湖北省武汉市武昌水果湖第一小学小升初数学试题解决问题培优解答应用题训练带答案解析1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省武汉市武昌水果湖第一小学小升初数学试题解决问题培优解答应用题训
练带答案解析1
一、人教六年级下册数学应用题
1.在数轴上表示出下列各数。

4 2.
5 -5
2.一架飞机顺风每小时飞行1500km,逆风每小时飞行1200km,燃油够飞9小时,飞机起飞时为顺风,飞机飞出多远就得往回飞?(用比例知识解答)
3.学校要修建一个圆柱形的水池,在比例尺是1:200的设计图纸上,水池的半径为3厘米,深为2厘米。

(1)按图施工,这个水池的实际应该挖多少米深?
(2)按图施工,这个水池的能装下多少立方米的水?
(3)为了加固和美观,施工时给水池底部和水池壁都铺了水泥,且平均厚度是10厘米,然后再用油漆将新铺水泥的表面粉刷一遍,请问粉刷部分的面积是多少平方米?(结果保留一位小数)
4.圆柱形的无盖水桶,底面直径30厘米,高50厘米。

(1)做这个水桶至少需要用多少平方分米的铁皮?(得数保留两位小数)
(2)如果在这个水桶中先倒入14.13升的水,再把几条鱼放入水中,这时量的桶内的水深是21厘米,这几条鱼的体积一共是多少?
5.爸爸想在网上买一个小家电,A店打八五折销售,B店每满200元减30元。

爸爸想买的电器两店标价均为380元。

(1)在A、B两个商店买各应付多少元?
(2)A、B两店的价格相差多少钱?
6.下面的图象表示斑马和长颈鹿的奔跑情况。

(1)长颈鹿的奔跑路程与奔跑时间是否成正比例关系,为什么?
(2)估计一下,两种动物18分钟各跑多少千米?
(3)从图象上看,斑马跑得快还是长颈鹿跑得快,为什么?
7.张华家有一只底面直径40厘米、深50厘米的圆柱形无盖水桶,这只水桶盛满了水,把水倒入长40厘米、宽30厘米、高50厘米的长方体玻璃鱼缸内,水会溢出吗?请用喜欢的方式解答,(水桶和鱼缸的厚度都忽略不计)
8.一个近似圆锥的,高2.4m,底面周长31.4m,每立方米沙重1.7吨,如果用一辆载重8吨的车运输,多少次可以运完?
9.某商品的成本为1500元,先按20%的成本利润定价,然后按八八折出售,这件商品出售后的利润是多少元?
10.王明正在读一本350页的故事书,读了5天,正好读了这本书的,照这样的速度,还要多少天才能读完这本书?(用比例解)
11.一根电线第一次用去与剩下的比是2:3,第二次用去28米,这是剩下与用去的比是1:3,这根电线全长多少米?
12.一辆压路机的前轮是圆柱形,轮宽1.5米,直径是1.2米,前轮转动100周,压路的面积是多少平方米?
13.为了测量一个空瓶子的容积,一个学习小组进行了如下实验。

①测量出整个瓶子的高度是22厘米;
②测量出瓶子圆柱形部分的内直径是6厘米;
③给瓶子里注入一些水,把瓶子正放时,测量出水的高度是5厘米;
④把瓶盖拧紧,将瓶子倒置放平,无水部分是圆柱形,测量出无水部分圆柱的高度是12厘米。

(1)要求这个瓶子的容积,上面记录中的哪些信息是必须有的?________(填实验序号)(2)请根据选出的信息,求出这个瓶子的容积。

14.一个圆柱形木桶,底面直径4分米,高6分米,这个木桶破损后(如图),最多能装多少升水?
15.如图是一个饮料瓶的示意图,饮料瓶的容积是625mL,里面装有一些饮料。

将这个瓶子正放时,饮料高10cm,倒放时,空余部分的高是2.5cm,求瓶内的饮料为多少mL?
16.一个正方体玻璃容器内盛有水,水面高度为12厘米,从内测出玻璃容器的棱长为20厘米。

