第3章+基于遗传算法的随机优化搜索
人工智能导论课程介绍(蓝)
考核方式与成绩评定
本课程的考核性质为考查,考核方式为平时考查与 期末书面考试相结合,其中平时考查包括课堂表现、课外 作业和上机实验。成绩评定的计算公式为:
平时成绩×30% + 期末考试成绩×70% = 最终成绩
平时成绩= 1×表现成绩+ 1 ×作业成绩+ 1×实验成绩
3
3
பைடு நூலகம்
3
人工智能导论
课程介绍
西安石油大学计算机学院
课程简介
适用专业:计算机科学与技术、软件工程
学 时:46 学分:2.5 实验学时:8 内容提要: 本课程介绍人工智能的基本原理和基本技术
及其应用。内容包括:人工智能概述、人工智能 程序设计语言、搜索与问题求解、知识表示与推 理、机器学习与知识发现、专家系统、Agent系 统和智能化网络。 教 材:《人工智能技术导论》(第三版),廉师友编
二课程教学内容与学时分配第一章人工智能概述2学时第二章逻辑程序设计语言prolog4学时第三章基于图搜索的问题求解6学时第四章基于遗传算法的随机优化搜索2学时第五章知识表示与推理10学时第六章机器学习与知识发现6学时第七章专家系统4学时第八章agent系统2学时第九章智能化网络2学时上机实验小型专家系统设计与实现8学时三课程教学的基本要求1
著,西安电子科技大学出版社,2007。
教材类别:“十一五”国家级规划教材
教学大纲 一、课程的性质和目的
人工智能是计算机科学与技术的一个前沿学科,它也 是一个综合性的交叉学科。《人工智能导论》为计算机科 学技术专业和软件工程专业的一门任选课,其目的是使学 生初步了解人工智能的基本原理,初步学习和掌握人工智 能的基本技术,以便拓宽知识面,并为进一步学习和应用 奠定基础。
本科毕业论文-基于遗传算法的测试用例生成方法【精品毕业设计】(完整版)
摘要软件测试是保证软件质量和可靠性重要手段,在这方面发挥着其它方法不可替代的作用。
然而,软件测试是一个复杂的过程,需要耗费巨大的人力、物力和时间,约占整个软件开发成本的40%~50%。
因此,提高软件测试工具的自动化程度对于确保软件开发质量、降低软件开发成本非常重要。
而提高测试用例生成的自动化程度又是提高测试工具乃至整个测试过程自动化程度的关键所在,本文主要针对这一问题进行了研究和设计。
本文在分析软件测试和遗传算法基本概念的基础上,提出软件测试用例的设计是软件测试的难点之一。
论文提出了基于遗传算法的测试用例生成的内含是应用遗传算法来求解一组优化的测试用例,其框架包括了测试环境构造、遗传算法及测试运行环境三部分,论文给出了基于遗传算法的测试用例生成的模型。
最后以三角形分类程序为例应用遗传算法进行测试用例生成的模拟,结果显示,应用遗传算法进行测试用例生成可行。
关键词:软件测试测试用例遗传算法ABSTRACTSoftware test is the important means that guarantee software quality and reliability,and in this respect,it plays the role that other method cannot replace. However software test is a complex process , it needs to consume huge manpower,material resources and time,which takes the 40%~50% of entire software development cost approximately . Therefore,raising the automation level of software test tool is very important for ensure software development quality and reduction software development cost . And then,the most important is raising the automation level of the test case generation for raising the automation level of test tool and even entire test process,so this paper study and design mainly according to this problem.Based on the analysis of basic concepts of software testing and genetic algorithm, this article proposes that software test case design is one of the difficulties of software testing. Paper presents the inherent in software test case designing based on genetic algorithm is using genetic algorithm to solve a set of optimization test cases, and the framework includes three parts which are test environment construction, genetic algorithm and the environment for test . Paper presents the model of software test case generation based on genetic algorithm. Finally, we take the triangle categorizer as an example, simulate software test case generation based on genetic algorithm. The results display that software test case generation basing on genetic algorithm is possible.KEY WORDS: software test , test case , genetic algorithm目录摘要 (1)ABSTRACT (2)目录 (3)第一章绪论 (5)1.1 问题的提出 (5)1.2 国内外研究现状 (6)1.3 论文研究内容 (8)第二章软件测试及遗传算法基本概念 (9)2.1 软件测试基本概念 (9)2.1.1 软件测试的目的 (9)2.1.2 软件测试的原则 (9)2.2 软件测试的难点 (10)2.3 遗传算法 (11)2.3.1 遗传算法的思想及流程 (11)2.3.2 遗传算法的特点 (13)2.4本章小结 (14)第三章基于遗传算法的测试用例生成 (15)3.1基于遗传算法的测试用例生成基本内涵 (15)3.1.1 软件测试用例的基本内涵 (15)3.1.2 基于遗传算法的测试用例生成的基本内涵 (16)3.2 基于遗传算法的测试用例生成框架 (16)3.3 基于遗传算法的测试用例生成算法实现 (18)3.3.1 编码策略 (18)3.3.2 适应度函数及程序插桩 (19)3.3.3 遗传策略 (20)3.3.4 参数控制 (21)3.4 本章小结 (22)第四章实验及结果分析 (23)4.1 待测程序分析 (23)4.1.1 待测程序引入 (23)4.1.2 程序流程分析 (23)4.1.3 路径分析 (24)4.2 程序插桩 (24)4.3 参数设定及程序实现 (25)4.3.1 参数设定 (25)4.3.2 部分程序实现 (26)4.4 结果分析 (28)4.5 本章小结 (30)第五章总结与展望 (31)致谢语 (32)参考文献 (33)第一章绪论1.1 问题的提出在信息化普及的今天,计算机在人们的生活和工作中占据着重要地位,使人们的工作效率提高,也使生活更丰富多彩。
基于遗传算法的优化设计在机械工程中的应用
基于遗传算法的优化设计在机械工程中的应用在现代机械工程领域,为了提高产品的性能和效率,优化设计已经成为一项关键的技术。
而基于遗传算法的优化设计正是其中一种重要的方法。
本文将介绍遗传算法的原理与特点,并从实际应用案例出发,探讨其在机械工程中的实际应用。
一、遗传算法原理与特点遗传算法是一种模拟自然进化过程的优化算法。
它模拟了生物进化中的遗传、变异和选择等过程,通过不断的迭代求解最佳解。
遗传算法的求解过程主要包括编码、适应度评价、选择、交叉和变异等步骤。
在遗传算法中,个体的编码通常使用二进制编码或实数编码。
通过适应度评价,我们可以将个体的优劣转化为数值,以便进行选择操作。
选择操作中,根据适应度的大小,优秀的个体被选中用于进化。
而交叉和变异操作则可以使得新一代的个体具有更好的性状和优势基因。
通过多代的迭代,遗传算法可以逐渐寻找到优化目标的最佳解。
遗传算法具有以下特点:首先,遗传算法适用于多目标优化问题,例如同时考虑产品性能和成本的设计问题。
其次,遗传算法具有全局搜索能力,不容易陷入局部最优解。
再次,遗传算法的自适应性能较好,可以根据问题的复杂度和实际需求进行调节。
最后,遗传算法的并行性较强,可以利用计算机并行计算的优势加速求解过程。
二、遗传算法在机械工程中的应用1. 产品结构优化设计在机械工程中,产品结构的优化设计是一项重要任务。
通过遗传算法,我们可以将产品结构的各个参数进行编码,并通过不断的进化,找到最优的设计方案。
例如,在飞机设计中,通过遗传算法可以优化机翼的形状和结构,提高飞行性能和燃油效率。
2. 工艺参数优化机械工程中的工艺参数优化也是一个复杂且具有挑战性的问题。
例如,在喷涂工艺设计中,优化涂层材料的组成和喷涂参数可以提高涂层的附着力和耐磨性。
通过遗传算法,可以找到最佳的工艺参数组合,从而提高工艺的效率和质量。
3. 机构设计优化机构设计是机械工程中的一个重要环节。
通过优化机构的参数和结构,可以提高机构的运动精度和效率。
基于遗传算法的多目标优化问题求解研究
基于遗传算法的多目标优化问题求解研究概述:多目标优化问题是现实生活中广泛存在的一类问题,对于这类问题求解难度较大,并且往往没有一个唯一的最优解。
基于遗传算法的多目标优化问题求解研究成为了一个研究热点。
本文将研究基于遗传算法的多目标优化问题求解方法。
引言:遗传算法是一种模仿生物进化过程的搜索算法,已经被广泛应用于多目标优化问题的求解中。
多目标优化问题是指在多个冲突的目标函数下,寻求一组最优解来平衡各个目标之间的权衡。
如何有效地利用遗传算法解决多目标优化问题成为了一个研究热点。
方法:基于遗传算法的多目标优化问题求解方法包括以下关键步骤:1. 建立适应度函数:在多目标优化问题中,适应度函数是非常重要的。
适应度函数用于评估每个个体的优劣程度,可通过目标函数的加权求和、Pareto支配关系等方式进行定义。
适应度函数的设计需要兼顾多个目标之间的权衡,并且在求解过程中需要根据具体问题进行调整。
2. 选择操作:选择操作是遗传算法的核心步骤之一,用于选择适应度较好的个体作为父代。
常用的选择算子包括轮盘赌选择、锦标赛选择等。
选择算子的设计需要考虑到多目标优化问题的特性,既要兼顾个体的适应度值,又要保持种群的多样性。
3. 交叉操作:交叉操作是指将已选择的个体进行染色体交叉,产生新的个体。
在多目标优化问题中,交叉操作需要保持新生成个体的性状与父代个体之间的关联,并且需要在多个目标之间进行权衡。
常用的交叉算子包括单点交叉、多点交叉、均匀交叉等。
4. 变异操作:变异操作是指对某些个体进行基因位点的变异,增加种群的多样性。
在多目标优化问题中,变异操作需要兼顾多个目标之间的权衡。
常用的变异算子包括单点变异、多点变异、非一致变异等。
5. 停止准则:停止准则用于判断遗传算法是否达到了终止条件。
在多目标优化问题中,停止准则的设计需要考虑到多个目标之间的权衡以及算法的收敛性。
常用的停止准则包括达到最大迭代次数、满足一定收敛条件等。
应用:基于遗传算法的多目标优化问题求解方法已经被广泛应用于各个领域。
随机优化算法的原理及应用
随机优化算法的原理及应用随机算法是现代计算机科学中非常重要的一类算法,它通过随机性的引入与运用,来解决某些计算复杂度较高或解法不是很显然的问题。
其中,随机优化算法是一种非常经典的随机算法,它通过对搜索空间进行随机搜索和优化,来寻找问题的最优解或次优解。
这种算法因为效率高、便于实现、适用范围广泛,而在众多领域中被广泛应用。
随机优化算法的基本原理随机优化算法是一种基于概率模型的搜索算法,它不依靠具体的解析式或算法,而是通过随机修改问题的解,不断在解空间中“寻找”最优解。
因此,随机优化算法也被称为基于搜索的全局优化算法。
这种算法的具体实现方式主要有以下几种:随机重启优化算法随机重启算法是一种基于多重随机搜索的算法,它通过无数次随机重启,来搜索解的“临界区域”,更容易发现最优解,尤其是对于凸问题。
此算法的基本思路是在一定规定的时间内,多次随机生成解并计算其质量值,最后选出其中的最优解。
而随后,它又可以在新的一个搜索空间内,进行一开始相同的操作,直到找到最优解或时间用完为止。
模拟退火算法模拟退火算法是另外一种基于随机搜索的算法。
它通过模拟实际温度的变化,模拟系统的状态变量,来寻找全局最优解。
此算法的核心思路在于通过温度指数的不断变化,来跳出算法陷入的局部最小值,尤其是对于非凸问题。
此算法常用于最优化问题的求解,尤其是当问题的解空间比较大或需要多目标优化时。
遗传算法遗传算法是一种基于自然界遗传数据的随机优化算法,它能够模拟生物进化过程中的基因变异,交叉和选择等过程,来优化问题的解。
此算法的基本思路是依靠个体的变异和“交配配对”,来产生更有利的基因群体,在群体的不断迭代中最终得到一个最优解。
此算法适用于一些复杂的、多维度优化的问题,例如参数调节、图像处理等。
