2011年中考数学试卷试题分类汇编 反比例函数 答案

合集下载

反比例函数基础练习题

反比例函数基础练习题

反比例函数基础练习题一一、选择题1.(衢山初中2011年中考一模)如图,直线和双曲线()交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为、△BOD 的面积为、△POE 的面积为,则 ( )A .B .C .D .2.(2011年北京四中三模)若点(-5,y 1)、(-3,y 2)、(3,y 3)都在反比例函数y= -3x 的图像上,则( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 2 3.(2011年北京四中五模)已知反比例函数xy k=的图象在一、三象限,则直线k k +=x y 的图象经过( ).A 、一、二、三象限B 、二、三、四象限C 、一、三、四象限D 、一、二、四象限 4.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)已知反比例函数y =-2x ,下列结论不正确...的是( ) A .图象经过点(-2,1) B .图象在第二、四象限 C .当x <0时,y 随着x 的增大而增大 D .当x >-1时, y >25.(2011年浙江省杭州市城南初级中学中考数学模拟试题)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数ky x=的图象上.若点A 的坐标为(-2,-2),则k 的值为( ) A .-2 B .2 C .3 D .4 6.(2011年上海市卢湾区初中毕业数学模拟试题)如图,某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( ) A .2y x =B .2y x =-C .12y x= D .12y x =-.第1题图l ky x=0k >1S 2S 3S 123S S S <<123S S S >>123S S S =>123S S S =<x-21y O第6题图第5题7.(2011年北京四中模拟26)已知k >0 ,那么函数y=kx的图象大致是 ( )8.(2011山西阳泉盂县月考)在反比例函数y=xm21-的图象上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2, 则m 的取值范围是( ) A. m <0 B. m >0 C. m <21 D. m >219.(2011年北京四中中考模拟19)在同一直角坐标系中,函数y=kx+k ,与y=xk-(k 0≠)的图像大致为( )10. (2011年黄冈市浠水县中考调研试题)如图,某个反比例函数的图象经过点(-1,1),则它的解析式为( )A .)0(1>=x x y B .)0(1>-=x x y C .)0(1<=x x y D .)0(1<-=x xy 11. (2011年北京四中中考全真模拟17)在函数21-=x y 中,自变量x 的取值范围是( )A. x ≥2B. x>2C. x ≤2D. x<212.(北京四中模拟)已知三点11(,)x y 、22(,)x y 、33(,)x y 均在双曲线4y x=上,且1230x x x <<<,则下列各式正确的是( )A.123y y y <<B.213y y y <<C.312y y y <<D.321y y y <<13.(2011杭州模拟)探索二次函数2x y =和反比例函数xy 1=交点个数为 ( ) A .1个 B .2个 C .3个 D .0个 14.(2011杭州模拟25)双曲线x 10y =与x6y =在第一象限内的图象依次是M 和N ,设点P 在图像M 上,PC 垂直于X 轴于点C 交图象N 于点A 。

中考数学——反比例函数的综合压轴题专题复习附答案解析

中考数学——反比例函数的综合压轴题专题复习附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.3.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.4.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.5.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.6.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是________;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.【答案】(1)﹣2(2)3【解析】【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),依题意得:,解得:k=﹣2.故答案为:﹣2.(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵ = ,∴ = = .令一次函数y=﹣2x+b中x=0,则y=b,∴BO=b;令一次函数y=﹣2x+b中y=0,则0=﹣2x+b,解得:x= ,即AO= .∵△AOB∽△AEC,且 = ,∴.∴AE= AO= b,CE= BO= b,OE=AE﹣AO= b.∵OE•CE=|﹣4|=4,即 b2=4,解得:b=3 ,或b=﹣3 (舍去).故答案为:3 .【分析】(1)设出点P的坐标,根据平移的特性写出Q点的坐标,由点P,Q均在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k,m,n,b的四元次一方程组,两式作差即可求出k的值;(2)由BO⊥x轴,CE⊥x轴,找出△AOB∽△AEC.再由给定图形的面积比即可求出==,根据一次函数的解析式可以用含b的式子表示出OA,OB,由此即可得出线段CE,AE 的长,利用OE=AE﹣AO求出OE的长,再借助反比例函数K的几何意义得出关于b的一元二次方程,解方程即可得出结论。