在这个容器中竖直放入一个底面积为80平方厘米、高30厘米的圆柱形铁块,这时水面高度是多少厘米?
17.如下图,瓶底的面积和锥形杯口的面积相等,将瓶子中的液体倒入锥形杯子中,能倒满几杯?
小力:
假设瓶底的面积是100平方厘米,高是6厘米。

V圆柱=100×6×2=1200毫升
V圆锥=100×6× =200毫升
1200÷200=6杯
答:可以倒6杯。

笑笑:
V圆柱=sh×2=2sh
V圆锥= ×s×h= sh
V圆柱:V圆锥=2sh: sh=6:1
答:可以倒6杯。

小明:
等底等高的圆柱体积是圆锥体积的3倍。

3×2=6杯
答:可以倒6杯。

(1)三位同学的方法,你认为正确的在打√。

(2)你最喜欢()的解答方法,请用你喜欢的解答方法解决下面的问题。

乐乐说:“如果一个圆锥的体积和底面积都相等,那么圆锥的高是圆柱的高的3倍”乐乐的说法对吗?为什么?
18.把一个底面半径是2厘米的圆柱体,沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,(如图)已知拼成后长方体表面积比原来圆柱表面积增加了60平方厘米,这个长方体的体积是多少?
19.下图是甲、乙两辆汽车行驶的路程和时间的关系图。

(1)甲车的路程与时间________,乙车的路程和时间________。

A.成正比例
B.成反比例
C.不成比例
(2)若乙车按目前的平均速度继续行驶,能不能追上甲车?请说明理由。

20.“书籍是人类进步的阶梯”,为了提高学生的阅读量,六一班设置了班级图书角。

(1)图书角里有故事书和科技书共140本,其中故事书的本数是科技书的,图书角里的故事书和科技书各有多少本?
(2)为了扩充图书种类,李老师准备为班级图书角购买一套原价1000元的图书。

这套书在当当网可享受“每满200元减80元”的活动,在淘宝网可享“折上折”,即先打七折再打九折。

请你算一算,在哪个网上购书更优惠?
21.下图中A、B、C表示三个城市的车站位置。

根据图中的比例尺,求下列问题。

(1)先测量图上有关长度(精确到整厘米),再分别求出A站到B站、B站到C站的实际距离。

(2)甲、乙两车分别同时从A、C两站开出,甲车从A到B再到C要行5小时;乙车从C 到B再到A要行4小时。

照这样的速度,
①两车开出几小时后可以在途中相遇?
②在相遇前当乙车到达B站时,甲车还离B站多少千米?
③如果两车要在B站相遇,则乙车可以从C站迟开出多少小时?
22.工地上有一堆圆锥形三合土,底面周长为37.68m,高为5m。

用这堆三合土在15m宽的公路上铺4cm厚的路面,可以铺多少米?
23.聪聪每星期都去河南省图书馆读书。

(1)上图是聪聪家到图书馆线路图的一部分。

从家到二七广场的实际距离是2.2km,这幅图的比例尺是________。

(2)聪聪到达二七广场后向南偏西45°方向行走1.7km到达火车站,从火车站向正西方向行走3.3km到达绿城广场。

在图中标出火车站和绿城广场的位置。

(3)为了更快到达图书馆,聪聪打开手机导航,准备采用“骑行+地铁+步行”的方式去图书馆,如图所示。

如果骑行速度不变,请先把从绿城广场到图书馆骑行所需时间填在图中方框内,再算一算聪聪从家到省图书馆一共需要多长时间?
(4)聪聪在图书馆借到了《三体》第三册,计划每天看10页,需要看51夭才能全部看完。

①如果按原计划看书,需要交纳延时费多少钱?
②如果在规定期限内看完,每天至少需要看多少页?(用比例知识解决)
24.长沙造纸厂的生产情况如下表,根据表回答问题.
时间(天)1234567…
生产量(吨)70140210280350420490…