应用案例1. 电子商务推荐系统推荐系统是如今电子商务网站中的重要组成部分,它可以提高购物效率,为用户提供更符合其需求的商品和优惠信息,产生更多交易额。
随机优化算法在推荐系统中的应用,主要用于个性化推荐,即针对用户的个人喜好和购买记录,提供更具针对性的推荐。
基于遗传算法的最优化问题求解研究
基于遗传算法的最优化问题求解研究随着计算机技术的不断发展和应用领域的不断拓展,最优化问题求解一直是一个备受关注和研究的领域。
在实际应用中,最优化问题求解可以帮助我们提高资源利用率、优化生产流程、提升经济效益等等。
而遗传算法作为一种强大的优化算法,在最优化问题求解中得到了广泛的应用。
一、遗传算法的基本原理和流程在介绍基于遗传算法的最优化问题求解前,我们需要先了解一下遗传算法的基本原理和流程。
遗传算法是一种模拟自然选择和自然遗传机制进行优化的算法。
其基本流程如下:1. 初始化种群:随机生成一定数量的初始个体,使用随机数生成器产生一组随机数来设置初始基因型。
2. 个体评价:将每个个体的基因型转换成表现型,并通过评价函数获得每个个体的适应度值。
3. 选择操作:根据适应度值选择优秀的个体,并对其进行遗传操作,如交叉、变异等。
4. 交叉操作:按一定的概率对被选择的个体进行交叉操作,将其基因片段互换。
5. 变异操作:按一定的概率对交叉后的个体进行变异操作,将其基因中的某些位点进行改变。
6. 新种群生成:经过一定数量的选择、交叉和变异操作后,产生新的一代种群。
7. 结束判断:对新种群的适应度进行评价,判断是否满足结束条件。
如果不满足,则回到第三步,继续进行选择、交叉和变异操作。
二、最优化问题求解的应用基于遗传算法的最优化问题求解可以应用于众多领域,如工程优化设计、金融投资决策、物流优化、人工智能等等。
工程优化设计方面,可以通过遗传算法对设计参数进行搜索和优化,降低成本并提高生产效率。
比如在某个水力发电站的设计中,可以使用遗传算法对机组的优化性能进行设计,提高电能利用率,降低发电成本。
金融投资决策方面,可以利用遗传算法对投资组合进行优化,并选择合适的投资策略。
在股票投资中,可以利用遗传算法对市场行情进行预测和分析,帮助投资者制定正确的投资策略。
物流优化方面,可以通过遗传算法对运输路径进行优化调整,减少成本,并提高运输效率。
基于遗传算法的多目标优化问题求解
基于遗传算法的多目标优化问题求解随着现代科技的飞速发展和生产制造业与服务业的日益繁荣,多目标优化问题已成为了一个重要的研究方向。
多目标优化问题指的是需要在同时优化多个目标指标的情况下进行决策的问题,例如在生产制造业中需要同时考虑成本和质量等多个指标。
解决这种问题的有效手段便是遗传算法,本文将介绍基于遗传算法的多目标优化问题求解。
一、遗传算法的核心思想遗传算法是一种模拟遗传学和自然选择过程的优化方法,其核心思想是通过模拟“基因”的遗传变异和自然选择过程来寻找问题的最优解。
遗传算法的具体实现过程主要包括以下几个步骤:1. 初始化种群:遗传算法需要初始化一个种群来表示问题的解集合,一般采用随机生成的方式进行初始化。
2. 选择操作:通过“适者生存”的原则,在种群中选择若干个较为适应的个体,作为下一代种群的父母。
3. 变异操作:对父母进行个体基因的随机变异,以增加种群的遗传多样性。
4. 交叉操作:采用不同的交叉方式将父母基因进行组合,生成新的下一代个体。
5. 筛选操作:从父母和子代中选择较优的个体,更新种群,并进行下一次迭代。
通过上述过程,遗传算法能够搜索到问题的最优解,其中适应度函数的设定是非常重要的一步,它用来评估个体的适应度程度。
二、多目标优化问题的遗传算法求解在多目标优化问题的求解中,适应度函数也需要进行改进,一般将每个目标指标的值单独计算,再考虑其权重关系。
例如在生产制造业中,成本和质量两个指标的权重往往不同,需要根据实际情况进行调整。
另外,遗传算法中的选择操作也需要进行改进,常用的多目标选择方法有以下两种:1. 非支配排序:通过将每个个体与其余个体进行比较,将其分为不同的等级,并选取前面的等级的个体作为父母进行交叉和变异操作。
2. 拥挤度计算:通过计算每个个体在解空间中的拥挤度,选择拥挤度较大的个体作为下一代的父母,以增加解空间的遍历能力。
多目标优化问题的遗传算法求解需要注意以下几个问题:1. 避免陷入局部最优解:在遗传算法中,子代可能比父代更劣,因此需要加入一定的随机因素来跳出局部最优解。
如何优化遗传算法的搜索空间与适应度函数
如何优化遗传算法的搜索空间与适应度函数优化遗传算法的搜索空间与适应度函数遗传算法是一种模拟自然选择和遗传机制的优化算法,它通过模拟生物进化的过程,逐步搜索最优解。
在实际应用中,如何优化遗传算法的搜索空间和适应度函数是非常重要的,本文将探讨这两个方面的优化方法。
一、优化搜索空间1. 确定合适的变量范围在遗传算法中,搜索空间的定义是非常重要的。
首先,需要确定变量的范围,即每个变量可以取值的范围。
合适的变量范围可以保证搜索空间不会过大或过小,从而提高算法的搜索效率。
2. 采用变量编码方式变量编码方式是指将变量转化为遗传算法中的染色体表示形式。
常用的编码方式有二进制编码、实数编码和排列编码等。
选择合适的编码方式可以更好地适应问题的特性,提高搜索效果。
3. 交叉与变异操作交叉和变异是遗传算法中的两个重要操作,可以增加搜索空间的多样性。
在进行交叉和变异操作时,需要根据具体问题的特点进行调整,以保证搜索空间的充分探索。
二、优化适应度函数1. 确定合适的目标函数适应度函数是遗传算法中评估个体适应度的函数,它决定了个体在进化过程中的生存能力。
确定合适的目标函数是优化适应度函数的关键。
目标函数应能准确地描述问题的目标,同时具备可计算性和可优化性。
2. 引入约束条件在实际问题中,往往存在一些约束条件,如等式约束、不等式约束等。
为了优化适应度函数,需要将这些约束条件引入到适应度函数中,从而保证搜索到的解满足问题的约束条件。
3. 适应度函数的动态调整在遗传算法的进化过程中,适应度函数的选择和调整也是非常重要的。
根据实际问题的需求,可以动态调整适应度函数的权重或参数,以提高算法的搜索效率。
三、优化遗传算法的综合策略1. 多样性保持策略在遗传算法的进化过程中,多样性是保证搜索空间充分探索的重要因素。
为了保持多样性,可以采用多样性保持策略,如精英保留策略、多样性保持操作等。
2. 改进选择策略选择策略是遗传算法中选择优秀个体的方法。
随机优化问题的基本方法
随机优化问题的基本方法随机优化问题是指在给定的约束条件下,通过随机搜索和优化算法来找到最优解或者近似最优解的问题。
在现实生活中,许多实际问题都可以归结为随机优化问题,包括旅行商问题、车辆路径问题、机器学习模型的参数调优等。
本文将介绍随机优化问题的基本方法,包括遗传算法、蚁群算法和模拟退火算法。
1. 遗传算法遗传算法是一种模拟自然界进化过程的优化算法。
它的基本思想是通过使用一组候选解(也称为个体)来表示问题空间中的潜在解,并通过模拟遗传操作(如选择、交叉和变异)来逐步迭代和改进这组候选解。
遗传算法通常由以下几个步骤组成:- 初始化种群:随机生成一组初始解,称为种群。
