全国高考理科数学试题及答案-全国1卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前 试题类型:A
2016年普通高等学校招生全国统一考试
理科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷
一. 选择题:本大题共
12小题,每小题5分,在每小题给出的四个选
项中,只有一项是符合题目要求的.
(1)设集合
2
{|430}A x x x =-+<,{|230}B x x =->,则A B =
(A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)
2
(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +
(A )1 (B (C (D )2 (3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a (A )100 (B )99(C )98(D )97
(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是
(A )3
1 (B )2
1 (C ) 3
2 (D )
4
3 (5)已知方程1322
2
2=--+n
m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是
(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3) (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是
3
28π
,则它的表面积是 (A )17π (B )18π (C )20π (D )28π
(7)函数y =2x 2–e |x |在[–2,2]的图像大致为
(A )(B )
(C )
(D )
(8)若101a b c >><<,,则
(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <
(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足
(A )2y x =(B )3y x =(C )4y x =(D )5y x
=
(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于
D 、
E 两点.已知|AB |=42|DE|=5C 的焦点到准线的距离为
(A)2 (B)4 (C)6 (D)8 (11)平面
a 过正方体ABCD -A 1B 1C 1D 1的顶点
A ,
a
a
a A
1
1
ABB 32313



()sin()(0),24f x x+x ππ
ωϕωϕ=>≤=-,为()f x 的零点,4
x π
=为()y f x =图像
的对称轴,且()f x 在51836
ππ
⎛⎫ ⎪⎝

,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5
第II 卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个
试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分
(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =. (14)
5(2x +的展开式中,x 3的系数是. (用数字填写答案) (15)设等比数列满足}{a n 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。

(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

生产一件产品A 需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。

学.科网该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元。

三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本题满分为12分)
ABC 的内角A ,B ,C 的对边分别别为a ,b ,c ,已知
2cos (cos cos ).C a B+b A c =
(I)求C;
(II)若7,
c ABC
=的面积为33,求
ABC的周长.
(18)(本题满分为12分)
如图,在已A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90
AFD
∠=,且二面角D-AF-E
与二面角C-BE-F都是60.
(I)证明;平面ABEF⊥平面EFDC;
(II)求二面角E-BC-A的余弦值.
(19)(本小题满分12分)
某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(I)求X的分布列;
(II)若要求()0.5
≤≥,确定n的最小值;
P X n
(III)以购买易损零件所需费用的期望值为决策依据,在19
n=与n=之中选其一,应选用哪个
20
20. (本小题满分12分)
设圆222150
++-=的圆心为A,直线l过点B(1,0)且与x轴不重x y x
合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(I)证明EA EB
+为定值,并写出点E的轨迹方程;
(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l 垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.(21)(本小题满分12分)
已知函数2)1
x
e
(有两个零点.
a

f x
x
2
(
)
(-
-
+
=x
(I)求a的取值范围;
(II)设x1,x2是的两个零点,证明:x1+x2<2.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:几何证明选讲
1OA为半径如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,
2
作圆.
(I)证明:直线AB与⊙O相切
(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.
(23)(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系xoy 中,曲线C 1的参数方程为⎩
⎨⎧+==t a y t a x sin 1cos (t 为参数,
a >0)。

在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:
ρ=4cos θ.
(I )说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;
(II )直线C 3的极坐标方程为a 0=θ,其中a 0满足tan=2,若曲线C 1与C 2的公共点都在C 3上,求a 。

(24)(本小题满分10分),选修4—5:不等式选讲 已知函数f (x )= ∣x +1∣-∣2x -3∣.
(I )在答题卡第(24)题图中画出y= f (x )的图像; (II )求不等式∣f (x )∣﹥1的解集。

2016年普通高等学校招生全国统一考试
理科数学参考答案
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个
选项中,只有一项是符合题目要求的.
(1)D (2)B (3)C (4)B (5)A (6)A
(7)D (8)C (9)C (10)B (11)A (12)B
二、填空题:本大题共4小题,每小题5分
(13)2- (14)10
(15)64 (16)216000
三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分为12分)
解:(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =.
故2sinCcosC sinC =. 可得1cosC 2=,所以C 3π=