2011中考模拟数学试题汇编:反比例函数

2011中考模拟数学试题汇编:反比例函数

x O yxOyx O yx OyA B C D2010---2011全国各地中考模拟数学试题重组汇编反比例函数一、选择题1.(2010年广州中考数学模拟试题一)若反比例函数ky x=的图象经过点(-1,2),则这个反比例函数的图象一定经过点( )A 、(2,-1)B 、(12-,2)C 、(-2,-1) D 、(12,2) 答:A2.( 2010年山东菏泽全真模拟1)正比例函数kx y 2=与反比例函数xk y 1-=在同一坐标系中的图象不可能...是()答案:D3.(2010年河南中考模拟题1)如图,过反比例函数图象上任意两点A 、B分别作x 轴的垂线,垂足分别为C 、D ,连结OA 、OB ,设AC 与OB 的交点为E , 与梯形ECDB 的面积分别为 ,比较它们的大小,可得( )A.B.C.D. 大小关系不能确定答案:B4.(2010年河南中考模拟题6)如图,直线y=mx 与双曲线ky x=交与A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连接BM ,若S △ABM=2,则k 的值是 ( ) A 、2 B 、m-2 C 、m D 、4答案:A5.(2010天水模拟)在同一直角坐标系中,函数y=kx+k,与y=xk-(k ≠0)的图像大致( )答案:B6.(2010年杭州月考)如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( )A.47B.5C.27D.22答案:C7.(黑龙江一模)在反比例函数xay =中,当x >0时,y 随x 的增大而减小,则二次函数ax ax y -=2的图象大致是下图中的( )答案:A8.(济宁师专附中一模)函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( )答案:B9.(2010山东新泰)对于函数xy 2=下列说法错误的是( ) A .它的图象分布在一、三象限,关于原点中心对称 B .它的图象分布在一、三象限,是轴对称图形 C .当x >0时,y 的值随x 的增大而增大 D .当x <0时,y 的值随x 的增大而减小 答案:C10. (2010三亚市月考).若反比例函数y=kx的图象经过点(-2,1),则此函数的图象一定经过点( )A. (-2,-1)B. (2,-1)C. (12-,2) D. (12,2)答案:B11.(2009年聊城冠县实验中学二模)如下图,是一次函数b kx y +=与反比例函数xy 2=的图像,则关于x 的方 程xb kx 2=+的解为( ) A .11=x ,22=x B .21-=x ,12-=x C .11=x ,22-=xD .21=x ,12-=x答案:C12.(2010安徽省模拟)函数1k y x-=的图象经过点(1,3)A -,则k 的值为( ) A .4 B .4-C .2D .2-答案:D13.(2010北京市朝阳区模拟)函数6y x =-与函数()40y x x=>的图象交于A 、B 两点,设点A 的坐标为()11,x y ,则边长分别为1x 、1y 的矩形面积和周长分别为( ) xyO A .xyO B .xyO C .xyO D .A. 4,12B. 4,6C. 8,12D. 8,6 答案:A二、填空题1.(2010年广州中考数学模拟试题(四)) 已知点(12)-,在反比例函数ky x=的图象上,则k = .答:-22.(2010年河南省南阳市中考模拟数学试题)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数ky x=的图象上,若点A 的坐标为(-2,-2),则k 的值为______.答:43.(2010年河南中考模拟题6)函数()1240,x x xyy =≥=(x ﹥0),的图像如图所示,则结论:①两函数图像的交点坐标A 的坐标为(2、2);②当x ﹥2时,2y﹥1y;③当x=1时,BC=3;④当x 逐渐增大时,1y随x 的增大而增大,2y随x 的增大而减小。

2011年江苏省连云港市中考数学试题(解析版)

2011年江苏省连云港市中考数学试题(解析版)

连云港市2011年高中段学校招生统一文化考试数 学 试 题(请考生在答题卡上作答)注意事项:1.考试时间为120分钟.本试卷共6页,28题.全卷满分150分. 2.请在答题卡上规定区域内作答,在其他位置作答一律无效.3.答题前,请考生务必将自己的姓名、准考证号和座位号用0.5毫米黑色墨水签字笔填写在答题卡及试题指定位置,并认真核对条形码上的姓名及考试号.4.选择题答案必须用2B 铅笔填涂在答题卡的相应位置上,如需改动,用橡皮擦干净后再重新填涂.参考公式:抛物线y =ax 2+bx +c ( a ≠0 )的顶点坐标为(—b 2a ,4ac —b 24a ).一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应位置.......上) 1.2的相反数是A .2B .-2C . 2D .12A .2B .-2C . 2D .12【答案】B 。

【考点】相反数。

【分析】根据相反数意义,直接求出结果。

2.a 2·a 3等于A .a 5B .a 6C .a 8D .a 9 【答案】A 。

【考点】指数乘法运算法则。

【分析】根据指数乘法运算法则,直接求出结果:23235a a a a a +⋅==。

3.计算 (x +2) 2的结果为x 2+□x +4,则“□”中的数为 A .-2 B .2 C .-4 D .4 【答案】D 。

【考点】完全平方公式。

【分析】根据完全平方公式,直接求出结果。

4.关于反比例函数y =4x图象,下列说法正确的是A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 【答案】D 。

【考点】反比例函数图象。

【分析】根据反比例函数图象特征,y =4x图象经过点(1,4),两个分支分布在第一、三象限 ,图象关于直线y =x 和y =-x 成轴对称 ,两个分支关于原点成中心对称。

2011年全国各地100份中考数学试卷分类汇编(含答案)

2011年全国各地100份中考数学试卷分类汇编(含答案)