- 评估适应度:根据问题的特定目标函数,对每个个体计算适应度值。
- 选择操作:根据适应度值选择一部分个体作为下一代的父代。
- 交叉操作:对选定的父代个体进行交叉操作,生成新的个体。
- 变异操作:对新生成的个体进行变异操作,引入新的解空间。
- 重复执行上述步骤,直到满足停止条件。
2. 蚁群算法蚁群算法是一种启发式优化算法,灵感来自于蚂蚁在寻找食物时的行为。
蚁群算法的基本思想是通过模拟蚂蚁在路径选择上的行为来寻找问题的最优解。
它的主要步骤包括:- 初始化信息素:将信息素矩阵初始化为一个较小的常数。
- 蚂蚁移动:每只蚂蚁根据一定的概率选择下一个移动位置。
- 更新信息素:根据蚂蚁的移动轨迹和问题的特定评价函数,更新信息素矩阵。
- 重复执行上述步骤,直到满足停止条件。
3. 模拟退火算法模拟退火算法是一种受物质凝聚原理启发的优化算法,模拟了金属退火过程中逐渐降温的行为。
模拟退火算法通过接受不完全优解的概率来避免陷入局部最优解,从而有助于全局最优解的搜索。
它的主要步骤包括:- 初始化当前解:随机生成初始解作为当前解。
- 更新邻域解:根据一定的策略生成邻域解。
- 接受新解:根据Metropolis准则,以一定的概率接受新解作为当前解。
- 降温过程:降低退火参数(温度),减少接受不完全优解的概率。
群智能优化算法——遗传算法
第三章 算法流程
开始 初始种群
开始迭代,Nc=1
no Nc<=MaxNc yes 计算个体适应度值 结束 输出最优结果
选择、交叉、变异
产生新种群
记录产生的最好解
Nc=Nc+1
第四章 算法实例分析
实例: 这里以大连市甘井子区诊所层的选址为案例讲解。
Company
LOGO
Company
LOGO
群智能优化算法 遗传算法
目录
1 2 3 4 绪论 算法基本概念 算法流程 算法实例分析
第一章 绪论
遗传算法是一类借鉴生物界的进化规律(适者生存, 优胜劣汰的遗传机制)演化而来的自适应概率性随机化迭 代搜索算法,它是群优化算法的一种,其中模式定理和隐 性并行性是遗传算法的两大基本原理。 类似于生物的进化过程,遗传算法处理的是变量集合 的编码而非变量本身。它直接对结构对象进行操作,不存 在求导和函数连续性的界定;具有内在的隐并行性和更好 的全局寻优能力;采用概率化的寻优方法,能自动获取和 指导优化的搜索空间,自适应的调整搜索方向,不需要确 定规则。遗传算法的这些特点已被人们广泛的应用于组合 优化、机器学习、信号处理、自适应控制和人工生命领域。 它是现代有关智能计算中的关键技术之一。
第二章 算法基本概念
6)选择(Selection):指决定以一定概率从种群中选择若干 个体的操作。一般而言,选择过程是一种基于适应度的优胜 劣汰的过程。 7)交叉(Crossover):有性生物在繁殖下一代时两个同源 染色体之间通过交叉而重组,亦即在两个染色体的某一个相 同的位置处NDA被切断,其前后两串分别交叉组合形成两个 新的染色体。这个过程又称为基因重组,俗称“杂交”。 8)变异(Mutation):在细胞进行复制时可能以很小的概率 产生某些复制差错,从而使DNA发生某种变异,产生新的染 色体,这些新的染色体表现出新的性状。 9)编码(Coding):DNA中遗传信息在一个长链上按照一定 的模式排列,也即进行了遗传编码。遗传编码可以看做从表 现型到遗传子型的映射。 10)解码(Decoding):从遗传子型到表现型的映射。
基于遗传算法的最优化问题求解方法
基于遗传算法的最优化问题求解方法随着人工智能技术的不断发展和普及,最优化问题在工程、经济、管理等领域中得到了广泛应用。
最优化问题是指在一定的限制条件下,寻找最佳的决策方案,从而能够获得最优的效果。
为了解决最优化问题,人们在不断探索新的算法和方法。
其中,基于遗传算法的最优化问题求解方法备受关注。
遗传算法是一种基于生物进化思想的计算机算法,具有全局优化、可适应性强、鲁棒性好等特点,因此在最优化问题的求解中扮演着重要的角色。
一、遗传算法的概念和基本原理遗传算法是模拟生物进化过程的计算机算法。
它是从自然界中生物进化的过程中发掘出来的一种求解最优化问题的方法。
遗传算法的基本原理是模拟生物进化过程的三个操作:选择、交叉和变异。
1.选择操作选择操作是指根据个体适应度大小,按照一定的概率选择优秀个体,淘汰劣质个体。
具体实现方法是在种群中随机选择两个个体比较它们的适应度,然后根据某种方法保留优秀个体并淘汰劣质个体,以此来生成新的种群。
选择操作是遗传算法中最重要的操作之一,它直接影响到算法的性能。
2.交叉操作交叉操作是指将已选择的优秀个体进行交叉从而生成新的个体。
具体实现方法是在两个被选择的个体之间随机选取交叉点,并交换两个个体之间的某些基因信息。
目的是为了保留经过选择操作后的优秀个体,并且在新的个体中引入多样性,增加种群的搜索范围,从而增强算法的全局搜索能力。
3.变异操作变异操作是指在某些条件下,对已经生成的新个体进行个别基因的改变。
具体实现方法是选取某个新个体的一个基因进行随机改变操作,例如随机增加、删除或修改某个基因的值。
变异操作是为了增加多样性,避免算法陷入局部最优解,从而提高算法的全局寻优能力。
二、遗传算法的优点和不足遗传算法具有一系列的优点,主要包括以下方面。
1.全局最优性遗传算法具有全局寻优能力,它能够搜索全部解空间,并找到全局最优解。
这是由于它采用了随机寻优方法,能够避免陷入局部最优解。
2.可适应性强遗传算法能够自适应地调整参数,以适应问题的复杂性和难度,在不同的环境下优化效果也不同。
人工智能》教学大纲
人工智能》教学大纲2.掌握Prolog语言的基本语法和常用操作;3.能够编写简单的Prolog程序,并能够运行和调试;4.了解Prolog语言在人工智能中的应用。
第三章搜索算法基本内容和要求:1.掌握深度优先搜索、广度优先搜索、启发式搜索等搜索算法的基本思想和实现方法;2.能够应用搜索算法解决一些典型问题;3.了解搜索算法在人工智能中的应用。
第四章知识表示与推理基本内容和要求:1.掌握命题逻辑、一阶逻辑等知识表示方法;2.了解基于规则、框架、语义网络等知识表示方法;3.掌握归结方法、前向推理、后向推理等推理方法;4.能够应用知识表示与推理解决一些典型问题。
第五章不确定性推理基本内容和要求:1.了解不确定性推理的基本概念和方法;2.掌握贝叶斯定理及其应用;3.掌握条件概率、独立性、条件独立性等概念;4.能够应用不确定性推理解决一些典型问题,如垃圾邮件过滤等。
五、教材和参考书目1)主教材:Stuart Russell。
Peter Norvig。
Artificial Intelligence: A Modern Approach。
3rd n。
Prentice Hall。
2009.2)参考书目:___。
机器研究。
___。
2016.___。
统计研究方法。
___。
2012.___。
