八年级数学期中考试测试题

合集下载

湖北省武汉市汉阳区2023-2024学年八年级上学期期中数学试题

湖北省武汉市汉阳区2023-2024学年八年级上学期期中数学试题

2023-2024学年度第一学期期中考试八年级数学试卷2023.11一、选择题(每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.下列四个交通标识图案中,是轴对称图案的是( )A. B. C. D.2.作三角形ABC 的一条高,其中正确的是( )A. B. C. D.3.如图,将一张含有30°角的三角形纸片的两个顶点叠放在长方形的两条对边上,若244∠=︒,则1∠的大小为( )A.14°B.16°C.90α︒-D.44α-︒4.在ABC 中90BAC ∠=︒,AC AB ≠,AD 是斜边BC 上的高,DE AC ⊥于E ,DF AB ⊥于F .如图,则图中与B ∠(B ∠除外)相等的角的个数是( )A.3B.4C.5D.65.如图,图①是一张正方形纸片,经过两次对折,并在如图③位置上剪去一个小正方形,打开后是( )A. B. C. D.6.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A.8B.9C.10D.117.如图,将三角形纸片ABC 沿DE 折叠,点A 落在点F 处,已知12100∠∠+=︒,则A ∠的度数为( )A.80°;B.100°;C.50°;D.以上都不对.8.如图,ABC △中,D 为BC 上一点,ACD △的周长为12cm ,DE 是线段AB 的垂直平分线,5cm AE =,则ABC △的周长是( )A.17cmB.22cmC.29cmD.32cm9.如图中有三个正方形,最大正方形的边长为18,则阴影部分的面积(平方单位)为( )A.153B.154C.155D.15610.现有以下表述:①三角形按边相等关系分类有三边都不等的三角形、等腰三角形和等边三角形; ②三角形的三边中线一定交于一点,三角形的高也一定交于一点;③平面上有四个点A 、B 、C 、D ,用它们作顶点可以构成3个或4个三角形;④有8根木棒,长度分别为1、2、3、4、5、6、7、8,其中最长边是8,另两边的差大于2,这样的三角形可以有4种.其中正确的个数为( ) A.1;B.2;C.3;D.4二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请直接填写在答题卡指定的位置.11.点()2,4P 关于x 轴对称的点坐标为_________.12.已知a ,b ,c 是ABC △的三边长,a ,b 满足()2710a b -+-=,c 为奇数,则c =_________. 13.如图,在五边形ABCDE 中,300A B E ∠∠∠++=︒,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数为_________.14.如图,ABC △中,90ACB ∠=︒,6BC =,8AC =,10AB =,45BCD ∠=︒,则AD =________.15.如图,在凸四边形ABCD 中,90BAC ADC ∠∠==︒,AB AC =.现有以下结论:①若E 为AC 中点,连BE ,过A 作BE 的垂线交BC 于F 点,连EF ,如图15-1,则有AEB CEF ∠∠=;图15-1②当D 点为凸四边形ABCD 的一个动点,BD 有最大值时,线段BD 一定过AC 的中点;③当D 点为凸四边形ABCD 的一个动点,则ABD △的面积为212AD ; ④45ADB ∠=︒.其中正确的结论有________________.16.如图是一个33⨯的小正方形拼成的大正方形,则图中1239∠∠∠∠++++L 的度数和是_________.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)如图,在ABC △中,AB BC =,中线AD 将这个三角形的周长分成15和12两部分,求这个三角形三边的长.18.(本题满分8分)如图,AB CD =,AE BC ⊥于E ,DF BC ⊥于F ,若CE BF =,求证:(1)AE DF =;(2)AB CD ∥.19.(本题满分8分)一个凸多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数. 20.(本题满分8分)将44⨯的正方形棋盘沿格线划分成两个全等图形,约定某种划分法经过旋转、轴对称得到划分方法与原划分法相同.如图1与图2的涂色方式.请你按照这种划分方法,在备用图中涂色来表示划分办法.21.(本题满分8分)如图,在平面直角坐标系中,()4,1A -,()4,5B -,()1,3C -.(1)在图中作出ABC △关于直线m (直线m 上各点的横坐标都为1)对称的图形111A BC △; (2)线段BC 上有一点5,42P ⎛⎫- ⎝⎭,直接写出点P 关于直线m 对称的点的坐标;(3)线段BC 上有一点(),M a b ,直接写出点M 关于直线m 对称时a 与b 满足的数量关系; (4)若直线BC 交x 轴于N 点,直接写出N 点坐标. 22.(本题满分10分)已知,在Rt ABC △中,90ACB ∠=︒,AC BC =,D 为直线BC 上一点.(1)如图,D 在线段BC 上,连AD ,过C 作CE AD ⊥于F 点,交AB 于点E ,若AD 平分BAC ∠,则求证:2AD DF CE =+;(2)当D 点在直线BC 上移动时,连AD ,过B 作AD 的垂线,垂足为P ,连CP ,直接写出APC ∠的度数.23.(本题满分10分)问题的提出:如图1,ABC △中,AB AC =,则求证:B C ∠∠=.知识的运用:如图3,四边形ABCD 是正方形,AB BC CD AD ===,90ABC BCD ADC ∠∠∠===︒,点E 是边BC 上一点,90AEF ∠=︒,且EF AE =,连CF .求ECF ∠的度数.拓展与延伸:如图4,四边形ABCD 中,AB BC CD AD ===,AD BC ∥,AB CD ∥,E 为四边形ABCD 边BC 上一点,连AE ,若AE EF =,且()90AEF ABC ∠∠αα==≥︒,探究DCF ∠与α的数量关系.直接写出结果,不需说明理由.24.(本题满分12分)数学问题:如图1,ABC △的中线AD 、BE 交于P 点,试探究线段AP 与PD 间的数量关系,并说明理由.数学思考:如图2,ABC △的中线AD 、BE 交于P 点,连DE , (1)求证:12DE AB =;(2)求证:ABC BDC ∠∠=.数学运用:①如图3,在四边形ABCD 中,AB CD ∥,AB CD <,E 、F 分别是AD 、BC 边的中点,直接写出AB 、CD 与EF 间的数量关系,不需要说明理由.②如图4,现有一块四边形纸片ABCD ,AB CD ∥,AD CB =,P 、Q 分别为AD 、BC 中点,EF MN AB ∥∥,P 、Q 也同时是EM 、FN 的中点.现若有AB m =,CD n =,E 或F 点到MN 的距离为h ,请直接写出四边形EFNM 的面积(用m 、n 、h 表示).一、选择题二、填空题三、解答题:17.解:AD Q 为中线,BD DC ∴=, AB BC =Q ,22AB BD DC ∴==,…………………………3分设BD x =,AC y =,则依题意有:315x =时,12x y +=;或312x =时,15x y +=.5x ∴=时,7y =;或4x =时,11y =.………………………………5分10AB ∴=,10BC =,7AC =;或8AB =,8BC =,11AC =.……………………7分经验证,均满足条件,所以这个三角形的三边的长分别为:10、10、7或8、8、11.……………………8分.18.证明:(1)AE BC ⊥Q 于E ,DF BC ⊥于F ,90AEB DFC ∴∠=∠=︒,……………………2分CE BF =Q ,CE EF BF EF ∴-=-,BE CF ∴=,……………………4分在Rt CDF △与Rt BAE △中,CD ABCF BE=⎧⎨=⎩ ()Rt Rt HL CDF BAE ∴△≌△ AE DF ∴=,……………………1分 C D ∠=∠.AB CD ∴∥.…………………………8分19.解:设这个多边形的边数为n ,依题意有:()21801803360n -︒+︒=⨯︒…………………………4分解得:7n =.…………………………7分答:这个多边形的边数为7.……………………8分 20.略21.(1)(2)9,42P ⎛⎫ ⎪⎝⎭;()2,M a b '- (3)237a b +=; (4)7,02⎛⎫⎪⎝⎭22.(1)证明;AD Q 平分BAC ∠,BAD CAD ∴∠=∠,CE AD ⊥Q 于F ,90AFC CFD ∴∠=∠=︒,90DAC ACF ∴∠+∠=︒, 90ACB =︒∠Q ,90BCE ACF ∴∠+∠=︒,BCE DAC ∴∠=∠,在AD 上取点G ,使AG CE =,连CQ ,如图.在CAG △与BCE △中,AC BC CAG BCE AG CE =⎧⎪∠=∠⎨⎪=⎩()SAS CAG BCE ∴△≌△,…………………………3分 B ACG ∴∠=∠.,ADC B BAD FGC ADC ACG ∠=∠+∠∠=∠+∠Q .FDC FGC ∴∠=∠.在Rt CFG △与Rt CFD △中,FGC FDC CFG CFD CF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩CFG CFD ∴△≌△,…………………………6分FG FD ∴=.2AD DF CE ∴=+…………………………7分(2)45°或135°.……………………10分. 23.问题的提出:证明:取BC 中点D ,连AD ,BD CD ∴=,在ABD △和ACD △中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩ABD ACD ∴△≌△,B C ∴∠=∠.……………………3分其他如作AD BC ⊥,或作BAC 的角平分线交BC 于D 点,对照给分. 特别的,只写ABC ACB Q △≌△,B C ∴∠=∠,只给1分. 知识的运用:证明:90AEF =︒∠Q ,90AEB FEC ∴∠+∠=︒,90ABC =︒∠Q ,90BAE AEB ∴∠+∠=︒,BAE FEC ∴∠=∠在AB 上取一点P ,使AP EC =,连PE ,如图.AB BC =Q ,AB AP BC EC ∴-=-,BP BE ∴=,∴由问题的提出知:BPE BEP ∠=∠.…………………………5分 90ABC =︒∠Q ,45BPE BEP ∴∠=∠=︒,135APE ∴∠=︒.在APE △和ECF △中,AP EC PAE CEF AE EF =⎧⎪∠=∠⎨⎪=⎩APE ECF ∴△≌△,135APE ECF ∴∠=∠=︒……………………7分. 拓展与延伸:3902α-︒…………………………10分. 24.数学问题:解:2AP PD =,理由如下:……………………1分 延长PD 到Q ,使DQ PD =,连PC ,如图.AD Q 为ABC △中线,BD CD ∴=.在BDQ △和CDP △中,PD DQ PDC QDB CD BD =⎧⎪∠=∠⎨⎪=⎩CDP BDQ ∴△≌△PC BQ ∴=,PCD QBD ∠=∠.PC BQ ∴∥.延长PE 到H ,使EH PE =,如图,同理可证:AH PC =,AH PC ∥.BQ AH ∴∥,BQ AH =.H PBQ ∴∠=∠.在APH △和QPB △中,H PBQ APH QPB AH BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AP PQ ∴=2AP PD ∴=,…………………………4分数学思考;证明:延长ED 到M ,使DM DE =,连BM ,如图.AD Q 为ABC △中线,BD CD ∴=.在EDC △和MDB △中,ED DM EDC MDB DC BD =⎧⎪∠=∠⎨⎪=⎩EDC MDB ∴△≌△,EC BM ∴=,M DEC ∠=∠.BM AC ∴∥.MBE AEB ∴∠=∠.BE Q 是ABC △中线,AE EC ∴=,AE BM ∴=.在AEB △和MBE △中,AE BM AEB MBE EB BE =⎧⎪∠=∠⎨⎪=⎩()SAS AEB MBE ∴△≌△ME AB ∴=,BEM ABE ∠=∠.12DE AB ∴=,DE AB ∥ ABC EDC ∴∠=∠.…………………………8分数学运用:①2AB CD EF +=;…………………………10分 ②()12EFNM S m n h =+四边形.……………………12分.。