(2)根据表中的数据,写出一个比例________.
(3)表中相关联的两种量成________关系.
(4)在图中描出表示时间和相应生产量的点,并把它们按顺序连接起来.
(5)估计生产550吨纸片,大约需要________天(填整数).
25.如图,圆柱形(甲)瓶子中有2厘米深的水,长方体(乙)瓶子里水深6.28厘米,将乙瓶中的水全部倒入甲瓶,甲瓶的水深是多少厘米?
26.笑笑外婆家的圆柱形粮囤底面周长是6.28米,高是2米。

如果每立方米小麦重750千克,这个粮囤能装小麦多少千克?
27.长征饮料厂前3个月生产4800瓶沙果汁,照这样计算,今年可以生产多少瓶沙果汁?(用比例知识解答)
28.儿童服装商店“六·一”儿童节开展优惠活动,全场服装打八折,妈妈给小云买了一件原价200元的上衣和一条原价150元的裙子。

这套衣服比原价便宜了多少钱?
29.为了测量校园内一棵大树的高度,同学们将一根4米长的竹竿立在操场地面上,同时测得竹竿影长6米,大树影长30米。

大树高多少米?(用比例解答)
30.为了节约能源,国家鼓励大家购买新能源电动汽车和小排量汽车,特对车辆购置税作如下规定:
①新能源汽车免10%的车辆购置税;
②汽车排量1.6L以上的按汽车成交价格的10%征收;
③汽车排量1.6L及以下的按汽车成交价格的5%征收;
某汽车专卖店规定,购买汽车时如果分期付款需要加价7%,如果用现金一次性付款可享受九折优惠。

小明爸爸看中一辆原价20万元的1.8L排量汽车,准备一次性付款。

请你帮小明爸爸算一算:购买这辆汽车一共要花多少万元?
31.一只圆柱形汽油桶,内部底面直径是60厘米,高是1米。

现在桶内汽油占容积的,已知每升汽油重0.73千克,桶内汽油约重多少千克?(得数保留一位小数)
32.判断下面的两个量成正比例、反比例还是不成比例。

(1)圆的周长和半径。

()
(2)圆的面积和半径。

()
(3)正方形的周长和边长。

()
(4)圆柱的侧面积一定,圆柱的高和底面的半径。

()
(5)一个自然数和它的倒数。

()
(6)比例尺一定,图上距离和实际距离。

()
33.新民小区有个圆柱形喷泉池,喷泉池底面半径10米,深0.8米。

(1)这个喷泉池的容积是多少立方米?
(2)喷泉池的侧面与底面粉刷了水泥,粉刷水泥的面积是多少平方米?
34.一个圆柱形的游泳池,底面直径是10米,高是4米,在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少干克水泥?
35.下面是学校平面图的一部分,其中地下有一根水管经过A点,并与图中的下水道平行。

(1)请在图中画一条直线用来表示这根水管。

(2)图中A点有一个水龙头,现在要从此处挖一条排水沟连接到下水道,应怎样挖才能使其长度最短?(请在图中画一条线段用来表示排水沟)
(3)请你量一量,算一算,你设计的这条排水沟的实际长度是多少米?
36.在一张长方形彩纸上摆满小正方形,每个小正方形面积与所需小正方形的数量如下表:
每个小正方形的面积/cm24916
所需小正方形的数量/个2169654
________比例关系。

(2)如果采用面积是36m2的小正方形来摆满这张长方形彩纸,需要多少个小正方形?(用比例方法解答)
37.以小强家为观测点,量一量,填一填,画一画。

(1)新城大桥在小强家________方向上________m处。

(2)火车站在小强家________偏________(________)°方向上________m处。

(3)电影院在小强家正南方向上1500m处。

请在图中标出电影院的位置。

(4)商店在小强家北偏西45°方向上2000m处。

请在图中标出商店的位置。

38.装订一批练习本,如果每本用纸24页,可以装订250本;如果每本用纸30页,可以装订多少本?(用比例知识解答)
39.
(1)在上面方格图中,梯形的面积是________。