(II )由已知,1
sin C 2ab =
. 又C 3π
=,所以6ab =.
由已知及余弦定理得,222cosC 7a b ab +-=.
故2213a b +=,从而()2
25a b +=.
所以
C ∆AB 的周长为5+.
(18)(本小题满分为12分)
解:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .
(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.
由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,
DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D . 由已知,//F AB E ,所以//AB 平面FDC E .
又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E .
由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,
C F 60∠E =.从而可得(C -.
所以(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-. 设(),,n x y z =是平面C B E 的法向量,则
C 00
n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即3040x z y
⎧+=⎪⎨=⎪⎩, 所以可取()3,0,3n =-.
设m 是平面CD AB 的法向量,则C 00
m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,
同理可取()0,3,4m =.则219cos ,n m n m n m ⋅==-. 故二面角C E-B -A 的余弦值为219-.
(19)(本小题满分12分)
解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为,,,,从而
04.02.02.0)16(=⨯==X P ;
16.04.02.02)17(=⨯⨯==X P ;
24.04.04.02.02.02)18(=⨯+⨯⨯==X P ;
24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ;
2.02.02.04.02.02)20(=⨯+⨯⨯==X P ;
08.02.02.02)21(=⨯⨯==X P ;
04.02.02.0)22(=⨯==X P .
所以X 的分布列为
(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.
(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+.
当20=n 时,
04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=.
可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .
20.(本小题满分12分)
解:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+. 又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:
13
42
2=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134
)
1(2
2y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,3
41242221+-=k k x x . 所以34)1(12||1||22212
++=-+=k k x x k MN .
过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以
1344)12(42||222
22++=+-=k k k PQ .故四边形MPNQ 的面积 3
41112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[. 当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.
综上,四边形MPNQ 面积的取值范围为)38,12[.
(21)(本小题满分12分)
解:(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点. (ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增. 又(1)f e =-,(2)f a =,取b 满足0b <且ln 2
a b <,则 223()(2)(1)()022a f b b a b a b b >-+-=->,
故()f x 存在两个零点.
(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2e a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2
e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0
f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 综上,a 的取值范围为(0,)+∞.
(Ⅱ)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---.
设2()(2)x x g x xe x e -=---,则2'()(1)()x x g x x e e -=--. 所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一
题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:几何证明选讲解:(Ⅰ)设E是AB的中点,连结OE,
因为,120
OA OB AOB
=∠=︒,所以OE AB
⊥,60
AOE
∠=︒.
在Rt AOE
∆中,1 2
OE AO
=,即O到直线AB的距离等于圆O的半径,所以直线AB与⊙O相切.
E O'
D C
O
B
A
(Ⅱ)因为2
OA OD
=,所以O不是,,,
A B C D四点所在圆的圆心,设'O是,,,
A B C D四点所在圆的圆心,作直线'
OO.
由已知得O在线段AB的垂直平分线上,又'O在线段AB的垂直平分线上,所以'
OO AB
⊥.
同理可证,'
OO CD
⊥.所以//
AB CD.
(23)(本小题满分10分)
解:⑴ cos 1sin x a t y a t =⎧⎨=+⎩
(t 均为参数) ∴()2221x y a +-= ①
∴1C 为以()01,
为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,
∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程 ⑵24cos C ρθ=:
两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,
224x y x ∴+= 即()2224x y -+= ②
3C :化为普通方程为2y x = 由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C ∴210a -=
∴1a =
(24)(本小题满分10分)
解:⑴ 如图所示:
⑵()4133212342
x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥ ()1f x >
当1x -≤,41x ->,解得5x >或3x < 1x -∴≤ 当312x -<<,321x ->,解得1x >或13
x < 113x -<<
∴或312x << 当32
x ≥,41x ->,解得5x >或3x < 332
x <∴≤或5x > 综上,13x <或13x <<或5x >
()1f x >∴,解集为()()11353⎛
⎫-∞+∞ ⎪⎝⎭,,,。

相关文档
最新文档