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。

一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。

八年级数学上册期中考试试卷及答案

八年级数学上册期中考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. 3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。

()2. 0是最小的自然数。

()3. 1是最大的质数。

()4. 两条对角线相等的四边形一定是矩形。

()5. 任何两个奇数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 一个正方形的边长是4,那么它的面积是______。

2. 如果 a = 2,那么 a 的平方是______。

3. 下列数中,最大的偶数是______。

4. 如果一个等边三角形的边长是3,那么它的周长是______。

5. 下列数中,最小的负数是______。

四、简答题(每题2分,共10分)1. 请解释什么是质数。

2. 请解释什么是偶数。

3. 请解释什么是等边三角形。

4. 请解释什么是自然数。

5. 请解释什么是正方形。

五、应用题(每题2分,共10分)1. 一个长方形的长是6,宽是4,求它的面积。

2. 如果 a = 3,b = 5,那么 a + b 的和是多少?3. 一个等腰三角形的底边长是8,腰长是5,求它的周长。

4. 一个正方形的边长是5,求它的对角线长度。

5. 如果一个数的平方是36,那么这个数可能是多少?六、分析题(每题5分,共10分)1. 请分析一个长方形的长和宽分别是多少时,它的面积最大。

2. 请分析一个等腰三角形的底边长和腰长分别是多少时,它的周长最小。

七、实践操作题(每题5分,共10分)1. 请画出一个边长为5的正方形,并标出它的对角线长度。

2. 请画出一个底边长为6,腰长为8的等腰三角形,并标出它的周长。

2022-2023学年度第一学期期中考试八年级数学试卷

2022-2023学年度第一学期期中考试八年级数学试卷

2022/2023学年度第一学期期中考试八年级数学试题时间:100分钟分值:120分考试形式:闭卷命题人:审核人:一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题卡相应位置上)1.下列四个图形中,是轴对称图形的为【▲ 】A .B .C .D .2.下列等式正确的是【▲ 】A .±=2B .=﹣2C .=﹣2D .=0.13.下列各组数中,能作为直角三角形三边长的是【▲ 】A.1,2,3 B.4,5,6 C.6,8,10 D.7,8,94.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢手绢”游戏,要求在他们中间放一个手绢,谁先抢到手绢谁获胜,为使游戏公平,则手绢应放的最适当的位置是在△ABC的【▲ 】A.三边垂直平分线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点5.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=10,则点P到AB的距离是【▲ 】A.15 B.12 C.5 D.10(第5题)(第6题)(第8题)(第11题)6.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为【▲ 】A.16cm B.28cm C.26cm D.18cm7.若等腰三角形一个外角等于100°,则它的顶角度数为【▲ 】A.20°B.80°C.20°或80°D.无法确定8.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.则AB为【▲ 】A.19 B.12 C.21 D.26二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上).9.16的算术平方根是▲ .10.已知+(n ﹣1)2=0,则mn=▲ .11.如图所示,是一块由花园小道围成的边长为12米的正方形绿地,在离C处5米的绿地旁边B 处有健身器材,为提醒居住在A处的居民爱护绿地,不直接穿过绿地从A到B,而是沿小道从A→C→B,请问你多走了▲ 米.12.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=▲ °.(第12题)(第14题)(第15题)(第16题)13.直角三角形的两边长为5、12,则斜边上的中线长为▲ .14.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=6cm,BC=10cm.则EC的长为▲ cm.15.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有▲个.16.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP =5,当AD⊥AB时,过D作DE⊥AC于E,若DE=4,则△BCP面积为▲ .三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)求下列各式中x的值:(1)x2﹣25=0;(2)(x﹣2)3﹣8=0.18.(本题满分6分)已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4.(1)求a、b的值;(2)求a+2b的算术平方根.19.(本题满分5分)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P.(请保留作图痕迹)20.(本题满分5分)如图,B、C、D、E在同一条直线上,AB∥EF,BC=DE,AB=EF,求证:△ACB≌△FDE.(第19题)(第20题)21.(本题满分6分)如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.22.(本题满分6分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC 的面积为▲;(3)在直线l上找一点P,使PB+PC的长最短.23.(本题满分8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.24.(本题满分8分)如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON =30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.25.(本题满分10分)阅读理解:亲爱的同学们,在以后的学习中我们会学习一个定理:直角三角形斜边上的中线等于斜边的一半.即:如图1:在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=AB.牛刀小试:(1)在图1中,若AC=6,BC=8,其他条件不变,则CD=▲;活学活用:(2)如图2,已知∠ABC=∠ADC=90°,点E、F分别为AC、BD的中点,AC=26,BD=24.求EF的长;问题解决:(3)如图3,在Rt△ABC中,∠ACB=90°,AB=10,以AB为边在AB上方作等边三角形ABD,连接CD,求CD的最大值.26.(本题满分12分)阅读以下材料,完成以下两个问题.[阅读材料]已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA 交AE于点F,DF=AC.求证:AE平分∠BAC.结合此题,DE=EC,点E是DC的中点,考虑倍长,并且要考虑连接哪两点,目的是为了证明全等,从而转移边和角.有两种考虑方法:①考虑倍长FE,如图(1)所示;②考虑倍长AE,如图(2)所示以图(1)为例,证明过程如下:证明:延长FE至G,使EG=EF,连接CG.在△DEP和△CEG中,,∴△DEF≌△CEG(SAS).∴DF=CG,∠DFE=∠G.∵DF=AC,∴CG=AC.∴∠G=∠CAE.∴∠DFE=∠CAE.∵DF∥AB,∴∠DFE=∠BAE.∴∠BAE=∠CAE.∴AE平分∠BAC.问题1:参考上述方法,请完成图(2)的证明.问题2:根据上述材料,完成下列问题:已知,如图3,在△ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,∠BAE=∠CAF=90°,AE=AB,AC=AF,AD=3,求EF的长.。