(每个方格的边长表示1cm)
(2)将这个梯形向右平移8格并用铅笔涂上颜色。

(3)用数对表示图中三角形直角顶点的位置是(,),画出三角形按1:2缩小后的图形,并涂上颜色。

40.北京到广州的实际距离大约是1920km,在一幅地图上量得这两地的距离是10cm。

这幅地图的比例尺是多少?
41.一个圆柱形水池,水池内壁和底部都镶上瓷砖,水池内部底面周长50.24米,池深1.5米,镶瓷砖的面积是多少平方米?
42.水泥柱的长度是12米,底面半径是2.5米,求水泥柱的表面积是多少平方米?
43.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?
44.修建一个圆柱形的沼气池,底面直径是3m,深2m.在池的内壁与下底面抹上水泥,抹水泥部分的面积是多少平方米?
45.按要求作图或填空。

(1)请你自己选定一个比,把图形A缩小后得到图形B,并画出来。

(2)你选定的比是________,缩小后的三角形面积是________。

46.一家饮料生厂商生产一种饮料,采用圆柱形易拉罐包装,从易拉罐的外面量,底面直径是6厘米,高是10厘米,在易拉罐的侧面有“净含量:320毫升”的字样,请问这家生产商是否欺骗了消费者?(请通过计算说明问题)
47.做5节相同的圆柱形通风管,通风管的底面直径是50厘米,长1.2米。

做这些通风管至少需要多少平方米铁皮?(得数保留整数)
48.某食品厂包装一批水果糖,如果每袋装250克,需120袋才能装完。

现在要求每袋装500克,需要多少袋可以装完?
49.某城市,医院在学校的正南方向500米处,电影院在医院的北偏东60°方向1000米处,请用1:20000的比例尺将医院和电影院的位置画在下面,并求出学校到电影院大约有多少米。

50.妈妈把10000元存入银行,存期为3年定期,年利率为3.57%,到期时妈妈能够拿到本金和利息一共多少元?
【参考答案】***试卷处理标记,请不要删除
一、人教六年级下册数学应用题
1.
【解析】【分析】先在数轴上标出一个单位长度表示的数,再在数轴上找到四个数对应的点,把这四个数写在点的上面。

2.解:设飞机飞出去x小时就得往回返。

1500x=1200×( 9 -x)
1500x=10800-1200x
1500x+1200x=10800
2700x=10800
x=10800÷2700
x=4
1500×4 =6000 (千米)
答:飞机飞出6000千米远就得往回飞。

【解析】【分析】设飞机飞出去x小时就得往回返。

往返的路程是不变的,速度和时间成反比例,顺风速度×飞出去时间=逆风速度×返回时间,根据关系列出比例,解比例求出飞机飞出的时间,进而求出飞出的路程即可。

3.(1)解:2÷ =400(厘米)=4(米)
答:这个水池实际应该挖4米深。

(2)解:r=3÷ =600(厘米)=6(米)
V = 3.14×6²×4=452.16(立方米)
答:这个水池能装下452.16立方米的水。

(3)解:10cm=0.1m
r=6-0.1=5.9(米), h=4-0.1=3.9(米)
3.14×5.9×2×3.9+3.14×5.9×5.9
=3.14×46.02+3.14×34.81
=3.14×80.83
≈253.8(平方米)
答:粉刷部分的面积是253.8平方米。

【解析】【分析】(1)用图上距离除以比例尺即可求出实际距离,然后换算成米即可;(2)先求出实际的半径长度,然后用底面积乘高求出能装下水的体积即可;
(3)先把10cm换算成0.1m,则实际的半径长度减少了0.1m,实际高度减少了0.1米,先计算出实际半径和实际高度。

