八年级三角形填空选择单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级三角形填空选择单元测试卷附答案
一、八年级数学三角形填空题(难)
1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.
【答案】
20202α 【解析】
【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知
21211112222
a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】
解:∵∠ABC 与∠ACD 的平分线交于点A 1,
∴11118022
A ACD AC
B AB
C ∠=︒-∠-∠-∠ 1118018022
ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122
a A =∠=, 同理可得221122a A A ∠=
∠=, …
∴2020A ∠=
20202α. 故答案为:
2020
2α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.
2.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.
【答案】80【解析】【详解】
如图,根据角平分线的性质和平行线的性质,可知∠FMA=1
2
∠CPE=∠F+∠1,
∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.
故答案为80.
3.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.
【答案】32
【解析】
【分析】
过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得
∠BDC的度数.
【详解】
过C点作∠ACE=∠CBD,
∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,
∴∠ECD=∠BDC,
∵对角线BD 平分∠ABC ,
∴∠ABD=∠CBD ,
∴∠ABD=∠ACE ,
∴∠BAC=∠CEB=64°,
∴∠BDC=
12
∠CEB=32°. 故答案为:32.
【点睛】 此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.
4.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

【答案】45︒
【解析】
【分析】
根据三角形内角与外角的关系可得2M MAB ∠∠∠=+
由角平分线的性质可得MAB MAO ∠∠=
根据三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒
易得∠M 的度数。

【详解】
在ABM 中,2∠是ABM 的外角
∴2M MAB ∠∠∠=+
由三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒
∵BOA 90∠=︒
∴OBA OAB 90∠∠+=︒
∵MA 平分BAO ∠
∴BAO 2MAB ∠∠=
由三角形内角与外角的关系可得12BAO BOA 90BAO ∠∠∠∠∠+=+=︒+ ∵12∠∠=
∴2290BAO ∠∠=︒+
又∵2M MAB ∠∠∠=+
∴222M 2MAB 2M BAO ∠∠∠∠∠=+=+
∴90BAO 2M BAO ∠∠∠︒+=+
2M 90∠=︒
M 45∠=︒
【点睛】 本题考查三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和。

5.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.
【答案】6
【解析】
∵多边形内角和与外角和共1080°,
∴多边形内角和=1080°−360°=720°,
设多边形的边数是n ,
∴(n−2)×180°=720°,解得n=6.
故答案为6.
点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.
6.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.
【答案】360 °
【解析】
如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.
点睛:本题考查的知识点:
(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和; (2)四边形内角和定理:四边形内角和为360°.
7.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则
A ∠=______.
【答案】80°
【解析】
【分析】
根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出
∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.
【详解】
解:在△PBC 中,∠BPC=130°,
∴∠PBC+∠PCB=180°-130°=50°.
∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,
∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,
在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.
故答案为80°.
【点睛】
本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.
8.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则
∠1+∠2+∠3+∠4= .
【答案】280°
【解析】
试题分析:先根据邻补角的定义得出与∠EAB 相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.
解:如图,∵∠EAB+∠5=180°,∠EAB=100°,
∴∠5=80°.
∵∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3+∠4=360﹣80°=280°
故答案为280°.
考点:多边形内角与外角.
9.如图所示,请将1
2A ∠∠∠、、用“>”排列__________________.
【答案】21A ∠∠∠>>
【解析】
【分析】
根据三角形的外角的性质判断即可.
【详解】
解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A
∴∠2>∠1>∠A ,
故答案为:∠2>∠1>∠A .
【点睛】
本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.
10.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO ,CO ,则∠BOC=________.
【答案】125°
【解析】
【分析】
根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.
【详解】
:∵点O到AB、BC、AC的距离相等,
∴OB平分∠ABC,OC平分∠ACB,

1
2
OBC ABC
∠=∠,
1
2
OCB ACB
∠=∠,
∵∠A=70°,
∴∠ABC+∠ACB=180°-70°=110°,

1
11055
2
OBC OCB
∠+∠=⨯︒=︒,
∴∠BOC=180°-(∠OBC+∠OCB)=125°;
故答案为:125.
【点睛】
本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.
二、八年级数学三角形选择题(难)
11.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-1
2
∠A.上述说
法正确的个数是()
A.0个B.1个C.2个D.3个【答案】C
【解析】
【分析】
根据三角形的内角和外角之间的关系计算.
【详解】
解:(1)∵若P点是∠ABC和∠ACB的角平分线的交点,
∴∠ABP=∠PBC,∠ACP=∠PCB
∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)
∠P=180°-(∠PBC+∠PCB)
∴∠P=90°+12
∠A ; 故(1)的结论正确;
(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC )
∠P=∠PCE-∠PBC
∴2∠P=∠A
故(2)的结论是错误.
(3)∠P=180°-(∠PBC+∠PCB )
=180°-
12
(∠FBC+∠ECB ) =180°-12(∠A+∠ACB+∠A+∠ABC ) =180°-
12
(∠A+180°) =90°-12
∠A . 故(3)的结论正确. 正确的为:(1)(3).
故选:C
【点睛】
主要考查了三角形的内角和外角之间的关系.
(1)三角形的外角等于与它不相邻的两个内角和;
(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.
12.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )
A .14
B .14.4
C .13.6
D .13.2
【答案】B
【解析】
【分析】
连结BF,设S△BDF=x,则S△BEF=6-x,由CD是中线可以得到S△ADF=S△BDF,S△BDC=S△ADC,
由BE=2CE可以得到S△CEF=1
2
S△BEF,S△ABE=
2
3
S△ABC,进而可用两种方法表示△ABC的面
积,由此可得方程,进而得解.【详解】
解:如图,连接BF,
设S△BDF=x,则S△BEF=6-x,
∵CD是中线,
∴S△ADF=S△BDF=x,S△BDC= S△ADC=1
2△ABC