八年级数学期中考试试卷

八年级数学期中考试试卷

一、选择题(每题4分,共20分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -√32. 已知a,b是实数,且a+b=0,那么a和b的关系是()A. a=bB. a=-bC. a和b不相等D. a和b相等或互为相反数3. 在下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²4. 如果等腰三角形的底边长为4cm,腰长为6cm,那么这个三角形的周长是()A. 10cmB. 12cmC. 16cmD. 20cm5. 下列函数中,图象为一条直线的是()A. y = 2x + 3B. y = x² - 1C. y = 3/xD. y = 2√x二、填空题(每题5分,共25分)6. 已知一个数的平方是25,那么这个数是______或______。

7. 如果|a| = 5,那么a的取值范围是______。

8. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的度数是______。

9. 已知等边三角形的边长为a,那么它的周长是______。

10. 函数y = 2x - 3的图象是一条直线,且斜率为______。

三、解答题(共55分)11. (10分)计算下列各式的值:(1)(-3)² - 2×(-3)×2 + 2²(2)√(49 - 14√3)12. (10分)解下列方程:(1)2x - 3 = 7(2)3(x + 2) - 2x = 513. (10分)已知等腰三角形ABC的底边AB=6cm,腰AC=8cm,求这个三角形的面积。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

八年级上册数学期中考试(时刻:90分钟总分:100分)一.选择题(36分)1.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()AB C3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2图14.如图2,AD是ABC△的中线,E,F别离是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则那个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,5ADCB图2EFCOAB图411.等腰三角形的一个角是80°,则它的底角是 ( )A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则那个等腰三角形的底角是 ( )A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)13.若是△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 若是△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“必然”或“不必然”或“必然不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= . 16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必需知足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。