然后用底面积加上侧面积即可求出需要粉刷部分的面积。

4.(1)解:30厘米=3分米,50厘米=5分米
(3÷2)2×3.14+3×3.14×5=54.165≈54.17(平方分米)
答:做这个水桶至少需要用54.17平方分米的铁皮。

(2)解:14.13÷(3÷2)2÷3.14=2(分米)
21厘米=2.1分米
2.1-2=0.1(分米)
(3÷2)2×3.14×0.1=0.7065(立方分米)
答:这几条鱼的体积一共是0.7065立方分米。

【解析】【分析】(1)先把单位进行换算,即30厘米=3分米,50厘米=5分米,那么做这个水桶至少需要铁皮的平方分米数=侧面积+底面积,其中底面积=π×(直径÷2)2,侧面积=πdh;
(2)倒入水后水的高度=水的容积÷π÷(直径÷2)2,那么这几条鱼的体积=水面身高的高度×π×(直径÷2)2。

5.(1)解:A:380×85%=323(元)
B:380÷200=1(个)……180(元)380-30×1=350(元)
答:在A商店买应付323元,在B商店买应付350元.
(2)解:350-323=27(元)
答:A、B两店的价格相差27元。

【解析】【分析】(1)根据题意可知,A店商品应付:标价×折扣=应付的钱数;B店商品应付:每满200减30元,则购买这件商品可以便宜30元;
(2)要求A、B两店的价格相差多少钱?用减法计算,据此列式解答。

6.(1)解:20:25=0.8,4:5=0.8
答:长颈鹿的奔跑路程与奔跑时间成正比例关系,因为奔跑路程与奔跑时间的比值一定。

(2)解:估计长颈鹿18分钟跑14千米,斑马18分钟跑22千米。

(3)解:从图像上看,斑马跑得快,因为同样跑24千米,斑马用20分钟,长颈鹿用30分钟。

【解析】【分析】(1)写出长颈鹿奔跑的路程与时间的比,看比值是否相等,如果比值相等,二者就成正比例关系;
(2)先找出18分钟的时间,然后找出18分钟对应的路程即可确定二者各跑多少千米;(3)路程相同,谁用时少谁就跑得快。

7.解:水的体积=3.14×(40÷2)2×50
=3.14×400×50
=62800(立方厘米)
鱼缸体积=40×30×50=60000(立方厘米)
因为62800>60000,所以水会溢出。

【解析】【分析】圆柱的体积=π×底面半径的平方×高,长方体的体积=长×宽×高,代入数值分别计算出体积,再将两个数值进行比较即可得出答案。

8.解:×3.14×(31.4÷3.14÷2)2×2.4×1.7÷8
=×3.14×25×2.4×1.7÷8
=62.8×1.7÷8
=106.76÷8
=13(次)……2.76(吨)
所以需要13+1=14(次)。

答:如果用一辆载重8吨的车运输,14次可以运完。

【解析】【分析】圆锥的体积=×π×底面半径(底面周长÷π÷2)的平方×圆锥的高,再用圆锥的体积×每立方米沙重的吨数求出沙的总吨数,最后用沙的总吨数÷每辆车载沙的吨数,若商为整数则商为总共运送的次数;若有余数,则商+1为总共运送的吨数。

9.解:1500×(1+20%)×88%-1500
=1500×1.2×0.88-1500
=1800×0.88-1500
=1584-1500
=84(元)
答:这件商品出售后的利润是84元。

【解析】【分析】打几折,即按原价的十分之几、百分之几十出售。

本题中先用成本×(1+利润百分数)计算出定价,再用定价×折扣,最后减去成本即可得出获得的利润。

10.解:设还要x天才能读完这本书。

=
100×(5+x)=1750
500+100x=1750
100x=1250
x=
答:还要天才能读完这本书。

【解析】【分析】本题可以设还要x天才能读完这本书,那么题中存在的比例关系是:这本书的总页数:这本书一共读的天数=已经读的页数÷已经读了的天数,据此代入数据和字母作答即可。