方程的应用一、选择题A 组1、(2011年北京四中中考模拟20)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=-B 、289)x 1(2562=-C 、256)x 21(289=-D 、289)x 21(256=-答案A2.(2011年浙江仙居)近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+=答案:D3.(浙江省杭州市党山镇中2011年中考数学模拟试卷)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )(A ) 18%)201(160400160=+-+x x (B )18%)201(400160=++xx (C ) 18%20160400160=-+xx (D )18%)201(160400400=+-+x x 答案:AB 组1. (2011浙江慈吉 模拟)2010年元旦的到来, 宁波市各大商厦纷纷推出各种优惠以答谢顾客, 其中银泰百货贴出的优惠标语是: 买200元物品, 送100元购物券, 买400元物品送200购物券,……依次类推; 于是小红陪着她的妈妈一起来到大厦买东西, 没过多少时间小红就看中了一件衣服, 一问价钱需要600元. 她心想贵是贵了点,但是能送300元的购物券还是挺划算的, 于是就花600元把这件衣服买了, 同时也得到了300元购物券. 后来小红又用这300元购物券恰好买了一双鞋子, 这时就没有购物券送了. 则下列优惠中, 与小红在这次购物活动中所享受的优惠最接近的是( )A. 5折B. 6折C. 7折D. 8折 答案:C2.(2011湖北省崇阳县城关中学模拟)一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ )A. 甲或乙或丙B. 乙C. 丙D. 乙或丙答案:B3.(2011湖北武汉调考模拟二)黄陂木兰旅游产业发展良好,2008年为640万元,2010年为1000万元,2011年增长率与2008至2010年年平均增长率相同,则2011年旅游收入为( )A.1200万元B.1250万元C.1500万元D.1000万元答案:B4. (2011湖北武汉调考一模)某县为发展教育事业,加强了对教育经费的投入,2 0019年投入3 000万元,预计2011年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A.3000( l+x )2=5000B.3000x 2=5000C.3000( l+x ﹪ )2=5000D.3000(l+x)+3000( l+x)2=5000答案:A5. (2011年杭州市模拟)如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足的数量关系是 A.121+=πb a B.122+=πb a C.221+=πb a D.12+=πb a 答案:D6.(2011灌南县新集中学一模)某超市一月份的营业额为200万元,已知第一季度....的总营业第5题额共1000万元, 如果平均每月增长率为x,则由题意列方程应为【 】A .200(1+x)2=1000 B .200+200×2x=1000C .200+200×3x=1000D .200[1+(1+x)+(1+x)2]=1000答案:D二、填空题 A 组1、(2011重庆市纂江县赶水镇)含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重 40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再 将每种饮料所倒出的部分与另一种饮料余下的部分混合,如果混合后的两种饮料所含的果蔬 浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克.答案:242、(重庆一中初2011级10—11学年度下期3月月考)某公司生产一种饮料是由A 、B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是__________.答案:50%3、(2011年北京四中三模)某商场销售一批电视机,一月份每台毛利润是售出价的20% (毛利润=售出价-买入价),二月份该商场将每台售出价调低10%(买入价不变),结 果销售台数比一月份增加120%,那么二月份的毛利润总额与一月份毛利润总额的比 是 .答案:11:124.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 .答案:100)1(1202=-x5、(2011浙江杭州模拟16)由于人民生活水平的不断提高,购买理财产品成为一个热门话题。