___。
2017.六、教学进度安排第一周人工智能概述第二周逻辑程序设计语言Prolog第三周搜索算法第四周知识表示与推理第五周不确定性推理第六周期中考试第七周至第十周课程实验第十一周至第十三周课程实验第十四周课程总结与复第十五周期末考试一实验(实训)内容产生式系统实验学时分配4目的与要求:熟悉和掌握产生式系统的运行机制,掌握基于规则推理的基本方法。
实验(实训)内容:主要包括产生式系统的正、反向推理、基于逻辑的搜索等10余个相关演示性、验证性和开发性设计实验。
二实验(实训)内容搜索策略实验学时分配4目的与要求:熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。
基于遗传算法的任务分配优化及应用实现
基于遗传算法的任务分配优化及应用实现随着人工智能技术的不断发展和应用,各行各业的自动化和智能化程度不断提高。
在生产制造、交通运输、医疗卫生等领域,任务分配是一个重要的问题。
如何将任务分配到合适的人员或设备上,使得效率最大化,成为了一个亟待解决的问题。
基于遗传算法的任务分配优化成为了一个备受关注的研究方向。
一、遗传算法的基本原理遗传算法是一种模拟自然进化过程的搜索算法,通过模拟进化过程,寻找最优解。
遗传算法的基本过程包括个体编码、适应度函数、选择、交叉、变异等过程。
个体编码是将问题转化成为适合遗传算法处理的数据结构,适应度函数是评价个体的优劣程度。
选择是按照适应度大小筛选个体,交叉是将两个个体的染色体进行交换,变异是在个体的某个基因位点上随机产生新的值。
这些过程的重复迭代能够收敛到最优解。
二、基于遗传算法的任务分配优化的方法基于遗传算法的任务分配优化的方法主要包括任务编码、适应度函数的设计、操作集的构建、选择策略、交叉策略、变异策略等方面。
1.任务编码任务编码是将任务和处理器进行编码,转化成适合遗传算法处理的数据结构。
一般采用二进制编码或其他编码方式。
2.适应度函数的设计适应度函数是评价任务与处理器匹配的好坏程度的函数。
常用的设计思路包括使得能量的利用率最高、使得功率消耗最小、让所有处理器都保持工作均衡等。
3.操作集的构建操作集包括选择具有较高适应度的个体、选择互不相同的个体进行杂交、通过变异增加多样性等。
4.选择策略选择策略主要决定哪些个体能进入下一代,使得较优的个体能有更多的机会被选择。
一般采用轮盘赌、竞赛选择和最好保留法等策略。
5.交叉策略交叉策略是在两个个体中随机选取交叉点,并进行交叉操作,使得新的个体具有原个体良好的基因特性。
一般采用单点交叉、多点交叉和均匀交叉等策略。
6.变异策略变异策略是在个体染色体上随机进行变异操作,增加新的个体多样性。
一般采用随机变异和定向变异等策略。
三、任务分配优化的应用实现任务分配优化在生产制造、交通运输、医疗卫生等领域具有广泛的应用前景。
基于遗传算法的数字电路优化设计
基于遗传算法的数字电路优化设计在数字电路设计中,优化是非常关键的一个因素。
优化可以让数字电路在性能、功耗、空间等各个方面更好地满足设计要求。
传统的数字电路优化设计方法由于需要大量的计算和试错,往往需要耗费大量的时间和资源,而且不一定能达到最好的效果。
而基于遗传算法的数字电路优化设计,可以很好地解决这个问题。
遗传算法是一种模拟自然进化过程的算法。
它是通过模拟生物种群的生长、繁殖、变异和适应过程,从而搜索并找到一个能够满足特定要求的最优解。
在数字电路设计中,我们可以通过遗传算法来搜索能够满足特定要求的最优解电路结构。
在遗传算法中,我们首先需要设计一组基因编码方式,用来表示数字电路的结构和参数。
例如,我们可以使用二进制编码方式来表示数字电路的各个部分的参数,比如门数量、传输延迟等等。
然后,我们需要构建一个适应度函数,来评估每个电路结构的性能。
这个适应度函数可以根据设计要求来进行定义,比如功率消耗、面积、传输速度等等。
在遗传算法的进化过程中,我们首先需要初始化一定数量的种群,也就是随机生成一些电路结构编码。
然后,我们需要通过选择、交叉和变异操作来对这个种群进行进化。
选择操作可以根据种群的适应度来选择优良的个体进行下一轮进化。
交叉操作可以将两个个体的编码按照一定规则进行交换,产生新的个体。
变异操作可以对个体的编码进行一些随机变化,来增加种群的多样性。
通过不断的进化过程,我们可以不断优化数字电路的结构和参数,以达到最优解。
遗传算法的优势在于可以在较短的时间内找到最优解,而且对复杂的电路设计也具有很好的适应性。
基于遗传算法的数字电路优化设计已经得到了广泛应用。
在ASIC设计、FPGA设计、SOC设计等领域,都有很多优秀的数字电路设计工具采用了遗传算法来进行优化设计。
比如,Xilinx公司的Vivado设计工具就采用了遗传算法来进行FPGA设计的优化。
不过,基于遗传算法的数字电路优化设计也面临一些挑战。
首先,遗传算法的进化过程受到初始种群的影响比较大,如果初始种群不够好,可能会影响后续进化的效果。
AI概论电子教案-人工智能概论(通识课版)-廉师友-清华大学出版社
人工智能概论课程教案(参考)廉师友编写清华大学出版社(2020)说明为了方便各位任课老师的教学,本书作者将自己曾经给计算机专业讲授人工智能课程的教案(稍有删节)提供给大家以作参考。
由于该《人工智能概论》是一部新教材和新课程,所以此教案仅有参考价值。
其实,即就是完全按照这本新教材所写的教案,也只能作为参考而并非能适合每位老师的教学实际。
事实上,不同的院校对同一门课程往往有不同的内容要求和课时设置,不同的老师对同一门课程也都有自己不同的教学思路和教学风格,如果统一为一种模式,则就限制了老师的发挥和创新。
希望这份资料对各位任课老师的教学能有所帮助!当然,若发现其中有不妥或错误之处也请指正!作者2020年3月教案首页院(系):计算机学院教研室(系):计算机工程章节备课学时:2学时:4学时:6学时:2学时:10学时:6学时:4章节备课学时:2学时:2第 1 次课 2学时第2 次课2学时课时备课第 3 次课 2学时第 4 次课2学时第 5 次课 2学时第 6 次课 2学时第 7 次课 2学时课时备课第 8 次课 2学时课时备课第 9 次课 2学时课时备课第 10 次课 2学时课时备课第 11 次课 2学时课时备课第 12 次课 2学时第 13 次课 2学时第 14 次课 2学时第 15 次课 2学时第 16 次课 2学时第 17 次课 2学时第 18 次课 2学时第 19 次课 2学时第 20 次课 2学时第 21 次课 2学时第 22 次课 2学时第 23 次课 2学时。
基于遗传算法的多目标优化设计方法探究
基于遗传算法的多目标优化设计方法探究摘要:多目标优化问题是现实世界中常见的问题,而遗传算法作为一种强大的优化算法,被广泛应用于解决多目标优化问题。
本文探究了基于遗传算法的多目标优化设计方法,包括问题建模、遗传算法原理、适应度函数设计以及解集生成等方面,并提出了一种改进的多目标遗传算法。
实验证明,基于遗传算法的多目标优化设计方法能够有效地在设计领域中解决多目标优化问题。
1. 引言多目标优化是在现实世界中广泛存在的问题,它的特点是存在多个冲突的目标函数,无法通过传统的单目标优化方法进行解决。
而遗传算法是一种模拟生物进化过程的优化方法,具有全局搜索能力和良好的适应性,因此被广泛应用于多目标优化问题的求解。