11.解:设这根电线全长x米,由题意,得:
( x﹣28):( x+28)=1:3
由比例的性质,得:
x+28=( x﹣28)×3
x=28×4
x=4×4×5
x=80
答:这根电线全长80米。

【解析】【分析】这根电线全长x米,第一次用去x米,剩下x米,第二次用去28米后
剩下(x-28)米,两次一共用去了(x+28)米;
剩下与用去的比是1:3,据此写比例,根据比例的性质和等式性质解比例。

12.解:3.14×1.2×1.5×100
=314×1.8
=565.2(平方米)
答:压路的面积是565.2平方米。

【解析】【分析】压路的面积=圆柱的侧面积×前轮转动周数,圆柱的侧面积=π×直径×轮宽。

13.(1)②③④
(2)3.14×()2×(5+12)
=28.26×17
=480.42(立方厘米)
=480.42(ml)
答:这个瓶子的容积为480.42ml。

【解析】【分析】(1)因为要求的是瓶子的容积,而瓶子上面部分不是圆柱体部分,所以不需要直到整个瓶子的高度,而剩下的几个条件都需要;
(2)瓶子的容积=πr2×(正放水的高度+倒放无水部分的高度),据此代入数据作答即可。

14.解:水的高度为:6﹣1=5(dm)
底面积为:3.14×(4÷2)2=3.14×4=12.56(dm2)
水的体积为:12.56×5=62.8(dm3)
62.8dm3=62.8L
答:最多能装62.8升水。

【解析】【分析】用木桶的高度减去1分米即可求出能装水的高度,用木桶的底面积乘装水的高度即可求出最多能装水的体积,然后换算成升即可。

15.解:625mL=625cm3
625÷(10+2.5)×10
=625÷12.5×10
=50×10
=500(cm3)
500cm3=500mL
答:瓶内的饮料为500mL.
【解析】【分析】饮料体积=底面积×高,底面积=瓶子的体积÷(10+2.5)。

16.解:20×20×12÷(20×20-80)
=4800÷320
=15(厘米)
答:水面高度是15厘米。

【解析】【分析】放入圆柱形铁块后水的底面积就容器的底面积减去铁块的底面积,用水的体积除以放入铁块后水的底面积即可求出此时水面的高度。

17.(1)解:
(2)解:我最喜欢笑笑的解答方法。

答:乐乐的说法是对的。

h圆柱=V÷s=, h圆锥=3V÷s=, h圆锥:h圆柱=:=3:1
【解析】【分析】(1)小力用假设法,分别求出圆柱和圆锥的容积,再比较,方法正确;笑笑用公式推导法,方法正确;小明的方法高度概括,等底等高的圆柱体积是圆锥体积的3倍,这样的2个圆柱就是圆锥体积的6倍,方法正确。

(2)答案不唯一,合理即可。

18.解:圆柱的高=60÷2÷2=15(厘米)
长方体的长=3.14×2=6.28(厘米)
长方体的宽=2厘米,长方体的宽=圆柱的高=15厘米,
所以长方体的体积=6.28×2×15
=12.56×15
=188.4(立方厘米)
答:这个长方体的体积是188.4立方厘米。

【解析】【分析】圆柱沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,表面积增加的是2个圆柱的底面半径×圆柱的高的长方形,代入数值即可计算出圆柱的高,这个长方形的长为圆柱底面周长的一半即π×半径,长方体的宽为圆柱底面半径,长方体的高为圆柱的高,最后根据长方体的体积=长×宽×高,计算即可得出答案。

19.(1)A;C
(2)解:420÷6=70(千米/小时)
70<80
所以,按照目前的平均速度,乙车不能追上甲车。

【解析】【解答】(1)240÷3=80(千米/小时)
480÷6=80(千米/小时)
因为甲车的路程与时间的比值是定值,所以,甲车的路程与时间程正比例。

120÷1=120(千米/小时)
(180-120)÷(4-1)
=60÷3
=20(千米/小时)
(420-180)÷(6-4)
=240÷2
=120(千米/小时)
因为乙车的路程与时间的比值不是定值,所以,乙车的路程与时间不成比例。