2011年北京中考数学试卷及答案

2011年北京中考数学试卷及答案

A OBCD ABC E D数 学 试 卷学校 姓名 准考证号 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.- 34的绝对值是( )A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是( )A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为( ) A . 1 2 B . 1 3 C . 1 4 D . 195.北京今年6月某日部分区县的高气温如下表:区县 大兴 通州 平谷 顺义 怀柔 门头沟 延庆 昌平 密云 房山 最高气温32323032303229323032则这10个区县该日最高气温的人数和中位数分别是( )A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是 AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示 y 与x 的函数关系图象大致是( )二、填空题(本题共16分,每小题4分) 9.若分式x ―8x的值为0,则x 的值等于________. A .B .C .D . OOOOx x x x y y y y 1 1 1 11 1 1 12 2 2 2A CB DFE O y xA11 11.若右图是某几何体的表面展开图,则这个几何体是__________. 12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a ij =a 21=1.按此规定,a 13=_____;表中的25个数中,共有_____个1;计算:a 11·a i 1+a 12·a i 2+a 13·a i 3+a 14·a i 4+a 15·a i 5的值为________. 三、解答题(本题共30分,每小题5分)13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25 a 31 a 32 a 33 a 34 a 35 a 41 a 42 a 43 a 44 a 45 a 51 a 52 a 53 a 54 a 55A B C E DAOBF CDE路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分) 19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.20.如图,在△ABC ,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF = 12∠CAB .(1)求证:直线BF 是⊙O 的切线; (2)若AB =5,sin ∠CBF =55,求BC 和BF 的长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;北京市2001~2010年 私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图年增长率/% 轿车拥有量/万辆年份 年份2006 2006 2007 2008 2009 20102007 2008 2009 201050 100 150 200250 300 121 146 217 276 22211925275 25 30 10 15 20A B D CE F 图3 同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.排量(L ) 小于1.6 1.6 1.8 大于1.8 数量(辆)29753115如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨?22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).请你回答:图2中△BDE 的面积等于____________.参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF 的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为 三边长的三角形的面积等于_______.五、解答题(本题共22分)23.(7分)在平面直角坐标系xOy 中,二次函数y =mx 2+(m ―3)x ―3(m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y =mx 2+(m ―3)x ―3(m >0)的图象于N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.BBCADOADCE O图2图1O yx3 5 -5 -3E ADF O B x y(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.25.(7分)如图,在平面直角坐标系xOy 中,我把由两条射线AE 、BF 和以AB 为直径的半圆所组成的图形叫作图形C (注:不含AB 线段).已知A (-1,0),B (1,0),AE ∥BF ,且半圆与y 轴的交点D 在射线AE 的反向延长线上.(1)求两条射线AE 、BF 所在直线的距离;(2)当一次函数y =x +b 的图象与图形C 恰好只有一个公共点时,写出b 的取值范围; 当一次函数y =x +b 的图象与图形C 恰好只有两个公共点时,写出b 的取值范围;(3)已知□AMPQ (四个顶点A 、M 、P 、Q 按顺时针方向排列)的各顶点都在图形C 上,且不都在两条射线上,求点M 的横坐标x 的取值范围.B BA D A D C C EFE G FA BC DE GF 图1图2图3一、选择题题号 1 2 3 4 5 6 7 8 答案 D C DB AB AB二、填空题题号 9 101112 答案 8()25-a a圆柱 015 1三、解答题解:()1012cos30272π2-⎛⎫-︒++- ⎪⎝⎭3223312=-⨯++23331=-++ 233=+.解:去括号,得4456x x ->-. 移项,得4546x x ->-. 合并,得2x ->-. 解得2x <.所以原不等式的解集是2x <. 解:()()()422a a b a b a b +-+-()22244a ab a b =+--244ab b =+. ∵2220a ab b ++=,∴0a b +=. ∴原式()40b a b =+=.证明:∵BE DF ,∥ ∴ABE D ∠=∠. 在ABE △和FDC △中,EFA B ED A B F DA F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴ABE FDC ≅△△. ∴AE FC =. 