∵BE=2CE,
∴S△CEF=1
2
S△BEF=
1
2
(6-x),S△ABE=
2
3
S△ABC,
∵S△BDC= S△ADC=1
2△ABC

∴S△ABC=2S△BDC
=2[x+3
2
(6-x)]
=18-x,
∵S△ABE=2
3
S△ABC,
∴S△ABC=3
2
S△ABE
=3
2
[2x+ (6-x)]
=1.5x+9,
∴18-x =1.5x+9,解得:x=3.6,
∴S△ABC=18-x,
=18-3.6
=14.4,
故选:B.
【点睛】
本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.
13.一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是()
A.x>5 B.x<7 C.2<x<12 D.1<x<6
【答案】D
【解析】
如图所示:
AB=5,AC=7,
设BC=2a,AD=x,
延长AD至E,使AD=DE,
在△BDE与△CDA中,
∵AD=DE,BD=CD,∠ADC=∠BDE,
∴△BDE≌△CDA,
∴AE=2x,BE=AC=7,
在△ABE中,BE-AB<AE<AB+BE,即7-5<2x<7+5,
∴1<x<6.
故选D.
14.已知:如图,ABC
∆三条内角平分线交于点D,CE⊥BD交BD的延长线于E,则
∠DCE=( )
A.1
2
BAC
∠B.
1
2
CBA
∠C.
1
2
ACB
∠D.CDE

【答案】A
【解析】
【分析】
根据角平分线的性质以及三角形的外角性质可推导出DCE ∠与BAC ∠的关系.
【详解】
由题意知,ECD BDC 90∠∠=-︒
由三角形内角和定理得,BAC 180ABC ACB ∠∠∠=︒-+
DBC DCB 180BDC ∠∠∠+=︒-
∵点D 是ΔABC 三条内角平分线的交点
∴ABC 2DBC ∠∠= ACB 2DCB ∠∠=
()BAC 180ABC ACB ∠∠∠=︒-+
()1802DBC DCB ∠∠=︒-+
()1802180BDC ∠=︒-︒-
2BDC 180∠=-︒
1BAC BDC 902
∠∠=-︒ ∴1ECD BAC 2
∠∠=
故答案选A.
【点睛】
本题考查角平分线的性质以及三角形的外角性质.
15.已知非直角三角形ABC 中,∠A=45°,高BD 与CE 所在直线交于点H ,则∠BHC 的度数是()
A .45°
B .45° 或135°
C .45°或125°
D .135°
【答案】B
【解析】
【分析】
①△ABC 是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;
②△ABC 是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A ,从而得解.
【详解】
①如图1,
△ABC 是锐角三角形时,
∵BD 、CE 是△ABC 的高线,
∴∠ADB=90°,∠BEC=90°,
在△ABD 中,∵∠A=45°,
∴∠ABD=90°-45°=45°,
∴∠BHC=∠ABD+∠BEC=45°+90°=135°;
②如图2,△ABC 是钝角三角形时,
∵BD 、CE 是△ABC 的高线,
∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,
∵∠ACE=∠HCD (对顶角相等),
∴∠BHC=∠A=45°.
综上所述,∠BHC 的度数是135°或45°.
故选B.
【点睛】
本题主要考查了三角形的内角和定理,三角形的高线,难点在于要分△ABC 是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.
16.如图,把一张长方形纸条ABCD 沿EF 折叠,C 、D 两点落到'C 、'D 处.已知
20DAC ∠=,且''//C D AC ,则AEF ∠的度数为( )
A .20
B .35
C .50
D .70
【答案】B
【解析】
【分析】 依据C'D'//AC ,即可得到∠AHG=∠C′=90°,进而得出AGH 70∠=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,依据三角形外角性质得到1AEF GFE AGH 352∠∠∠===.
【详解】
如图,C'D'//AC ,

又DAC 20∠=,
AGH 70∠∴=,
由折叠可得,CFE GFE ∠∠=,
由AD//BC ,可得CFE GEF ∠∠=,
1AEF GFE AGH 352
∠∠∠∴===, 故选:B .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.
17.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )
A.65°B.70°C.75°D.80°
【答案】D
【解析】
【分析】
由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.
【详解】
解:∵AB∥CD,
∴∠C=∠1=45°,
∵∠3是△CDE的一个外角,
∴∠3=∠C+∠2=45°+35°=80°,
故选:D.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,
b∥c⇒a∥c.
18.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()
A.15°
B.20°
C.25°
D.30°
【答案】C
【解析】
根据角平分线的定义和三角形的外角的性质即可得到∠D=1
2
∠A.
解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,
∴∠1=1
2
∠ACE,∠2=
1
2
∠ABC,
又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,
∴∠D=1
2
∠A=25°.
故选C.
19.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()
A.75°B.135°C.120°D.105°
【答案】D
【解析】
如图,
根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.
故选
20.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD 交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为和,则下列说法不正确的是()
A.B.
C.D.
【答案】D
【解析】
【分析】
根据同底等高判断△ABD和△ACD的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.
【详解】
∵△ABD和△ACD同底等高,
,


△ABC和△DBC同底等高,


故A,B,C正确,D错误.
故选:D.
【点睛】
考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.。

相关文档
最新文档