故答案为:(1)A;C。

【分析】(1)两个量的比值是定值,则两个量成正比例,据此判断即可。

(2)乙车的平均速度=总路程÷总时间,甲车的速度=路程÷时间,代入数值计算,并比较两车的速度即可判断。

20.(1)解:科技书本数:
140÷(1+)
=140÷
=80(本)
故事书本数:140-80=60(本)
答:图书角里的故事书有60本,科技书有80本。

(2)解:当当网:1000-1000÷200×80
=1000-400
=600(元)
淘宝:1000×70%×90%
=700×90%
=630(元)
答:在当当网上购书更优惠。

【解析】【分析】(1)以科技书本数为单位“1”,故事书和科技书的总数是科技书的
(1+),根据分数除法的意义,用故事书和科技书的总数除以占科技书的分率即可求出科技书本数,进而求出故事书本数;
(2)当当网:先确定1000元里面有几个200元,就是减少几个80元,这样计算出总价;淘宝:用原价乘70%,再乘90%即可求出折后价格。

比较后确定哪个网上更优惠即可。

21.(1)A站到B站的图上距离是3厘米,B站到C站的图上距离是2厘米。

3÷=15000000(厘米)=150(千米)
2÷=10000000(厘米)=100(千米)
答:A站到B站的实际距离是150千米,B站到C站的实际距离是100千米。

(2)解:甲车速度:250÷5=50(千米)
乙车速度:250÷4=62.5(千米)
①250÷(50+62.5)=250÷112.5=(时)
答:两车开出小时后可以在途中相遇。

②100÷62.5=1.6(时)
150-50×1.6=70(千米)
答:甲车还离B站70千米。

③150÷50=3(小时)
(62.5×3-100)÷62.5=1.4(小时)
答:乙车可以从C站迟开出1.4小时。

【解析】【分析】(1)实际距离=图上距离÷比例尺,然后进行单位换算,即1千米=100000厘米;
(2)甲车的速度=从A到B再到C的距离÷甲车从A到B再到C要行的时间,乙车的速度=从A到B再到C的距离÷乙车从C到B再到A要行的时间;
①两车相遇需要的时间=从A到B再到C的距离÷两车的速度和;
②当乙车到达B站用的时间=从C到B的距离÷乙车的速度,所以甲车还离B站的距离=从A到B的距离-甲车的速度×当乙车到达B站用的时间;
③甲车到达B站用的时间=从A到B的距离÷甲车的速度,那么乙车可以从C站迟开出的时间=(乙车的速度×甲车到达B站用的时间-从C到B的距离)÷乙车的速度。

22.解:圆锥的底面半径=37.68÷3.14÷2
=12÷2
=6(米)
圆锥的体积=3.14×62×5×
=3.14×36×5×
=113.04×5×
=565.2×
=188.4(立方米)
可以铺的长度=188.4÷15÷(4÷100)
=12.56÷0.04
=314(米)
答:可以铺314米。

【解析】【分析】圆锥的底面周长=π×底面半径×2,即可得出圆锥的底面半径=圆锥底面周
长÷π÷2;圆锥的体积=π×圆锥的底面半径的平方×圆锥的高×计算出土堆的体积,接下来根据长方体的长=土堆的体积÷长方体的宽÷长方体的高(铺土的厚度,注意单位化成m),计算即可得出答案。