解:⑴ ∵点()1A n -,在一次函数2y x =-的图象上,∴()212n =-⨯-=.∴点A 的坐标为()12-,.∵点A 的反比例函数k y x =的图象上, ∴2k =-.∴反比例函数的解析式为2y x =-.⑵ 点P 的坐标为()20-,或()04,.解:设小王用自驾车方式上班平均每小时行驶x 千米.依题意,得18318297x x =⨯+. 解得27x =.经检验,27x =是原方程的解,且符合题意. 答:小王用自驾车方式上班平均每小时行驶27千米. 四、解答题解:∵90ACB DE BC ∠=︒,,⊥ ∴AC DE ∥.又∵CE AD ,∥∴四边形ACED 是平行四边形. ∴2DE AC ==.在Rt CDE △中,由勾股定理得2223CD CE DE =-=.∵D 是BC 的中点, 1O1-1xyAAC EBD∵D 是BC 的中点,DE BC ,⊥ ∴4EB EC ==.∴四边形ACEB 的周长10213AC CE EB BA =+++=+. ⑴ 证明:连结AE .∵AB 是O 的直径, ∴90AEB ∠=︒. ∴1290∠+∠=︒. ∵AB AC =,∴112CAB∠=∠. ∵12CBF CAB ∠=∠,∴1CBF ∠=∠. ∴290CBF ∠+∠=︒. 即90ABF ∠=︒. ∵AB 是O 的直径, ∴直线BF 是O 的切线. ⑵ 解:过点C 作CG AB ⊥于点G . ∵5sin 15CBF CBF ∠=∠=∠,,∴5sin 15∠=.∵905AEB AB ∠=︒=,, ∴sin 15BE AB =⋅∠=. ∵90AB AC AEB =∠=︒,, 12G A DCFB E O∴255sin 2cos 255∠=∠=,.在Rt CBG △中,可求得42GC GB ==,. ∴3AG =. ∵GC BF ∥, ∴AGC ABF △△.∴GC AG BF AB =. ∴203GC AB BF AG ⋅==. 解:⑴()146119%⨯+173.74= 174≈(万辆).所以2008年北京市私人轿车拥有量约是174万辆. ⑵ 如右图.⑶ 75276 2.7372.6150⨯⨯=(万吨). 估计2010年北京市仅排量为1.6L 的这类私人轿车的碳排放总量约为372.6万吨.解:BDE △的面积等于 1 . ⑴ 如图.以AD 、BE 、CF 的长度为三边长的一个三角形是CFP △.⑵ 以AD 、BE 、CF 的长度为三边长的三角形的面积等于34. 五、解答题解:⑴ ∵点A B 、是二次函数()()2330y mx m x m =+-->的图象与x 轴的交点, ∴令0y =,即()2330mx m x +--=.解得1231x x m =-=,.又∵点A 在点B 左侧且0m >, 174轿车拥有车量(万辆)北京市2006-2010年私人轿车拥有量统计图年份2762171461215010015020025030020062007200820092010APEFCDB⑵ 由⑴可知点B 的坐标为30m⎛⎫ ⎪⎝⎭,. ∵二次函数的图象与y 轴交于点C , ∴点C 的坐标为()03-,.∵45ABC ∠=︒,∴33m =. ∴1m =.⑶ 由⑵得,二次函数解析式为223y x x =--. 依题意并结合图象可知,一次函数的图象与二次函数的 图象交点的横坐标分别为2-和2,由此可得交点坐标为()25-,和()23-,.将交点坐标分别代入一次函数解析式y kx b =+中, 得252 3.k b k b -+=⎧⎨+=-⎩,解得21.k b =-⎧⎨=⎩,∴一次函数的解析式为21y x =-+.⑴ 证明:如图1.∵AF 平分BAD ∠, ∴BAF DAF ∠=∠.∵四边形ABCD 是平行四边形, ∴AD BC AB CD ,∥∥. ∴DAF CEF BAF F ∠=∠∠=∠,. ∴CEF F ∠=∠. ∴CE CF =.1OB CA yxPMNx yA CB O1DEFCBA图1A D⑵ BDC ∠=45︒.⑶ 解:分别连结GB 、GE 、GC (如图2). ∵120AB DC ABC ∠=︒,,∥ ∴120ECF ABC ∠=∠=︒ ∵FG CE ∥且FG CE =, ∴四边形CEGF 是平行四边形. 由⑴得CE CF =, ∴CEGF 是菱形.∴1602EG EC GCF GCE ECF =∠=∠=∠=︒,. ∴ECG △是等边三角形. ∴EG CG =, ① 60GEC EGC ∠=∠=︒. ∴GEC GCF ∠=∠.∴BEG DCG ∠=∠. ②由AD BC ∥及AF 平分BAD ∠可得BAE AEB ∠=∠. ∴AB BE =.在ABCD 中,AB DC =. ∴BE DC =. ③ 由①②③得BEG DCG ≅△△. ∴BG DE =,12∠=∠.∴132360BGD EGC ∠=∠+∠=∠+∠=∠=︒.∴180602BGDBDG ︒-∠∠==︒.解:⑴ 分别连结AD 、DB ,则点D 在直线AE 上,如图1. ∵点D 在以AB 为直径的半圆上, ∴90ADB ∠=︒.DAO B Fxy∴BD AD ⊥.在Rt DOB △中,由勾股定理得222BD OD OB =+=.∵AE BF ,∥∴两条射线AE 、BF 所在直线的距离为2.⑵ 当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,b 的取值是2b =或11b -<<; ⑶ 假设存在满足题意的AMPQ ,根据点M 的位置,分以下四种情况讨论:①当点M 在射线AE 上时,如图2. ∵A M P Q 、、、四点按顺时针方向排列, ∴直线PQ 必在直线AM 的上方.∴P Q 、两点都在AD 上,且不与点A D 、重 合.∴02PQ <<.∵AM PQ ∥且AM PQ =, ∴02AM <<. ∴21x -<<-.②当点M 在AD (不包括点D )上时,如图 3.∵A M P Q 、、、四点按顺针方向排列, ∴直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. ③当点M 在DB 上时,设DB 的中点为R ,则OR BF ∥. 当点M 在DR (不包括点R )上时,如图4.过点M 作OR 的垂线交DB 于点Q ,垂足为点S ,可得S 是MQ 的中点.M Q P y xFB O A ED 图2My xFB O A ED图3图4PQ S R MD EA OBF xy连结AS并延长交直线BF于点P.∵O为AB的中点,可证S为AP的中点.∴四边形AMPQ为满足题意的平行四边形.∴22x<≤.2)当点M在RB上时,如图5.直线PQ必在直线AM的下方.此时,不存在满足题意的平行四边形.④当点M的射线BF(不包括点B)上时,如图6.直线PQ必在直线AM的下方.此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值范围是21x-<<-或22x<≤.RP1P2P3图5DEAO BFxyMMyxFBOAED图6P3P2P1。