2. 遗传算法原理遗传算法是通过模拟自然界中的遗传机制来进行优化的一种算法。
它包括初始化种群、选择、交叉、变异等步骤。
在多目标优化问题中,遗传算法通过不断迭代,生成一组解集,其中每个解都是一组可能的 Pareto 最优解。
3. 问题建模在多目标优化设计中,首先需要对问题进行建模。
通过明确问题的目标函数、约束条件和设计变量,可以将多目标优化问题转化为数学优化问题。
建立适当的数学模型是解决多目标优化问题的关键。
4. 适应度函数设计适应度函数是遗传算法中的重要部分,它用于评估个体的适应性。
在多目标优化问题中,适应度函数需要同时考虑多个目标函数的值。
通常使用均值函数、加权函数或 Pareto 支配等方法来评估个体的适应度。
合理的适应度函数设计可以有效地引导遗传算法的搜索方向。
5. 解集生成遗传算法生成的解集包含一系列可能的 Pareto 最优解,称为近似 Pareto 前沿。
解集生成是多目标优化设计中的关键步骤,目标是通过遗传算法在设计空间中生成尽可能多的非劣解。
通常使用非劣排序和拥挤度距离等技术来生成多样性的解集。
6. 改进的多目标遗传算法在传统的多目标遗传算法中,存在着早熟收敛和搜索局限性的问题。
为了解决这些问题,本文提出了一种改进的多目标遗传算法。
基于遗传算法的随机(s,S)库存系统仿真优化
解析方 法 求解 , 时必 须采 用 系统 仿 真的方法 _. 有 . 当然 , ] 由于其存 在 随机性 , 获得 的最 优解 并
非绝 对 的而是统 计 意义下 的.
一
种新 的选择算子 , 并设计了一个 候选 策略收集器. 于常用 (, ) 基 S 库存 控制 的仿 真实 例表明 ,
本 方 案 是 可行 且 有 效 的.
关键词 :遗传算法 ; 随机( ,) sS 库存 系统 ; 库存策略 ; 系统仿真 ;
中 图分 类 号 :T 3 I9 P 9 . 文 献 标 识 码 :A
维普资讯
第 3期 2) 1 6年 5月 0
华东 师范大 学学报 ( 自然科 学版 )
J un l fEa t iaNo ma nv riy ( t r l ce c ) o r a s n r l ie st Na ua in e o Ch U S
摘 要 :提 出 丁一 种将 系 统 仿 真 常 用 于 优 化 随 机库 存 系 统 的 方 案 , 将 遗 传 算 法 与 离 散 事 件 系 统 它 仿 真 相 结 合 , 遗 传算 法指 导 控制 变 量 的选 择 . 遗传 算法 中 , 对 库 存 系 统 的 随 机 特 性 提 出 了 用 在 针
Ab ta t S s e smu a in WB s d t p i z t c a t n e t r .I c mb n d g n t l src : y t m i lt . u e o o t o S mies o h s i i v n o y t o i e e e i a — c c g rt ms wi i l t n o ic e e e e t y t m n s d g n t l o ih ogud h h ie o ih t smu a i f s r t v n s e a d u e e e i a g rt ms t i e t e c o c h o d s c o o tol a ib e . n w ee t nop r t n a d a c n i a ep l is o lc o r r p s d t f n r r ls A e s lc i e a i n a d d t o i e c l t r c v a o o c e we e p o o e O o e c me t er n o c t f t c a t v n o y s se Te t e u t f ( v r o h a d mli o so h s i i e t r y tm. s s lso 。5 n e t r y — y a cn r a )i v n o y s s t m h we h tt e s l t n p o o e S fa i l n fe t e e s o d t a h o u i r p s d i e s be a d e fc i . o v Ke r s y wo d : g n t lo i m s so h s i e e i ag rt c h ; t c a t f ,S)i v n o y s s e ; i v n o y p l y c n e tr y tm n e t r oi ; c t r i 1t n e smU a i n o s s y—
基于遗传算法的优化问题求解系统设计
基于遗传算法的优化问题求解系统设计人类一直都在转变自然力量为自己所用,其中一种方式就是借鉴自然进化的原理来解决现实中的优化问题。
而遗传算法正是基于这一原理构建的一类算法。
相信大家对遗传算法并不陌生,那么今天我来为大家介绍关于基于遗传算法的优化问题求解系统的设计。
一、遗传算法的基本原理遗传算法是一种模拟自然进化的搜索算法,主要由遗传、交叉和变异三个操作构成。
整个算法的执行过程模拟了自然界中的生物进化过程,从而达到优化的目的。
具体来说,遗传算法的步骤包括以下几个:1. 初始化种群:随机生成一些初始的解作为种群。
2. 适应度函数:根据问题的不同,设计不同的适应度函数,将每个个体映射到一个实数值上。
3. 选择:根据适应度函数,从种群中选择一些高适应度的个体,保留其基因信息。
4. 对选中的个体进行交叉和变异操作,产生新的解。
5. 判断是否满足结束条件。
如果满足,输出当前最优解;否则,返回第2步。
通过以上几个步骤,遗传算法就可以不断地寻找最优解,适用于那些复杂的优化问题,例如组合优化、约束优化等等。
二、基于遗传算法的优化问题求解系统的设计基于遗传算法的优化问题求解系统视具体问题而定,但一般都是由两个部分组成:遗传算法的求解器和一个相应问题的解析器,前者负责遗传算法的流程实现及优化解的寻找,后者则提供问题定义、问题转换及问题解析等功能。
下面我将从这两个方面来阐述。
1. 遗传算法的求解器遗传算法的本质就是一个搜索算法,其求解器的流程通常包括以下几个步骤:(1)初始化:确定问题的解的范围及初始化种群。
(2)评价:选取适当的适应度函数,对当前种群进行评估。
(3)选择:根据适应度大小,选出一些较好的个体进入下一代。
(4)交叉:对选中的个体进行交叉操作。
(5)变异:对交叉后的个体进行变异操作。
(6)终止条件:到达预设的停止条件时,输出最终结果,否则返回步骤(2)。
特别是在实现过程中要注意以下几个问题:(1)如何设置遗传操作的参数(如种群大小、交叉率、变异率等)?(2)如何选择合适的适应度函数?(3)如何处理解的编码问题?解决上述问题的核心在于需要对具体的问题有清晰的认识,对遗传算法的算法细节进行笼统的概括、简单的拷贝并不会有效果。
基于遗传算法的自动化系统参数优化
基于遗传算法的自动化系统参数优化