2023-2024学年北京理工大学附属中学八年级上学期期中考试数学试卷含详解

2023-2024学年北京理工大学附属中学八年级上学期期中考试数学试卷含详解

2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6 B.3,5,7 C.4,5,10 D.3,3,83.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒4.画ABC 边BC 上的高,下列画法正确的是()A . B.C. D.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A.6B.7C.8D.910.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.【答案】D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【详解】解:A .不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6B.3,5,7C.4,5,10D.3,3,8【答案】B【分析】根据三角形的三边关系,进行判断即可.【详解】解:A 、246+=,不能构成三角形;B 、357+>,能构成三角形;C 、4510+<,不能构成三角形;D 、338+<,不能构成三角形;故选B .【点睛】本题考查构成三角形的条件.解题的关键是掌握两条短的线段之和大于第三条线段的长时,三条线段能构成三角形.3.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒【答案】B 【分析】三角形内角和定理,求出BCD ∠,再根据全等三角形对应角相等,即可得出结果.【详解】解:∵73,38D DBC ∠=︒∠=︒,∴10689D D CD BC B ∠︒-∠-=∠=︒;∵ABC DCB △≌△,∴69B ABC CD ∠∠==︒;故选B .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的对应角相等,是解题的关键.4.画ABC 边BC 上的高,下列画法正确的是()A. B.C. D.【答案】D【分析】根据三角形的高的定义:从三角形的一个顶点出发,向对边引垂线,顶点与垂足形成的线段即为三角形的高,进行判断即可.【详解】解:画ABC 边BC 上的高,如图所示:故选D .【点睛】本题考查画三角形的高.熟练掌握三角形的高的定义,是解题的关键.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL【答案】D 【分析】根据题意得到两个三角形是直角三角形,结合给出的条件:直角边和斜边分别相等,从而得出结论.【详解】∵90BCA BDA ∠=∠=︒,∴BAC 和BAD 是直角三角形,∵BC BD =,AB AB =,∴()BAC BAD HL ≌,故选:D .【点睛】此题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法及其应用.6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒【答案】D 【分析】先根据邻补角的定义计算出5∠的度数,再根据多边形的外角和为360︒,计算即可得到答案.【详解】解:如图,120BAE ∠=︒ ,518018012060BAE ∴∠=︒-∠=︒-︒=︒,12345∠∠∠∠∠ 、、、、是五边形ABCDE 的五个外角,12345360∴∠+∠+∠+∠+∠=︒,1234360536060300∴∠+∠+∠+∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查了利用邻补角求角的度数、多边形的外角和,熟练掌握多边形的外角和为360︒是解此题的关键.7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P【答案】C【分析】本题考查了两点之间线段最短、轴对称的性质,熟练掌握轴对称的性质是解此题的关键.先找出点B 对称点B ',连接AB ',再根据两点之间线段最短即可得到答案.【详解】解:正确作法如下:如图,作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点P ,,理由如下:在l 上异于点P 的位置任取一点H ,连接AH ,BH ,B H ',,B 、B '关于直线l 对称,BH B H '∴=,AH BH AH B H AB AP B P AP BP '''∴+=+>=+=+,PA PB ∴+最短,故选:C .8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒【答案】B 【分析】根据等腰三角形的性质可得70ABC C ∠=∠=︒,根据三角形内角和定理可得40A ∠=︒,根据线段垂直平分线的性质可得AD BD =,从而得到40ABD A ==︒∠∠,最后由DBC ABC ABD ∠=∠-∠进行计算即可得到答案.【详解】解: 70AB AC C =∠=︒,,70ABC C ∴∠=∠=︒,180ABC C A ∠+∠+∠=︒ ,18040A ABC C ∴∠=︒-∠-∠=︒,DE 是AB 的垂直平分线,AD BD ∴=,40ABD A ∴∠=∠=︒,704030DBC ABC ABD ∴∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形内角和定理,熟练掌握以上知识点是解此题的关键.9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A .6 B.7 C.8 D.9【答案】C【分析】在AB 上截取AE AC =,证明ADE ADC △△≌,得到3DE CD ==,2AED C B ∠=∠=∠,推出EDB B ∠=∠,得到3BE DE ==,再利用AB AE BE =+,求解即可.【详解】解:在AB 上截取AE AC =,∵AD 平分CAE ∠,∴DAE DAC ∠=∠,∵AD AD =,∴ADE ADC △△≌,∴3DE CD ==,2AED C B ∠=∠=∠,∵AED B EDB ∠=∠+∠,∴EDB B ∠=∠,∴3BE DE ==,∴8AB AE BE =+=;故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是添加辅助线,构造全等三角形和特殊三角形.10.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④【答案】B 【分析】由折叠的性质可得90BCD BED ∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,即可判断①②,由BD 不一定等于AD ,可得BDE ∠不一定等于ADE ∠,即可判断③;根据等边三角形的判定即可判断④.【详解】解: 将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,BCD BED ∴ ≌,90BCD BED ∴∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,DE AB ⊥∴,BD 垂直平分CE ,故①②正确,符合题意;BD Q 不一定等于AD ,∴BDE ∠不一定等于ADE ∠,∴DE 不一定平分ADB ∠,故③错误,不符合题意;60ADE ∠=︒ ,180120CDE ADE ∴∠=︒-∠=︒,CDB EDB ∠=∠ ,1602CDB EDB CDE ∴∠=∠=∠=︒,9030CBD BDE ∠=︒-∠=∴︒,30EBD CBD ∠∴∠==︒,即60CBE ∠=︒,BC BE = ,BCE ∴△是等边三角形,故④正确,符合题意;综上所述,正确的有①②④,故选:B .【点睛】本题考查了折叠的性质、线段垂直平分线的判定与性质、等边三角形的判定等知识点,熟练掌握以上知识点是解此题的关键.二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.【答案】BC AD =(答案不唯一)【分析】当BC AD =时,可证()SAS ABC CDA ≌,然后作答即可.【详解】解:当BC AD =时,∵BC AD =,21∠=∠,AC CA =,∴()SAS ABC CDA ≌,故答案为:BC AD =.【点睛】本题考查了全等三角形的判定定理.解题的关键在于熟练掌握根据ASA SAS AAS 、、证明三角形全等.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.【答案】40【分析】此题主要考查了三角形的外角性质,平行线的性质,角平分线的定义,首先根据三角形的外角定理求出40ABD ∠=︒,再根据角平分线的定义得40CBD ABD ∠=∠=︒,然后根据平行线的性质即可得BDE ∠的度数.【详解】解:∵36A ∠=︒,76BDC ∠=︒,∴BDC A ABD ∠=∠+∠,即7636ABD ︒=︒+∠,∴763640ABD ∠=︒-︒=︒,∵BD 是ABC 的角平分线,∴40CBD ABD ∠=∠=︒,∵DE BC ∥,∴40BDE CBD ∠=∠=︒.故答案为:40.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.【答案】()1,1-【分析】根据平行于x 轴的直线上的点的纵坐标相同,得到点B 的纵坐标,过点A 作AD BC ⊥,利用等腰三角形的三线合一,求出点B 的横坐标即可.【详解】解:∵BC x ∥轴,()5,1C ,∴点B 的纵坐标为1,过点A 作AE x ⊥,交x 轴于点E ,交BC 于点D ,则:()2,1D ,∵,AB AC =∴BD CD =,∴点B 的横坐标为2251⨯-=-,∴()1,1B -.故答案为:()1,1-.【点睛】本题考查坐标与图形,等腰三角形的性质.熟练掌握平行于x 轴的直线上的点的纵坐标相同,等腰三角形三线合一,是解题的关键.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.【答案】3【分析】过点D 作DF AB ⊥于点F ,角平分线的性质得到DF DE =,再利用三角形的面积公式进行计算即可.【详解】解:过点D 作DF AB ⊥于点F ,∵AD 平分,BAC DE AC∠⊥∴2DF DE ==,∴ABD △的面积是1132322AB DF ⋅=⨯⨯=;故答案为:3.【点睛】本题考查角平分线的性质.熟练掌握到角平分线上的点到角两边的距离相等,是解题的关键.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.【答案】①.115②.5【分析】先证明ABD BCE ≌,得到BD CE =,BAD CBE ∠=∠,利用三角形外角的性质,求出AFB ∠,利用BD BE -即可得到DE 的长.【详解】解:∵ABC 为等腰直角三角形,∴90,,45ABC AB BC ACB ∠=︒=∠=︒,∵,AD BD CE BD ⊥⊥,∴90ADB CEB ∠=∠=︒,∴90ABD BCE CBE ∠=∠=︒-∠,∴ABD BCE ≌,∴70BAD CBE ∠=∠=︒,7BD CE ==,∴115AFB DBC BCD ∠=∠+∠=︒,5DE BD BE =-=;故答案为:115,5.【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,三角形的外角.解题的关键是证明ABD BCE ≌.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.【答案】①.5(答案不唯一)②.5(答案不唯一)③.9【分析】(1)根据题意,画出图形,进行求解即可.(2)根据题意,分,,A B C ∠∠∠分别为直角,进行讨论求解即可.【详解】解:(1)如图,当5,5m n ==时,此时:()5,5A ,()5,0B ,()0,5C ,由图可知,三角形ABC 为等腰直角三角形,满足题意,故答案为:5,5(答案不唯一);(2)∵点(),0B m ,点()0,C n ,m 与n 均是正整数,∴点,B C 分别在,x y 轴的正半轴上,∵()5,5A ,∴()()2222222225555AB m AC n BC m n =+-=+-=+,,,当A ∠为直角时,222AB AC BC +=,即:()()2222225555m n m n +-++-=+,整理得:10m n +=,∴10m n =-,∴()()222222551055AB n n AC =+-+=+-=,满足ABC 为等腰直角三角形,∴1,2,3,4,5,6,7,8,9m =,9,8,7,6,5,4,3,2,1n =,满足上述条件的ABC 共有9个;当B ∠为直角或C ∠为直角,不存在点,B C 分别在,x y 轴的正半轴上,m 与n 均是正整数时,ABC 为等腰直角三角形;故答案为:9.【点睛】本题考查坐标与图形.熟练掌握等腰直角三角形的性质,利用数形结合和分类图讨论的思想进行求解,是解题的关键.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.【答案】1x y =⎧⎨=⎩【分析】利用加减消元法求解即可.【详解】解:32341x y x y -=⎧⎨+=⎩①②,2⨯+①②得,77x =,解得,1x =,将1x =代入②得,141y +=,解得,0y =,∴10x y =⎧⎨=⎩.【点睛】本题考查了加减消元法解二元一次方程组.解题的关键在于正确选取合适的方法解方程组.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.【答案】(1)2x ≥-,图见解析(2)3,4【分析】(1)根据解不等式的步骤,进行求解,再在数轴上表示出解集,即可;(2)分别求出每一个不等式的解集,找到它们的公共部分,即可.【详解】解:(1)4113x x -≥-,去分母,得:4133x x -≥-,移项,合并,得:2x ≥-;数轴表示解集,如图:(2)()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩①②,由①,得:52x ≥;由②,得:4x ≤;∴不等式的解集为:542x ≤≤.∴整数解为:3,4.【点睛】本题考查解一元一次不等式和一元一次不等式组.熟练掌握解一元一次不等式的步骤,正确的计算,是解题的关键.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.【答案】见解析【分析】利用SAS 证明CAB DAB ∆∆≌,即可证明C D ∠=∠.【详解】解:AB 平分CAD ∠,CAB DAB ∴∠=∠,在CAB ∆和DAB ∆中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()SAS CAB DAB ∴∆∆≌,C D ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握SAS 、AAS 、ASA 、SSS 等全等三角形的判定方法是解题的关键.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.【答案】76AEC ∠=︒,14DAE ∠=︒【分析】三角形的内角和定理,求出,CAD BAC ∠∠的度数,角平分线求出,CAE BAE ∠∠的度数,利用CAE CAD ∠-∠求出DAE ∠,三角形的外角求出AEC ∠即可.【详解】解:∵AD 是ABC 中BC 边上的高,∴90ADC ∠=︒,∵32,60B C ∠=∠=︒︒,∴18088BAC B C ∠=︒-∠-∠=︒,18030CAD ADC C ∠=︒-∠-∠=︒,∵AE 平分BAC ∠,∴1442CAE BAE BAC ∠=∠=∠=︒,∴76AEC B BAE ∠=∠+∠=︒,14DAE CAE CAD ∠=∠-∠=︒.【点睛】本题考查与角平分线有关的三角形的内角和定理,三角形的外角.熟练掌握相关知识点,是解题的关键.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.【答案】(1)图见解析(2)NP ,到线段两端距离相等的点在线段的垂直平分线上【分析】(1)根据作图步骤,作图即可;(2)根据中垂线的判定,进行作答即可.【小问1详解】解:如图,线段CD 即为所求【小问2详解】证明:,CM CN MP NP == ,∴点,C P 在线段MN 的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上).CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.故答案为:NP ,到线段两端距离相等的点在线段的垂直平分线上【点睛】本题考查基本作图——作垂线.熟练掌握垂线的尺规作图方法,中垂线的判定方法,是解题的关键.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.【答案】(1)见解析(2)见解析【分析】(1)由题意得,AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,证明()SAS ABD ACE △≌△,进而可证BD CE =;(2)如图,延长CE 交BD 于F ,交AB 于G ,由()SAS ABD ACE △≌△,可得ABD ACE ∠=∠,由180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,可得90BFC CAB ∠=∠=︒,进而结论得证.【小问1详解】证明:∵等腰直角三角形ABC 和等腰直角三角形ADE ,90BAC DAE ∠=∠=︒,∴AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,∵AB AC =,DAB EAC ∠=∠,AD AE =,∴()SAS ABD ACE △≌△,∴BD CE =;【小问2详解】证明:如图,延长CE 交BD 于F ,交AB 于G ,∵()SAS ABD ACE △≌△,∴ABD ACE ∠=∠,∵180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,∴90BFC CAB ∠=∠=︒,∴CE BD ⊥.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,三角形内角和定理,对顶角相等.解题的关键在于明确全等的判定条件.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)【答案】(1)①图见解析②图见解析(2)图见解析【分析】(1)作以点C 为顶点的等边三角形的中线与BR 的交点即为点A ,利用三线合一以及等边三角形的角为60︒,即可得到ABC 是以90ACB ∠=︒的直角三角形;②根据150,CAE AE BC ∠=︒=,得到点E 在线段BR 上,点A 的下方3个单位长度的位置,再根据DE AB =确定点D 的位置,即可;(2)分别以点,,A B C 为原心,以小于AB 长度的一半为半径画弧,与三边的交点为,,P Q R ,连接即可得到等边三角形PQR .【详解】解:(1)①如图所示:ABC 即为所求,②如图所示,ADE V 即为所求;(2)如图,PQR 即为所求;【点睛】本题考查作图—复杂作图.熟练掌握等边三角形的性质,全等三角形的判定,是解题的关键.24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.【答案】(1)证明见解析(2)①补图见解析;②EC BD DE =+,证明见解析【分析】(1)由AH 平分PAQ ∠,可得BAM CAM ∠=∠,由BC AH ⊥,可得90AMB AMC ∠=∠=︒,证明()ASA ABM ACM ≌,进而可证BM CM =;(2)①如图1,即为所求;②如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,则ABN ACM ∠=∠,证明()SAS ABD ACF △≌△,则AD AF =,BAD CAF ∠=∠,由12DAE PAQ BAM CAM ∠=∠=∠=∠,可得BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,则BAD EAM ∠=∠,BAE FAM ∠=∠,由BAD BAE EAM FAM ∠+∠=∠+∠,可得DAE FAE ∠=∠,证明()SAS ADE AFE △≌△,则DE EF =,根据EC CF EF =+,等量代换可得EC BD DE =+.【小问1详解】证明:∵AH 平分PAQ ∠,∴BAM CAM ∠=∠,∵BC AH ⊥,∴90AMB AMC ∠=∠=︒,∵BAM CAM ∠=∠,AM AM =,90AMB AMC ∠=∠=︒,∴()ASA ABM ACM ≌,∴BM CM =;【小问2详解】①解:如图1,②解:EC BD DE =+,证明如下:如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,∴ABN ACM ∠=∠,∵AB AC =,ABD ACF ∠=∠,DB CF =,∴()SAS ABD ACF △≌△,∴AD AF =,BAD CAF ∠=∠,∵12DAE PAQ BAM CAM ∠=∠=∠=∠,∴BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,∴BAD EAM ∠=∠,BAE FAM ∠=∠,∴BAD BAE EAM FAM ∠+∠=∠+∠,即DAE FAE ∠=∠,∵AD AF =,DAE FAE ∠=∠,AE AE =,∴()SAS ADE AFE △≌△,∴DE EF =,∵EC CF EF =+,∴EC BD DE =+.【点睛】本题考查了角平分线的定义,全等三角形的判定与性质,轴对称的性质.解题的关键在于确定全等三角形的判定条件.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.【答案】(1)①1P ,3P ,②36P y -≤≤,且0P y ≠,3P y ≠(2)①47P x ≤≤,②()()1110m n --=【分析】(1)①画出图形,再根据垂直对称点的定义判断即可;②先判断ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,所得图形即为点P 的轨迹,再根据垂直对称点的定义判断即可;(2)①根据垂直对称点的定义,结合AB BP ⊥可得线段PA 垂直平分线过点B ,即有AB BP =,过P 点作PT x ⊥轴于点T ,证明AOB BTP ≌V V ,问题随之得解;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段;同理当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,即可判断出动点P 形成的轨迹组成的图形为平行四边形,问题随之得解.【小问1详解】①如图,∵()0,3A ,()0,0B ,()13,3P ,()21,1P ,()33,0P,∴133AB AP BP ===,3AB BP ⊥,1AP AB ⊥,22P B =,25AP =,∴点B 在3AP 的垂直平分线上,点A 在1BP 的垂直平分线上,∴线段AB 的垂直对称点是1P ,3P ;②∵对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,∴AB PB =或者AB PA =,∴ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,如图,当AB PA =时,点P 位于点P '处,∴根据等腰三角形的性质可得顶点A 在BP '的垂直平分线上,当AB PB =时,点P 位于点P ''处,∴根据等腰三角形的性质可得顶点B 在AP ''的垂直平分线上,当点P 位于点A 或者点B 时,点P 不是线段AB 的垂直对称点,∵()0,3A ,()0,0B ,3AB =,∴()0,6M ,()0,3N -,∴点P 的纵坐标P y 的取值范围:36P y -≤≤,且0P y ≠,3P y ≠;【小问2详解】①过P 点作PT x ⊥轴于点T ,如图,∵P 是线段AB 的垂直对称点,AB BP ⊥,∴点B 在AP 的垂直平分线上,90ABP ∠=︒,∴AB BP =,即ABP 是等腰直角三角形,∵90ABP AOB ∠=︒=∠,∴OAB OBA OBA PBT ∠+∠=∠+∠,∴OAB PBT ∠=∠,∵PT x ⊥轴,∴90BTP AOB ∠=︒=∠,∴BTP AOB ≌,∴AO BT =,∵()0,A a ,(),0B b ,3a =,14b ≤≤,∴3AO a ==,BO b =,∴3AO BT ==,∴3OT OB BT b =+=+,∵14b ≤≤,∴437b ≤+≤,∴47OT ≤≤,∴点P 的横坐标P x 的取值范围:47P x ≤≤;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段,且两条线段相等;当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,且两条线段相等;∵两组对边分别相等的四边形是平行四边形,∴动点P 形成的轨迹组成的图形为平行四边形,如图,∵a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,∴点A 垂直移动的距离为()1m -,点B 水平移动的距离为()1n -,∴动点P 形成的轨迹组成的图形为平行四边形的底为()1n -,高为()1m -,∵动点P 形成的轨迹组成的图形面积为10,∴()()1110n m --=.【点睛】本题主要考查了坐标与图形,平行四边形的判定与性质,等腰三角形的判定与性质,全等三角形的判定与性质,垂直平分线的性质等知识,正确理解线段垂直对称点的含义是解答本题的关键.。