中考数学真题分类函数专题(反比例函数)试题及答案详解

中考数学真题分类函数专题(反比例函数)试题及答案详解

中考数学真题分类之函数专题——反比例函数一.反比例函数的定义(共2小题) 1.已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( )A .a ≠2B .a ≠﹣2C .a ≠±2D .a =±2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二.反比例函数的图象(共1小题)3.已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax在同一直角坐标系中的图象可能( )A .B .C .D .三.反比例函数的性质(共2小题)4.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限5.关于反比例函数y =5x 的图象,下列说法正确的( ) A .经过点(2,3) B .分布在第二、第四象限 C .关于直线y =x 对称D .x 越大,越接近x 轴四.反比例函数系数k 的几何意义(共3小题)6.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y =kx(k >0)在第一象限的图象交于点E ,∠AOD =30°,点E 的纵坐标为1,△ODE 的面积是4√33,则k 的值是 .7.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .8.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =k x(x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值; (2)求△ACE 的面积.五.反比例函数图象上点的坐标特征(共8小题)9.如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x(x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√310.、若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 111.如图,点A ,B 在双曲线y =3x(x >0)上,点C 在双曲线y =1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于( ) A .√2 B .2√2 C .4 D .3√212.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有 个.13.已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大; ②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2; ④函数y =y 1+y 2的最小值是2. 则所有正确结论的序号是 . 14.如图,在平面直角坐标系中,反比例y =kx(k >0)的图象和△ABC 都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 .15.一个不透明的口袋中有三个完全相同的小球,球上分别标有数字﹣1,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点M 的横坐标x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点M 的纵坐标y .(1)用列表法或树状图法,列出点M (x ,y )的所有可能结果;(2)求点M (x ,y )在双曲线y =−2x上的概率.16.如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x(k ≠0)的图象与AD 边交于E (﹣4,12),F (m ,2)两点. (1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.六.待定系数法求反比例函数解析式(共3小题) 17.如图,在平面直角坐标系xOy 中,A (﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 .(2)点C 与点A 关于原点O 对称,则点C 的坐标是 . (3)反比例函数的图象经过点B ,则它的解析式是 . (4)一次函数的图象经过A ,C 两点,则它的解析式是 .18.如图,已知平行四边形OABC 中,点O 为坐标原点,点A (3,0),C (1,2),函数y =kx (k ≠0)的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.19.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB绕点A 顺时针旋转90°得到线段AC ,反比例函数y =kx(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =kx (k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =kx (k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.七.反比例函数与一次函数的交点问题(共5小题)20.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <221.如图,一次函数y 1=(k ﹣5)x +b 的图象在第一象限与反比例函数y 2=kx的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x <4,则k = .22.已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是 .23.如图,已知反比例函数y =k x(x >0)的图象与一次函数y =−12x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =kx(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.24.如图,一次函数y =mx +b 的图象与反比例函数y =kx的图象交于A (3,1),B (−12,n )两点.(1)求该反比例函数的解析式;(2)求n 的值及该一次函数的解析式.八.反比例函数的应用(共1小题)25.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x 千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天. (1)求y 与x 之间的函数关系式及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?九.反比例函数综合题(共1小题)26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=k1x过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=k2x 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=k3x与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案与试题解析一.反比例函数的定义(共2小题) 1.【解答】解:根据反比例函数解析式中k 是常数,不能等于0,由题意可得:|a |﹣2≠0, 解得:a ≠±2, 故选:C . 2.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y =−12x +90°, 故选:B .二.反比例函数的图象(共1小题)3.【解答】解:若反比例函数y =ax经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =ax经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限. 故选项A 正确; 故选:A .三.反比例函数的性质(共2小题) 4.【解答】解:∵k =2>0,∴反比例函数经过第一、三象限; 故选:A .5.【解答】解:A 、把点(2,3)代入反比例函数y =5x得2.5≠3不成立,故A 选项错误;B 、∵k =5>0,∴它的图象在第一、三象限,故B 选项错误;C 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故C 选项正确;D 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故D 选项错误. 故选:C .四.反比例函数系数k 的几何意义(共3小题) 6.【解答】解:如图,作EM ⊥x 轴于点M ,则EM =1. ∵△ODE 的面积是4√33, ∴12OD •EM =4√33,∴OD =8√33. 在直角△OAD 中,∵∠A =90°,∠AOD =30°, ∴∠ADO =60°,∴∠EDM =∠ADO =60°.在直角△EMD 中,∵∠DME =90°,∠EDM =60°, ∴DM =EM tan60°=√3=√33, ∴OM =OD +DM =3√3, ∴E (3√3,1).