23.(1)1:100000
(2)
(3)解:10×1.1÷2.2=5(分钟)
10+1+7+2+5
=25(分钟)
答:聪聪从家到省图书馆一共需要25分钟。

(4)解:①(51-30)×0.1=2.1(元)
答:需要交纳延时费2.1元。

②解:设每天至少需要看x页。

30x=10×51
x=17
答:每天至少需要看17页。

【解析】【解答】(1)量出图上距离为 2.2厘米,2.2千米=220000厘米,2.2:220000=1:100000,答:这幅图的比例尺是1:100000。

【分析】(1)比例尺=图上距离:实际距离;
(2)图上距离=实际距离×比例尺,观察图可知,图中是按“上北下南,左西右东”来确定方向的;以二七广场为观测点,由方向、角度、距离三要素确定火车站的具体位置。

然后以火车站为观测点,由方向、角度、距离三要素确定绿城广场的具体位置。

(3)由骑行速度不变,可得骑行路程与时间成正比例,据此求出
;从家到省图书馆一共需要时间=各段所需时间之和;
(4)需要交纳延时费多少钱=(总天数-免费天数)×超时后每天延时费;30×每天所看页数=计划天数×原计划每天所看页数,据此列出方程解答即可。

24.(1)时间;生产量
(2)1:70=2:140(答案不唯一)
(3)正
(4)
(5)8
【解析】【解答】解:(1)表中相关联的量是时间和生产量;
(2)根据表中的数据,写出一个比例是:1:70=2:140;
(3)表中相关联的两种量成正比例;
(5)估计生产550吨纸片,大约需要8天。

故答案为:(1)时间;生产量;(2)1:70=2:140(答案不唯一);(3)正;(5)8。

【分析】(1)表格中变化的两个量就是相关联的两个量;
(2)根据表格中相对应的数据写出两个比值相等的比并组成比例即可;
(3)两个相关联的量的比值一定,二者成正比例关系;
(4)根据每组对应的数据描出对应的点,然后顺次连接各点成线即可;
(5)根据每天的生产量估计出生产550吨纸片大约需要的天数。

25.解:乙瓶中水的体积:10×10×6.28=100×6.28=628(立方厘米)
将乙瓶中的水全部倒入甲瓶,甲瓶增加的深度:628÷【3.14×(10÷2)²】
=628÷78.5
=8(厘米)
将乙瓶中的水全部倒入甲瓶,甲瓶水的总高度:2+8=10(厘米)
答:将乙瓶中的水全部倒入甲瓶,甲瓶的水深是10厘米。

【解析】【分析】此题属于典型的“等积变形”问题,用“长方体(乙)瓶中水的体积÷圆柱形(甲)瓶的底面积”求出甲瓶增加的深度,再用“原来的深度+增加的深度=总深度”,列式解答即可。

26.解:6.28÷3.14÷2=1(m)
3.14×12×2=6.28(m3)
6.28×750=4710(kg)
答:这个粮囤能装小麦4710千克。

【解析】【分析】r=C÷π÷2,圆柱的体积V=πr2h,因为每立方米小麦重750千克,那么6.28m3就可以装6.28个750,即(6.28×750)千克的小麦。

27.解:设今年可以生产x瓶沙果汁,
x:12=4800:3
3x=4800×12
3x=57600
3x÷3=57600÷3
x=19200
答:今年可以生产19200瓶沙果汁。

【解析】【分析】此题主要考查了列比例解决问题,每个月生产的沙果汁瓶数一定,生产的总瓶数与生产的时间成正比例,设今年可以生产x瓶沙果汁,一年生产的瓶数:12个月=3个月生产的瓶数:3个月,据此列比例解答。

28.解:(200+150)×(1-80%)
=350×0.2
= 70(元)
或 200+150 -(200+150)×80%
=350-350×0.8
=350-280
=70(元)
答:这套衣服比原价便宜了70元。

【解析】【分析】打几折就是按照原价的十分之几或百分之几十出售,本题中这套衣服比原价便宜的钱数=上衣和裤子的原价之和乘以(1-折扣数)或上衣和裤子的原价之和-上衣和裤子的原价之和×折扣数,代入数值计算即可。

29.解:设大树高x米,则有:
4:6=x:30
6x=4×30
x=4×30÷6。

相关文档
最新文档