自动化系统是现代工业化生产和运营的重要手段,系统参数优化可提高其运行效率和稳定性。
随着技术的不断升级,传统的手动参数调整方式已经无法满足复杂系统的需求。
基于遗传算法的自动化系统参数优化成为一种新方案。
遗传算法利用生物进化的原理,通过种群选择、交叉和变异等操作,模拟自然界中基因的遗传和进化过程,从而获得最优解。
将其应用于自动化系统参数优化中,可以自动搜索最优参数,避免了人工试错,提高了效率和精度。
基于遗传算法的自动化系统参数优化的步骤如下:
1. 系统建模:根据实际系统建立数学模型,明确目标函数和参数范围。
2. 初始化种群:随机生成初始种群,种群规模和参数精度要根据实际情况确定。
3. 适应度函数定义:根据目标函数确定适应度函数,将目标函数的取值映射到种群的适应度上。
4. 选择算子:根据适应度函数选择优质的个体,保留其基因信息,淘汰劣质的个体,避免快速陷入局部极小值。
5. 交叉算子:对选出的优质个体进行交叉操作,生成下一代个体。
6. 变异算子:对新生成的个体进行变异操作,增加种群的多样性。
7. 终止条件:根据实际情况,设置优化的迭代次数或误差范围
等终止条件。
基于遗传算法的自动化系统参数优化是一种高效、精确的优化
方式,但适用范围有限。
在实际应用中需要根据具体情况选择不同
的优化方法,综合考虑效果、时间和成本等因素,寻求最佳平衡点。
基于遗传算法的机器学习超参优化技术研究
基于遗传算法的机器学习超参优化技术研究在机器学习中,选择合适的超参数通常是一个很困难的任务。
超参数是控制算法行为的设置,而不是从数据中学习的参数。
例如,在神经网络中,超参数可能包括学习率、批量大小、正则化系数等。
在选择正确的超参数之前,通常需要进行大量的试验和调整。
因此,超参数优化已成为机器学习社区中的一个重要研究领域。
其中一种常用的超参数优化技术是网格搜索,它在一个预定的超参数空间中执行实验。
这种方法可能是最容易实现的技术之一,但是,如果这个空间太大或者某些超参数的影响更为重要,那么这种方法就会很慢或者无法获得很好的结果。
为了解决这些问题,许多机器学习社区正在研究使用遗传算法(GA)来优化超参数。
GA是一种优化算法的方法,受自然选择启发,通过模拟优胜劣汰的过程来寻找最佳解决方案。
在遗传算法中,通过选择最适应的超参数组合和随机组合,将其交叉和变异以获得更好更适应的超参数集合。
GA还可以轻松地扩展到任何数量的超参数,同时不依赖于他们之间的线性关系。
使用遗传算法的超参数优化通常包括四个主要的步骤:初始化种群、评估适应度、选择、交叉和变异。
种群是一组随机选择的超参数集合,适应度是用于衡量每个个体的性能的度量,选择阶段根据适应度的评分选择最好的超参数组,交叉和变异是生成新的超参数组的步骤。
这些步骤可以重复多次,以生成越来越好的超参数集合。
虽然遗传算法优化超参数比网格搜索要好,但并不总是优于其他的高级优化算法。
例如,使用贝叶斯优化技术的超参数优化在实际情况中通常比 GA 更好。
但是,遗传算法的主要优点之一是它易于实现和概念化。
总之,超参数优化是机器学习中的一个非常重要的问题,由于其困难性和广泛的应用,已经得到广泛的研究和讨论。
GA是一种非常有效的超参数优化技术,可以生成更好的超参数集合,进而提高算法的性能。
使用遗传算法的超参数优化技术不仅可以改善算法性能,还可以提供一种简单易用的方法来优化模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再计算种群S1中各个体的选择概率。 选择概率的计算公式为
P( xi ) = f ( xi )
N
∑ f (x )
j =1 j
由此可求得 P(s1) = P(13) = 0.14 P(s2) = P(24) = 0.49 P(s3) = P(8) = 0.06 P(s4) = P(19) = 0.31
■
rate)是指发生变异的基因位 数所占全体染色体的基因总位数的比例,记为 Pm,取值范围一般为0.0001~0.1。
■ 变异率 变异率(mutation
基本遗传算法 步1 在搜索空间U上定义一个适应度函数 f(x),给定种群规模N,交叉率Pc和变异率Pm, 代数T; 步2 随机产生U中的N个个体s1, s2, …, sN, 组成初始种群S={s1, s2, …, sN},置代数计数 器t=1; 步3 计算S中每个个体的适应度f() ; 步4 若终止条件满足,则取S中适应度最 大的个体作为所求结果,算法结束。
4.3 遗传算法应用举例
例 4.1 利用遗传算法求解区间[0,31]上的 二次函数y=x2的最大值。
Y
y=x2
31
X
分析 原问题可转化为在区间[0, 31]中搜索能 使y取最大值的点a的问题。那么,[0, 31] 中 的点x就是个体, 函数值f(x)恰好就可以作为x的 适应度,区间[0, 31]就是一个(解)空间 。这 样, 只要能给出个体x的适当染色体编码, 该问 题就可以用遗传算法来解决。
● 赌轮选择法
s4 0.31
s30.06
s1 0.14 s2 0.49
赌轮选择示意
在算法中赌轮选择法可用下面的子过程来模拟: ① 在[0, 1]区间内产生一个均匀分布的随机 ② 若r≤q1,则染色体x1被选中。 ③ 若qk-1<r≤qk(2≤k≤N), 则染色体xk被选中。 其 中的qi称为染色体xi (i=1, 2, …, n)的积累概率 其 积累概率, 积累概率 计算公式为 数r。
全体个体与其适应度之间的一个对应关系。 它一般是一个实值函数。该函数就是遗传算 法中指导搜索的评价函数。
3. 染色体与基因 染色体(chromosome)就是问题中个体的 某种字符串形式的编码表示。字符串中的字符 也就称为基因(gene)。 例如: 个体 9 ---染色体 1001
(2,5,6)---- 010 101 110
● 种群(population)就是模拟生物种群而由若
干个体组成的群体, 它一般是整个搜索空间 的一个很小的子集。
适应度与适应度函数 2. 适应度与适应度函数
● 适应度(fitness)就是借鉴生物个体对环境的
适应程度,而对问题中的个体对象所设计的 表征其优劣的一种测度。
● 适应度函数(fitness function)就是问题中的
于是,经复制得群体: s1’ =11000(24), s2’ =01101(13) s3’ =11000(24), s4’ =10011(19)
交叉 设交叉率p c =100%,即S 1 中的全体染色体都 参加交叉运算。 设s1’与s2’配对,s3’与s4’配对。分别交 换后两位基因,得新染色体: s1’’=11001(25), s2’’=01100(12) s3’’=11011(27), s4’’=10000(16)
第4章 基于遗传算法的随机优化搜索
基本概念 4.1 基本概念 基本遗传算法 4.2 基本遗传算法 4.3 遗传算法应用举例 遗传算法应用举例 4.4 遗传算法的特点与优势
第 4 章 基于遗传算法的随机优化搜索
4.0 引
子
世界自然界的选择基本规律:优胜劣汰, 适者生存! 规律是如何实现的?