八年级数学期中考测试卷

八年级数学期中考测试卷

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √-1B. √2C. πD. 0.1010010001…(无限循环小数)2. 下列各式中,正确的是()A. a^2 = b^2,则a = bB. a^2 = b^2,则a = -bC. a^2 = b^2,则a = ±bD. a^2 = b^2,则a + b = 03. 若x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 1或44. 下列函数中,y是x的一次函数是()A. y = 2x^2 + 3B. y = x + 1C. y = 2/xD. y = √x5. 在平面直角坐标系中,点A(2,3),点B(-3,-1),则线段AB的中点坐标是()A. (-1,1)B. (-1,2)C. (1,-1)D. (1,2)二、填空题(每题4分,共20分)6. 若a + b = 5,a - b = 3,则a = ______,b = ______。

7. 若|a| = 5,|b| = 3,则|a + b|的最大值为 ______,最小值为 ______。

8. 若√(x - 1) + √(x + 1) = 2,则x的值为 ______。

9. 若一次函数y = kx + b的图象经过点(1,3),则k = ______,b = ______。

10. 在△ABC中,∠A = 60°,∠B = 45°,则∠C = ______。

三、解答题(每题10分,共30分)11. (1)已知x^2 - 4x + 3 = 0,求x的值。

(2)若x^2 - 2x + 1 = 0,求x + 1的值。

12. 已知一次函数y = kx + b的图象经过点(-1,2)和(2,-1),求k和b的值。

13. 在平面直角坐标系中,点A(2,3),点B(-3,-1),求线段AB的长度。

四、应用题(每题10分,共20分)14. 甲、乙两车同时从相距200千米的A、B两地相对开出,甲车的速度是60千米/小时,乙车的速度是80千米/小时,求两车相遇时各自行驶了多少千米?15. 某商品原价为x元,打八折后的价格为0.8x元,若打九折后的价格为0.9x元,求原价与现价的关系式。