∵反比例函数y =kx(k >0)的图象过点E ,∴k =3√3×1=3√3. 故答案为3√3.7.【解答】解:设点B 的坐标为(a ,0),则A 点坐标为(﹣a ,0) 由图象可知,点C (a ,k 1a),E (﹣a ,−k 2a),D (﹣a ,k 1a),F (−a3,k 1a) 矩形ABCD 面积为:2a •k 1a=2k 1∴S △DEF =DE⋅DF 2=23a×(−2k 2a)2=−23k 2S △BCF =CF⋅BC2=43a×k 1a2=23k 1S △ABE =AB⋅AE2=2a×(−k 2a)2=−k 2∵S △BEF =7∴2k 1+23k 2−23k 1+k 2=7 ①∵k 1+3k 2=0∴k 2=−13k 1代入①式得43k 1+53×(−13k 1)=7解得k 1=9 故答案为:9 8.【解答】解:(1)由已知可得AD =5, ∵菱形ABCD ,∴B (6,0),C (9,4),∵点D (4,4)在反比例函数y =kx(x >0)的图象上, ∴k =16,将点C (9,4)代入y =23x +b ,∴b =﹣2;(2)E (0,﹣2),直线y =23x ﹣2与x 轴交点为(3,0), ∴S △AEC =12×2×(2+4)=6;五.反比例函数图象上点的坐标特征(共8小题) 9.【解答】解:延长CA 交y 轴于E ,延长BD 交y 轴于F . 设A 、B 的横坐标分别是a ,b , ∵点A 、B 为直线y =x 上的两点, ∴A 的坐标是(a ,a ),B 的坐标是(b ,b ).则AE =OE =a ,BF =OF =b .∵C 、D 两点在交双曲线y =1x (x >0)上,则CE =1a,DF =1b. ∴BD =BF ﹣DF =b −1b,AC =1a−a .又∵AC =√3BD , ∴1a−a =√3(b −1b),两边平方得:a 2+1a2−2=3(b 2+1b2−2),即a 2+1a 2=3(b 2+1b2)﹣4,在直角△ODF 中,OD 2=OF 2+DF 2=b 2+1b2,同理OC 2=a 2+1a2, ∴3OD 2﹣OC 2=3(b 2+1b 2)﹣(a 2+1a2)=4.故选:C .10.【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0, ∵2<3, ∴y 2<y 3<y 1 故选:C .11.【解答】解:点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a ),则B(3a,1a),A(a,3a),∵AC=BC,∴3a −1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2√2,故选:B.12.【解答】解:观察反比例函数y=kx (x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.13.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而减小,y2随x的增大而增大;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④∵(x﹣1)2≥0,∴x2+1≥2|x|,∵y=y1+y2=|x|+1|x|=x2+1|x|≥2,∴函数y =y 1+y 2的最小值是2. 故④正确.综上所述,正确的结论是②③④. 故答案为②③④.14.【解答】解:∵AB =AC =52,BC =4,点A (3,5). ∴B (1,72),C (5,72), 将△ABC 向下平移m 个单位长度,∴A (3,5﹣m ),C (5,72−m ), ∵A ,C 两点同时落在反比例函数图象上,∴3(5﹣m )=5(72−m ), ∴m =54;故答案为54;15.【解答】解:(1)用树状图表示为: 点M (x ,y )的所有可能结果;(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1)共六种情况.(2)在点M 的六种情况中,只有(﹣1,2)(2,﹣1)两种在双曲线y =−2x上, ∴P =26=13;因此,点M (x ,y )在双曲线y =−2x上的概率为13.16.【解答】解:(1)∵点E (﹣4,12)在y =k x上,∴k =﹣2,∴反比例函数的解析式为y =−2x, ∵F (m ,2)在y =−2x上,∴m =﹣1.(2)函数y =kx图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.六.待定系数法求反比例函数解析式(共3小题) 17.【解答】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =kx, 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x;(4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:{−m +n =2m +n =−2,解得:{m =−2n =0,则一次函数解析式为y =﹣2x .故答案为:(1)(2,3);(2)(1,﹣2);(3)y =6x;(4)y =﹣2x .18.【解答】解:(1)依题意有:点C (1,2)在反比例函数y =kx(k ≠0)的图象上,∴k =xy =2, ∵A (3,0) ∴CB =OA =3, 又CB ∥x 轴, ∴B (4,2),设直线OB 的函数表达式为y =ax , ∴2=4a ,∴a =12,∴直线OB 的函数表达式为y =12x ;(2)作CD ⊥OA 于点D , ∵C (1,2),∴OC =√12+22=√5, 在平行四边形OABC 中, CB =OA =3,AB =OC =√5,∴四边形OABC 的周长为:3+3+√5+√5=6+2√5, 即四边形OABC 的周长为6+2√5.19.【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=3x ;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=3x ,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2√6或﹣2√6(舍弃),此时点P到直线AB距离最短;∴P(√62,√6);七.反比例函数与一次函数的交点问题(共5小题)20.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c x (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.21.【解答】解:由已知得A、B的横坐标分别为1,4,所以有{k −5+b =k4(k −5)+b =k 4解得k =4, 故答案为4. 22.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称, ∴该点的坐标为(﹣2,﹣4). 故答案为:(﹣2,﹣4).23.【解答】解:(1)当x =6时,n =−12×6+4=1, ∴点B 的坐标为(6,1). ∵反比例函数y =kx 过点B (6,1),∴k =6×1=6. (2)∵k =6>0,∴当x >0时,y 随x 值增大而减小, ∴当2≤x ≤6时,1≤y ≤3.24.【解答】解:(1)∵反比例函数y =kx的图象经过A (3,1), ∴k =3×1=3,∴反比例函数的解析式为y =3x;(2)把B (−12,n )代入反比例函数解析式,可得 −12n =3, 解得n =﹣6,∴B (−12,﹣6),把A (3,1),B (−12,﹣6)代入一次函数y =mx +b ,可得{1=3m +b−6=−12m +b,解得{m =2b =−5,∴一次函数的解析式为y =2x ﹣5.八.反比例函数的应用(共1小题)25.【解答】解:(1)根据题意可得:y =600x, ∵y ≤600, ∴x ≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:600 m −600m+100=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.九.反比例函数综合题(共1小题)26.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=k1x 过点E,∴k1=12.∴反比例函数的解析式为y=12x.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴DNBM =CDBC,∴DNCD =BMCB,∴CNCD =CMCB,∵∠MCN =∠BCD , ∴△MCN ∽△BCD , ∴∠CNM =∠CDB , ∴MN ∥BD ,∴△CMN ∽△CBD . ∵B (6,0),D (0,8),∴直线BD 的解析式为y =−43x +8, ∵C ,C ′关于MN 对称, ∴CC ′⊥MN , ∴CC ′⊥BD , ∵C (6,8),∴直线CC ′的解析式为y =34x +72, ∴C ′(0,72).(3)如图3中,①当AP =AE =5时,∵P (m ,5),E (m +3,4),P ,E 在反比例函数图象上, ∴5m =4(m +3), ∴m =12.②当EP =AE 时,点P 与点D 重合,∵P (m ,8),E (m +3,4),P ,E 在反比例函数图象上, ∴8m =4(m +3), ∴m =3.③显然PA ≠PE ,若相等,点P 在点E 的下方,显然不可能. 综上所述,满足条件的m 的值为3或12.。