于是,得第三代种群S3: s1=11100(28), s2=01001(9) s3=11000(24), s4=10011(19)
第三代种群S 第三代种群 3中各染色体的情况 染色体 s1=11100 s2=01001 s3=11000 s4=10011 适应度 784 81 576 361 选择概率 0.44 0.04 0.32 0.20 积累概率 0.44 0.48 0.80 1.00 估计的 选中次数 2 0 1 1
qi = ∑ P( x j )
j =1
i
选择-复制 设从区间[0, 1]中产生4个随机数如下: r1 = 0.450126, r2 = 0.110347 r3 = 0.572496, r4 = 0.98503
染色体 s1=01101 s2=11000 s3=01000 s4=10011 适应度 169 576 64 361 选择概率 0.14 0.49 0.06 0.31 积累概率 0.14 0.63 0.69 1.00 选中次数 1 2 0 1
步5 按选择概率P(xi)所决定的选中机会, 每次从S中随机选定1个个体并将其染色体复制, 共做N次,然后将复制所得的N个染色体组成 群体S1; 步6 按交叉率Pc所决定的参加交叉的染色 体数c,从S1中随机确定c个染色体,配对进行 交叉操作,并用产生的新染色体代替原染色体, 得群体S2;
步7 按变异率Pm所决定的变异次数m,从S2 中随机确定m个染色体,分别进行变异操作,并 用产生的新染色体代替原染色体,得群体S3; 步8 将群体S3作为新一代种群,即用S3代替 S,t = t+1,转步3;
第 4 章 基于遗传算法的随机优化搜索 位串 基因 染色体 种群 物种
(1001) (1001)
问题求解
1001 1100 1010
个体(xi) 子集si(x1,x2, …,xN) 论域{s1,s2, …,sm}
遗传算法与问题求解的类比关系说明
遗传操作 4. 遗传操作 亦称遗传算子(genetic operator),就是关 于染色体的运算。遗传算法中有三种遗传操作:
P( xi ) = f ( xi )
N
∑ f (x )
j =1 j
交叉 就是互换两个染色体某些位上的基因。 例如, 设染色体 s1=01001011, s2=10010101, 交换其后4位基因, 即
s1′=01000101, s2′=10011011 可以看做是原染色体s1和s2的子代染色体。
变异 就是改变染色体某个(些)位上的基因。 例如, 设染色体 s=11001101 将其第三位上的0变为1, 即 s=11001101 →11101101= s′。 s′也可以看做是原染色体s的子代染色体。
设这一轮的选择-复制结果为: s1’=11100(28), s2’=11100(28) s3’=11000(24), s4’=10011(19) 做交叉运算,让s1’与s4’,s2’与s3’ 分别 交换后两位基因,得 s1’’=11111(31), s2’’=11100(28) s3’’=11000(24), s4’’=10000(16) 这一轮仍然不会发生变异。
4.2 基本遗传算法
生成初始种群 计算适应度 终止 ? 选择-复制 交叉 变异 结束
遗传算法基本流程框图
生成新一代种群
算法中的一些控制参数:
■ 种群规模 ■ 最大换代数
交叉率(crossover rate)就是参加交叉运算的 交叉率 染色体个数占全体染色体总数的比例,记为P c , 取值范围一般为0.4~0.99。
Y
Y3
19 24
X Y
12 16
25 27
X
第一代种群及其适应度
第二代种群及其适应度
y=x2
y=x2
9
19 24 28
X
16
24 28 31 X
第三代种群及其适应度
第四代种群及其适应度
4.4 遗传算法的特点与优势
◆遗传算法的主要特点 ——遗传算法一般是直接在解空间搜索, 而不像图搜索那样一般是在问题空间搜索, 最 后才找到解。 ——遗传算法的搜索随机地始于搜索空间 的一个点集, 而不像图搜索那样固定地始于搜 索空间的初始节点或终止节点, 所以遗传算法 是一种随机搜索算法。
于是,得第四代种群S4: s1=11111(31), s2=11100(28) s3=11000(24), s4=10000(16)
显然,在这一代种群中已经出现了适应度 最高的染色体s1=11111。于是,遗传操作终止, 将染色体“11111”作为最终结果输出。 然后,将染色体“11111”解码为表现型, 即得所求的最优解:31。 将31代入函数y=x2中,即得原问题的解,即 函数y=x2的最大值为961。
(3) 计算各代种群中的各个体的适应度, 并 对其染色体进行遗传操作,直到适应度最高的个 体(即31(11111))出现为止。
首先计算种群S1中各个体 s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011) 的适应度f (si) 。 容易求得 f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
● 选择-复制(selection-reproduction) ● 交叉(crossover,亦称交换、交配或杂交) ● 变异(mutation,亦称突变)
选择-复制
通常做法是:对于一个规模为N
的种群S,按每个染色体xi∈S的选择概率P(xi)所决 定的选中机会, 分N次从S中随机选定N个染色体, 并进行复制。 这里的选择概率P(xi)的计算公式为
——遗传算法的适应性强, 除需知适应度 函数外, 几乎不需要其他的先验知识。 ——遗传算法长于全局搜索, 它不受搜索 空间的限制性假设的约束,不要求连续性, 能以 很大的概率从离散的、多极值的、 含有噪声的 高维问题中找到全局最优解。
有性物种则是通过其遗传基因不断地混合和 重组,推进进化。 生物进化(混合和重组)的过程就是优化的过 程。