八年级数学期中考试试卷【含答案】

八年级数学期中考试试卷【含答案】

八年级数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 1.1010010001D. 0.3333. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. -5D. 54. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是什么?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 下列哪个图形不是正多边形?A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。

()7. 在一个等差数列中,如果公差为0,则这个数列中的所有数都相等。

()8. 两个锐角互余。

()9. 任何一个正整数都可以表示为2的幂的乘积。

()10. 一元二次方程的解可以是两个相等的实数根。

()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为3,公差为2,那么第10项为______。

12. 若一个正方形的边长为a,那么它的对角线长度为______。

13. 若一个圆的半径为r,那么它的面积公式为______。

14. 若一个三角形的三个内角分别为45°、45°和90°,那么这个三角形是______三角形。

15. 若一个函数f(x) = x^2 4x + 4,那么它的顶点坐标为______。

四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。

17. 请简述一元二次方程的求根公式。

18. 请简述等差数列的通项公式。

19. 请简述圆的标准方程。

20. 请简述直角坐标系中两点之间的距离公式。

五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,且它的周长为30cm,求长方形的长和宽。

八年级数学期中测试题

八年级数学期中测试题

八年级数学测试题(考试时间:80分钟 满分120)一、 选择题(每小题5分,共45分)1、计算28-的结果是 …………………… 【 】A 、6B 、6C 、2D 、22、下列几组数据中,能作为直角三角形三边长的是……………… 【 】A 、2,3,4,B 、2225,4,3C 、1,12,13D 、a a a 13,12,5(0>a ) 3、把直角三角形的两直角边均扩大到原来的2倍,则斜边扩大到原来的几倍?………【 】A 、2B 、4C 、3D 、54、下列二次根式中,与3是同类二次根式的是……………………… 【 】A 、8B 、31 C 、16 D 、6 5、若三角形的三边长分别为3,2,1,那么最长边上的高是………【 】A 、22 B 、 23 C 、 36 D 、 26 6、规定b a b a b a +-=*,则23*的值为………………………………【 】 A 、625- B 、623- C.、36- D 、36 7、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为………………………………… 【 】A 、40B 、80C 、40或360D 、80或3608.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为( )A 、146B 、150C 、153D 、16009.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格那么你估计该厂这20万件产品中合格品约为( )A .1万件B .19万件C .15万件D .20万件二、填空题(每小题分,共20分)10、如果代数式1-x x 有意义,那么x 的取值范围是 .11、某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m ,则购买这种地毯至少需要__________元.12、以长为5,2,3,2,1中的三条线段为边长可以构成 个直角三角形.13、小明把一根70cm 长的木棒放到一个长宽高分别为30cm,40cm,50cm 的木箱中,他能放进去吗?答: (选填“能”或“不能”).三、解答题(共55分)14、(1)计算:.821332+- (6分)(2)化简:).352(5)25(2++- (6分)15、如图,一架梯子AB 的长为2.5m ,斜靠在竖直的墙上,这时梯子的底端A 到墙的距离AO=0.7m ,如果梯子顶端B 沿墙下滑0.4m 到达D ,梯子底端A 将向左滑动到C ,求AC 的距离? ODC BA16、某电脑公司2008年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2010年经营总收入要达到2160万元,且计划从2008年到2010年,每年经营总收入的年增长率相同,问2009年预计经营总收入为多少万元?。

八年级期中测试卷数学【含答案】

八年级期中测试卷数学【含答案】

八年级期中测试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 的值是多少?A. 8B. 9C. 10D. 113. 下列哪个数是素数?A. 12B. 13C. 15D. 184. 一个等边三角形的内角是多少度?A. 30°B. 45°C. 60°D. 90°5. 如果一个圆的半径是5cm,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 方程 2x + 3 = 7 的解是 x = 2。

()2. 任何两个奇数相加的和都是偶数。

()3. 一个等腰三角形的两个底角相等。

()4. 圆的周长和它的直径成正比。

()5. 对角线互相垂直的四边形一定是菱形。

()三、填空题(每题1分,共5分)1. 如果一个数加上5等于10,那么这个数是______。

2. 一个正方形的边长是6cm,那么这个正方形的面积是______平方厘米。

3. 2的平方根是______。

4. 如果一个事件是必然事件,那么这个事件发生的概率是______。

5. 在直角坐标系中,点(3, 4)的横坐标是______。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 什么是算术平均数?如何计算一组数据的算术平均数?3. 请解释什么是概率,并给出一个概率的例子。

4. 请简述平行线的性质。

5. 请解释什么是等差数列,并给出一个等差数列的例子。

五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,请计算这个长方形的面积。

2. 如果一辆汽车以60km/h的速度行驶,行驶了3小时,请计算这辆汽车行驶的总距离。

3. 一个班级有40名学生,其中有20名学生喜欢打篮球,请计算喜欢打篮球的学生所占的百分比。

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。

山东省东营市河口区实验中学2024-2025学年上学期八年级期中考试数学试题

山东省东营市河口区实验中学2024-2025学年上学期八年级期中考试数学试题

山东省东营市河口区实验中学2024-2025学年上学期八年级期中考试数学试题一、单选题1.下列各式从左到右的变形,是因式分解的是()A .x 2-9+6x =(x +3)(x -3)+6x B .(x +5)(x -2)=x 2+3x -10C .x 2-8x +16=(x -4)2D .x 2+1=x (x +1x)2.下列分式变形从左到右一定成立的是()A .a a mb b m+=+B .am abm b =C .a amb bm=D .a a mb b m-=-3.如图,将ABC 绕点A 顺时针旋转一定的角度得到AB C ''△,此时点B '恰在边AC 上,若25AB AC ==,,则B C '的长为()A .2B .3C .4D .54.青岛市某学校准备从甲、乙、丙、丁四个科创小组中选出一组,参加市南区青少年科技创新大赛.表格反映的是各组平时成绩的平均数(单位:分)及方差2S ,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()甲乙丙丁x78872s 1 1.20.91.8A .甲B .乙C .丙D .丁5.已知2436x mx ++是完全平方式,则m 的值为()A .8B .8±C .24D .24±6.解分式方程22311x x x++=--时,去分母后变形为A .()()2231x x ++=-B .()2231x x -+=-C .()()2231x x -+=-D .()()2231x x -+=-7.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为km /h x ,则下面所列方程正确的是()A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =-8.如果将分式6x yxy+中的x 和y 都扩大为原来的3倍,那么分式的值()A .缩小到原来的13;B .扩大到原来的3倍;C .不变;D .扩大到原来的9倍9.如果a 、b 、c 是三角形的三边长,那么代数式2222a ab c b --+的值是()A .正数B .负数C .非正数D .非负数10.如图,O 是正ABC V 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论,①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为5;③150AOB ∠=︒;④四边形AOBO ¢面积6=+;⑤6AOC AOB S S +=△△,其中正确的结论是()A .①④⑤B .①②③④C .①③⑤D .①③④⑤二、填空题11.因式分解:328a a -=.12.若分式242x x --的值为零,则x 的值是.13.4月23日是世界读书日,东营市组织开展“书香东营,全民阅读”活动,某学校为了解学生的阅读时间,随机调查了七年级50名学生每天的平均阅读时间,统计结果如下表所示.在本次调查中,学生每天的平均阅读时间的众数是小时.时间(小时)0.51 1.52 2.5人数(人)1018126414.如图所示,将直角三角形ACB , 90C ∠=︒,6AC =,沿CB 方向平移得直角三角形, 2DEF BF =, 3DG =,阴影部分面积为.15.已知关于x 的分式方程12211m x x--=--的解是非负数,则m 的取值范围是.16.某单位对员工的专业、业绩、出勤三个方面进行考核,三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是.17.如图,一块大的长方形分成3个正方形和3个完全相同的小长方形,观察图形,可将多项式2223a ab b ++因式分解为.18.如图,在直角坐标系中,已知点()30A -,,()04B ,,对OAB △连续作旋转变换,依次得到三角形①,②,③,④,…,则三角形⑫的直角顶点的坐标为.三、解答题19.因式分解(1)2x 2﹣4x +2(2)(a 2+b 2)2﹣4a 2b 220.解分式方程:(1)33122x x x-+=--;(2)2124111x x x -=-+-.21.先化简,再求值:2234(1)121a a a a a --+÷+++,其中a 从1-,2,3中取一个你认为合适的数代入求值.22.某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩x 均为不小于60的整数,分为四个等级:D :6070x ≤<,C :7080x ≤<,B :8090x ≤<,A :90100x ≤≤),部分信息如下:信息一:信息二:学生成绩在B 等级的数据(单位:分)如下:80,81,82,83,84,84,84,86,86,86,88,89请根据以上信息,解答下列问题:(1)求所抽取的学生成组为C 等级的人数;(2)求所抽取的学生成绩的中位数;(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A 等级的人数.23.如图,三角形ABC 的顶点的坐标分别为()1,4A -,()4,1B --,()1,1C .若三角形ABC 先向右平移4个单位长度,再向下平移3个单位长度得到三角形A B C '''(1)画出三角形A B C ''',并直接写出点C '的坐标;(2)求三角形ABC 的面积;(3)若在y 轴有一点M ,使三角形MOC 的面积是2,求点M 的坐标.24.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的1.5倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少4捆.(1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元,学校决定在菜苗基地购买A ,B 两种菜苗共100捆,所花的费用不超过2650元,求在菜苗基地购买A 种菜苗至少多少捆?25.在ABC V 中,90BAC AB AC ∠=︒=,,点D 是平面内一点(不与点A ,B ,C 重合),连接90BD CD BDC ∠=︒,,,连接AD .将ADC △沿直线AD 翻折,得到ADG △,连接CG .(1)如图1,点D 在ABC ∠内部,BD 交AC 于点E ,点F 是BD 上一点,且BF CD =,连接AF .①求证:ABF ADG ≌△△;②若AD =,1CD =,求点G 到直线BC 的距离.(2)如图2,点D 在BAC ∠的内部,试探究BD AD CG ,,之间的数量关系并说明理由.。

