c
=3a -b -c .
故答案为:3a -b -c .
【点睛】
本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.
6.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.
【答案】30
【解析】
【分析】
由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .
【详解】
1∠、2∠、3∠、4∠的外角的角度和为210,
12342104180∠∠∠∠∴++++=⨯,
1234510∠∠∠∠∴+++=,
五边形OAGFE 内角和()52180540=-⨯=,
1234BOD 540∠∠∠∠∠∴++++=,
BOD 54051030∠∴=-=.
故答案为:30
【点睛】
本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.
7.已知等腰三角形的两边长分别为3和5,则它的周长是____________
【答案】11或13
【解析】
【分析】
题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长
=3+3+5=11;
②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.
故答案为:11或13.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
8.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.
cm.
【答案】242
【解析】
【分析】
由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.
【详解】
∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,
∴OF=CF;△AEF等于AB+AC,
又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,
根据角平分线的性质可得O到BC的距离为4cm,
∴S△OBC=1
2
×12×4=24cm2.
考点:1.三角形的面积;2.三角形三边关系.
9.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.
【答案】45
【解析】
【分析】
根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求
∠ABC=∠BAD=45°.
【详解】
∵AD⊥BC于D,BE⊥AC于E
∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,
又∵∠BFD=∠AFE(对顶角相等)
∴∠EAF=∠DBF,
在Rt△ADC和Rt△BDF中,
CAD FBD
BDF ADC
BF AC
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ADC≌△BDF(AAS),
∴BD=AD,
即∠ABC=∠BAD=45°.
故答案为45.
【点睛】
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
10.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
【答案】40°
【解析】
【分析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
【详解】
如图所示:
∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案为40°.
【点睛】
主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
二、八年级数学三角形选择题(难)
11.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△BEF的面积是()cm2.
A.5B.10C.15D.20
【答案】B
【解析】
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答即可.
【详解】
∵点E是AD的中点,
∴S△ABE=1
2
S△ABD,S△ACE=
1
2
S△ADC,
∴S△ABE+S△ACE=1
2
S△ABC=
1
2
×40=20cm2,
∴S△BCE=1
2
S△ABC=
1
2
×40=20cm2,
∵点F是CE的中点,
∴S△BEF=1
2
S△BCE=
1
2
×20=10cm2.
故选B.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
12.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论
①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()
A.①②③B.①③④C.①④D.①②④
【答案】C
【解析】
【分析】
根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+1
2
∠1,再结合三角形
外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】
∵BO,CO分别平分∠ABC,∠ACB,
∴∠OBC=1
2
∠ABC,∠OCB=
1
2
∠ACB,
∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,
∴∠OBC+∠OCB=1
2
(∠ABC+∠ACB)=
1
2
(180°-∠1)=90°-
1
2
∠1,
∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-1
2
∠1)=90°+
1
2
∠1,
∵∠ACD=∠ABC+∠1,CE平分∠ACD,
∴∠ECD=1
2
∠ACD=
1
2
(∠ABC+∠1),
∵∠ECD=∠OBC+∠2,
∴∠2=12
∠1,即∠1=2∠2, ∴∠BOC=90°+
12
∠1=90°+∠2, ∴①④正确,②③错误,
故选C.
【点睛】 本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.
13.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )
A .7
B .8
C .7或8
D .无法确定
【答案】C
【解析】
【分析】
n 边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.
【详解】
设少加的2个内角和为x 度,边数为n .
则(n-2)×180=830+x ,
即(n-2)×180=4×180+110+x ,
因此x=70,n=7或x=250,n=8.
故该多边形的边数是7或8.
故选C .
【点睛】
本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.
14.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )
A .15 cm 2
B .20 cm 2
C .30 cm 2
D .35 cm 2
【答案】D
【解析】
【分析】 连接AD ,BE ,CF .根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC 的面积,故△DEF 的面积等于7倍的△ABC 面积,即可得出结果.
【详解】
连接AD ,BE ,CF .
∵BC =CD ,∴S △ACD =S △ABC =5,S △FCD =S △BCF .同理S △AEB =S △ABC =5,S △AED =S △ACD =5;
S △AEB =S △BEF =5,S △BFC =S △ABC =5;∴S △FCD =S △BCF =5,∴S △EFD =7 S △ABC =35(cm 2).
故选D .
【点睛】
本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,本题有一定难度,需要通过作辅助线,运用三角形中线等分三角形的面积才能得出结果.
15.如图:在△ABC 中,G 是它的重心,AG ⊥CD ,如果32BG AC ⋅=,则△AGC 的面积的最大值是( )
A.23B.8 C.43D.6
【答案】B
【解析】
分析:延长BG交AC于D.由重心的性质得到BG=2GD,D为AC的中点,再由直角三角形斜边上的中线等于斜边的一半,得到AC=2GD,即有BG=AC,从而得到AC、GD的长.当
GD⊥AC时,△AGC的面积的最大,最大值为:1
2
AC•GD,即可得出结论.
详解:延长BG交AC于D.
∵G是△ABC的重心,∴BG=2GD,D为AC的中点.
∵AG⊥CG,∴△AGC是直角三角形,∴AC=2GD,∴BG=AC.
∵BG•AC=32,∴AC=32=42,GD=22.当GD⊥AC时,.△AGC的面积的最大,最
大值为:1
2
AC•GD=
1
4222
2
⨯⨯=8.故选B.
点睛:本题考查了重心的性质.解题的关键是熟知三角形的重心到顶点的距离等于它到对边中点距离的2倍.
16.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()
A.20°B.35°C.40°D.45°
【答案】B
【解析】
【分析】
由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.
【详解】
解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,
∴∠1+∠2+∠3+∠4+215°=4×180°,
∴∠1+∠2+∠3+∠4=505°,
∵五边形OAGFE内角和=(5-2)×180°=540°,
∴∠1+∠2+∠3+∠4+∠BOD=540°,
∴∠BOD=540°-505°=35°,
故选:B.
【点睛】
本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.
17.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()
A.三角形B.四边形C.六边形D.八边形
【答案】D
【解析】
【分析】
一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.
【详解】
解:多边形的内角和是:360°×3=1080°.
设多边形的边数是n,
则(n-2)•180=1080,
解得:n=8.
即这个多边形是正八边形.
故选D.
【点睛】
本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.
18.已知正多边形的一个外角等于40,那么这个正多边形的边数为()
A.6 B.7 C.8 D.9
【答案】D
【解析】
【分析】根据正多边形的外角和以及一个外角的度数,即可求得边数.
【详解】正多边形的一个外角等于40,且外角和为360,
÷=,
则这个正多边形的边数是:360409
故选D.
【点睛】本题主要考查了多边形的外角和定理,熟练掌握多边形的外角和等于360度是解题的关键.
19.下列多边形中,不能够单独铺满地面的是()
A.正三角形B.正方形C.正五边形D.正六边形
【答案】C
【解析】
【分析】
由镶嵌的条件知,在一个顶点处各个内角和为360°.
【详解】
∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;
∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;
∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;
∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.
故选C.
【点睛】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
20.一个多边形的内角和是900°,则这个多边形的边数为()
A.6 B.7 C.8 D.9
【答案】B
【解析】
【分析】
本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.
【详解】
解:设这个多边形的边数为n,
则有(n-2)180°=900°,
解得:n=7,
∴这个多边形的边数为7.
故选B.
【点睛】
本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.。