2023-2024学年度上学期八年级期中测试题数学附详细答案

2023-2024学年度上学期八年级期中测试题数学附详细答案

2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。

八年级数学期中考试试卷

八年级数学期中考试试卷

八年级数学期中考试试卷一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项是正确的。

)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.333...2. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 303. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 1/x4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是5. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π6. 一个多项式与2x^2 - 3x + 1的乘积是4x^3 - 6x^2 + 3x - 5,那么这个多项式是?A. 2x - 1B. 2x + 1C. -2x + 1D. -2x - 17. 下列哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x ≤ 2x + 1C. 3x < 2x + 1D. 3x ≥ 2x + 18. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 109. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:810. 一个三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 540°二、填空题(本题共5小题,每小题4分,共20分。

)11. 一个数的立方根是2,那么这个数是______。

12. 如果一个角的补角是120°,那么这个角的度数是______。

13. 一个等差数列的首项是3,公差是2,那么它的第五项是______。

14. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么它的解析式可以表示为y = a(x - 1)^2 - 4,其中a的值是______。

山东省淄博市张店区2024—2025学年上学期八年级数学期中考试卷(含答案)

山东省淄博市张店区2024—2025学年上学期八年级数学期中考试卷(含答案)

2024—2025学年度第一学期期中学业水平检测初三数学试题一、选择题(本题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上)1.下列式子是分式的是( )A .B .C .D .2.下列从左到右的等式变形中,属于因式分解的是( )A .B .C .D .3.下面是2024年某市某周发布的该周每天的最高温度:19℃,16℃,22℃,24℃,26℃,24℃,23℃。

关于这组数据,下列说法正确的是( )A .众数是24B .中位数是24C .平均数是20D .极差是74.下列分式中,为最简分式的是( )A .B .C .D .5.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示:选手甲乙丙丁方差0.560.600.500.45则在这四个选手中,成绩最稳定的是( )A .甲B .乙C .丙D .丁6.若实数x 满足,则的值为( )A .B .C .2024D .20257.甲、乙两个植树队参加植树造林活动,已知甲队每小时比乙队少种3棵树,甲队种60棵树与乙队种66棵树所用的时间相同。

若设甲队每小时种x 棵树,则根据题意可列方程为( )A .B .C .D .8.如图,爱思考的小颖看到课本《因式分解》一章中这样写道:形如的式子称为完全平方式小颖思考,如果一个多项式不是完全平方式,我们对其作如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,那么是否可以由此解决一些新的问题。

若借助小颖的思考,可以求得多项式的最大值,则该最大值为( )355x 25x 53x -()()2111x x x +-=-()ma mb m a b +=+222()2x y x xy y+=++()2ax bx c x ax b c++=++3235a a b 223a a a +222a a ++222a ab a b --2210x x +-=3232024x x x +++2027-2026-60663x x=+60663x x=-60663x x =+60663x x =-222a ab b ±+2285x x --+A .B .C .5D .139.小宇、小刚参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图所示的两个统计图。

人教版数学八年级(上)期中考试测试卷(1)

人教版数学八年级(上)期中考试测试卷(1)

人教版数学八年级(上)期中考试测试卷(1)一.选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.(3分)如图,△ABC中,∠ACB=90°,D为BC上一点,DE⊥AB于点E,下列说法中,错误的是()A.△ABC中,AC是BC上的高B.△ABD中,DE是AB上的高C.△ABD中,AC是BD上的高D.△ADE中,AE是AD上的高4.(3分)两根木棒的长分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形.如果第三根木棒长为偶数,则满足条件的三角形的个数为()A.3个B.4个C.5个D.6个5.(3分)若△ABC≌△DEF,且∠A=60°,∠E=70°,则∠C的度数为()A.50°B.60°C.70°D.50°或80°6.(3分)如图,点A,E,C在同一直线上,△ABC≌△DEC,BC=5,CD=8,则AE的长为()A.2B.3C.4D.57.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BDA=∠CDA 8.(3分)如图,点B在CD上,△ABO≌△CDO,当AO∥CD,∠BOD=30°时,∠A的度数为()A.20°B.30°C.40°D.35°9.(3分)把一个多边形纸片沿一条直线截下一个三角形后,变成一个四边形,则原多边形纸片的边数不可能是()A.3B.4C.5D.610.(3分)如图,射线OC平分∠AOB,点D、Q分别在射线OC、OB上,若OQ=4,△ODQ的面积为10,过点D作DP⊥OA于点P,则DP的长为()A.10B.5C.4D.311.(3分)到三角形各顶点距离相等的点是()A.三条边垂直平分线交点B.三个内角平分线交点C.三条中线交点D.三条高交点12.(3分)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,2∠BAE=∠CAD,连接DE,下列结论中正确的有()①AC⊥DE;②∠ADE=∠ACB;③若CD∥AB,则AE⊥AD;④DE=CE+2BE.A.①②③B.②③④C.②③D.①②④二.填空题(本大题共4小题,每小题3分,共12分)13.(3分)在直角三角形中,有一个锐角是另外一个锐角的5倍,则这个锐角的度数为度.14.(3分)已知AD是△ABC的中线,若△ABD与△ACD的周长分别是17和15,△ABC 的周长是22,则AD的长为.15.(3分)如图,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,若BC=8,BD=5,则DE的长为.16.(3分)如图,AB=7cm,AC=5cm,∠CAB=∠DBA=60°,点P在线段AB上以2cm/s 的速度由点A向点B运动,同时,点Q在射线BD上运动速度为xcm/s,它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束),当点P,Q运动到某处时,有△ACP与△BPQ全等,此时t=.三.解答题(本大题共8小题,共72分)17.(8分)已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a﹣b|+|b﹣c|=0,试判断△ABC的形状;(2)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.18.(8分)(1)根据图中的相关数据,求出x的值.(2)一个多边形的内角和是1260°,求这个多边形的边数.19.(8分)在△ABC中,BC=8,AB=1.(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为17,求△BCD的周长.20.(8分)在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求∠BAH的度数.21.(8分)已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.22.(10分)如图,AB=CD,AH=CG,DG⊥AC于G,BH⊥AC于H,BD交AC于点M.(1)求证:Rt△ABH≌Rt△CDG;(2)求证:MB=MD.23.(10分)如图,点D,E分别在AB,AC上,∠ADC=∠AEB=90°,BE,CD相交于点O,OB=OC.求证:∠1=∠2.小虎同学的证明过程如下:证明:∵∠ADC=∠AEB=90°,∴∠DOB+∠B=∠EOC+∠C=90°.∵∠DOB=∠EOC,∴∠B=∠C.……第一步又OA=OA,OB=OC,∴△ABO≌△ACO.……第二步∴∠1=∠2.……第三步(1)小虎同学的证明过程中,第步出现错误;(2)请写出正确的证明过程.24.(12分)(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN 的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F 在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.。

八年级期中测试数学试题

八年级期中测试数学试题

2022-2023春八年级数学期中测试卷(120分)一、你一定能选对!(本大题共10小题,每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是( )A .2.0B .9C .5D .21 2.若1-x 在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >1C .x ≥1D .x ≤13.正方形矩形和菱形都具有的性质是( )A .四个角都是直角B .对角线互相平分C .对角线相等D .对角线互相垂直4.下列计算正确的是( )A .538=-B .3223=-C .2)2(2=-D .492818-=- 5.已知△ABC 的三边分别为a 、b 、c ,则下列条件中不能判定△ABC 是直角三角形的是( )A .∠A ∶∠B ∶∠C =3∶4∶5B .a ∶b ∶c =1∶3∶2C .b 2=a 2-c 2D .∠A =∠B -∠C6.已知在□ABCD 中,∠A +∠C =200°,则∠B 的度数为( )A .80°B .90°C .100°D .110°7.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线,如果一条对角线用了49盆红花,还需从花房运来红花的盆数为( )A .47B .48C .49D .50 8.已知菱形的两条对角线的长分别是6和8,则菱形的周长和面积分别是( ) A .20,12 B .20,24 C .28,12 D .28,24 9.如图,一架2.6m 长的梯子AB 斜靠在一竖直的墙AO 上,此时AO =2.4m ,若梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 外移了(参考数据取1.4,取1.7,取1.8)( )A.0.8m B.1.5m C.0.9m D.0.4m10.如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15B.20C.3D.24二、填空题(本大题共有6小题,每小题3分,共18分)11.计算:2)2(=___________12.如图,在平面直角坐标系中有两点A(0,4)、B(5,0),则A、B两点之间的距离为___________第12题第13题13.如图,在菱形ABCD中,DE⊥AB于E,且AE=BE,则∠ADC=___________ 14.计算:)3(-+=___________535)(15.在四边形ABCD中,AB=CD,AD=BC,∠A=50°,则∠C=.16.如图,在平行四边形ABCD中,AC=8cm,BD=14cm,则△DBC的周长比△ABC的周长多cm.三、解答题(本大题共8小题,共72分)17.(本题8分)计算:(1) 23218-- (2) 181232162÷+⨯18.(本题8分)如图,在□ABCD ,DE 平分∠ADC 交BC 于点E(1) 若∠ABC =70°,求∠EDC 的度数(2) 若AB =4,AD =6,求BE 的长19.(本题8分)已知:x =2+1,y =﹣1求:(1)x 2+2xy +y 2的值;(2)x 2+y 2﹣2+1的值;20.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点(1) 求证:四边形EFGH 是平行四边形(2) 若AC +BD =36,AB =12,求△OEF 的周长21.(本题8分)如图,在△ABC中,AB=AC=6,BC=4,AD为△ABC的高,求:(1)AD的长;(2)△ABC的面积.22.(本题10分)已知:如图,AC,BD是平行四边形ABCD的对角线,且AC=BD,若AB=4,BD=8,求:平行四边形ABCD的周长.23.(本题10分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.24.(本题12分)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)连接BE交AC于点F,求证:AC平分BE.。

八年级期中考试卷数学题

八年级期中考试卷数学题

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16 - √25C. √-4D. √-12. 若a < b,则下列不等式中正确的是()A. a - 3 < b - 3B. a + 3 > b + 3C. a / 3 < b / 3D. a 3 > b 33. 下列图形中,属于平行四边形的是()A. 矩形B. 等腰梯形C. 等边三角形D. 直角三角形4. 若x² = 16,则x的值为()A. ±4B. ±2C. ±8D. ±15. 已知等腰三角形ABC中,AB = AC,若∠BAC = 60°,则∠ABC的度数为()A. 60°B. 120°C. 45°D. 30°6. 若a > b,则下列不等式中正确的是()A. a - 2 < b - 2B. a + 2 > b + 2C. a / 2 < b / 2D. a 2 > b 27. 下列数中,正数是()A. -2B. 0C. √-1D. 38. 若x² + 5x + 6 = 0,则x的值为()A. -2B. -3C. 2D. 39. 下列图形中,属于等腰三角形的是()A. 等边三角形B. 等腰梯形C. 等腰三角形D. 矩形10. 若a² = 25,则a的值为()A. ±5B. ±2C. ±10D. ±1二、填空题(每题3分,共30分)11. 等腰三角形的底边长为8cm,腰长为10cm,则其面积为______cm²。

12. 若a + b = 7,a - b = 3,则a的值为______。

13. 若x² - 5x + 6 = 0,则x的值为______。

14. 在直角三角形中,若一个锐角的度数为45°,则另一个锐角的度数为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第一次阶段检测试题
(时间100分钟,共120分)
一、选择题(每小题3分,共36分) 题号 答案
1. 下列各组数中不能作为直角三角形的三边长的是( )
A. 1.5,2,3
B. 7,24,25
C. 6,8,10
D. 9,12,15. 2. 下列各式中,属于最简二次根式的是( )
A. 3
2
B. 1.0
C. 34a
D. 12+a
3. 已知直角三角形的两条边长为3和4,则第三边长( ) A.5 B.4 C. 7 D.5或7
4. 下列各组数中互为相反数的是( )
A.2-与2
)2(- B.2-与38- C.2-与2
1
-
D. 2与2- 5.下列说法正确的个数是( )
①无限小数都是无理数;②正数、负数统称为有理数;③无理数的相反数还是无理数; ④无理数与无理数的和还是无理数;⑤带根号的数都是无理数;⑥无理数和有理数统 称为实数. A.2个 B.3个 C.4个 D.5个
6. 如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路 程(π取3)是( ).A.20cm B.10cm C.14cm D.无法确定
7. 下列运算中,错误的有 ( )
①1251144251=;②4)4(2±=-;③22222-=-=-;④2
14141161+=+
A. 1个
B. 2个
C. 3个
D. 4个
8.若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长
为 ( ) A.18 cm B.20 cm C.24 cm D.25 cm
9. 当
14+a 的值为最小值时,a 的取值为( )
A .-1 B.0 C.4
1
- D.1
10. 直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )
A 、6厘米
B 、8厘米
C 、
13
80厘米 D 、1360厘米
那么化简2a b a -
-的结果
11. a 、b 在数轴上的位置如图所示, 是 ( ) A.b a -2 B. b C.b - D.b a +-2
12. 一旗杆从离地面4.5米处被折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前的 高为( )A.10.5米 B.11米 C.11.5米 D.12米 二、填空题(每小题4分,共24分)
13.2
)81(-的算术平方根是 ,
27
1
的立方根是 ,52-的绝对值是 ,2的倒数是
14.如图,由Rt △ABC 的三边向外作正方形,若最大正方形的边长为8cm ,则正方形M 与正方形N 的面积之和为 2
cm .
15.若一个正数的平方根是2a-1和 -a+2,则这个正数是 16. 若等腰三角形的腰长为5 cm ,顶角的平分线长3 cm ,则它的底边长等于 cm.
17.a 是5的整数部分,b 是17的整数部分,则 a 2
+b
2
= .
18.若2016-a +,2015a a =-,则2
2015-a = __________ . 三、解答题(24+8+10+8+10=60分) 19.计算:
(1) 2)75)(75(++- (2) 287512÷-⨯
A
B
(3)201523)(+·2016
2-3)
( (4) 326)32)(23(+--
20. 一个长方形的长和宽的比为5:3,它的对角线长为34,求这个长方形的周长 和面积.
21. 如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合,求CD 的长.
22. 已知实数x,y 满足()022122
=++-y x ,求y x 32-的平方根.
23.观察下列运算:

1-21
21
11-212=+=+,得))((; 由
2-32
31
12-323=+=+,得))((;

3-43
41
13-434=+=+,得))((;…
(1)通过观察得
n
n ++11
= ;
(2)利用(1)中你发现的规律计算:
++++231121…+99
1001
+. B A
C D E。

相关文档
最新文档