2011年初中毕业升学考试(中考)数学试卷及答案

2011年初中毕业升学考试(中考)数学试卷及答案

数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。

考试时间120分钟,满分150分。

考试结束后,第Ⅱ卷和答题卡按规定装袋上交。

第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束后,本试卷由考场统一收回,集中管理。

一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。

中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案

中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案
y1= 中,当 x=1 时,y=4, ∴ P(1,4). 设直线 AP 的函数关系式为 y=mx+n, 把点 A(﹣4,﹣1)、P(1,4)代入 y=mx+n,


解得

故直线 AP 的函数关系式为 y=x+3,
则点 C 的坐标(0,3),OC=3,
∴ S△ AOP=S△ AOC+S△ POC
= OC•AR+ OC•PS
又∵ 点 F 在反比例函数
(k>0)的图象上,∴ k=12,
∴ 该函数的解析式为 y= (x>0)
(2)解:由题意知 E,F 两点坐标分别为 E( ,4),F(6,
∴ 当 k=12 时,S 有最大值.S 最大=3
【解析】【分析】)当 F 为 AB 的中点时,点 F 的坐标为(3,1),由此代入求得函数解
C 与 D 横纵坐标乘积相等,求出 b 的值确定出 B 坐标,进而求出 k 的值,确定出双曲线解 析式;(3)抓住两个关键点,将 A 坐标代入双曲线解析式求出 b 的值;将 C 坐标代入双 曲线解析式求出 b 的值,即可确定出平行四边形与双曲线总有公共点时 b 的范围.
5.如图,正比例函数和反比例函数的图象都经过点 A(3,3),把直线 OA 向下平移后, 与反比例函数的图象交于点 B(6,m),与 x 轴、y 轴分别交于 C、D 两点.
(1)求 m 的值; (2)求过 A、B、D 三点的抛物线的解析式; (3)若点 E 是抛物线上的一个动点,是否存在点 E,使四边形 OECD 的面积 S1
, 是四边
形 OACD 面积 S 的 ?若存在,求点 E 的坐标;若不存在,请说明理由. 【答案】(1)解:∵ 反比例函数的图象都经过点 A(3,3),

2011-2023北京中考真题数学汇编:反比例函数

2011-2023北京中考真题数学汇编:反比例函数

2011-2023北京中考真题数学汇编反比例函数7.(2014北京中考真题)如图,在平面直角坐标系(0)ky k x=≠,使它的图象与正方形9.(2011北京中考真题)如图,在平面直角坐标系图象的一个交点为A(﹣(1)求反比例函数y=(2)若P是坐标轴上一点,且满足10.(2018北京中考真题)在平面直角坐标系线14l y x b=+∶与图象G(1)求k的值;∴由上述结果可知,分母不能为,故【点睛】本题考查反比例函数与一次函数的交点问题,曲线上点的坐标与方程的关系.9.(1)y=﹣2x;(2)(【详解】解:(1)∵点∴n=﹣2×(﹣1)=2∴点A的坐标为(﹣1∵点A在反比例函数的图象上.∴k=﹣210.(1)4;(2)①3个.【详解】分析:(1)根据点(2)①当1b =-时,根据整点的概念,直接写出区域②分a .当直线过(4,0时四种情况进行讨论即可详解:(1)解:∵点A (∴14k=,∴4k =.(2)①3个.(1,0),(②a .当直线过(4,0)时:b .当直线过(5,0)时:c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.11.(1)1(0)y x x =>不是有界函数,y=x+1(-4<x ≤2)是有界函数,边界值是3;(2)-1<b≤3;(3)0≤m≤14或34≤m≤1.【分析】(1)分析题意,结合已知中有界函数的定义可进行判断;(2)根据一次函数的性质可得1y x =-+的增加性,再结合自变量的取值范围和题意可得此不等式组可得b 的取值范围;(3)要分情况讨论,易判断1m >不符合题意,故1m;结合已知函数解析式可得函数过点以此求得其平移后的点坐标,进而可得34≤1-m≤1或-1≤-m≤34,由此即可求得m 【详解】解:(1)结合已知根据有界函数的定义可知1(0)y x x=>不是有界函数,数,边界值是3;(2)1y x =-+Q 中10-<,y 随x 的增大而减小,∴当x a =时,12=-+=y a ,故1a =-.当x b =时,1=-+y b ,根据题意可得:212b b a--+<⎧⎨>⎩ ,31b ∴>- ;(3)若1m >,函数向下平移m 个单位后,0x =时,函数值小于1-,此时函数的边界值不符,故1m.当=1x -时,1y =,即过(1,1)-,当0x =时,0min y =,即过(0,0),将(1,1)-,(0,0)都向下平移m 个单位,得到(1,1)m --,(0,)m -,根据题意可得:1m t -=或m t -=,∴34≤1-m≤1或-1≤-m≤34,0≤m≤14或34≤m≤1.【点睛】本题考查了二次函数综合题,解题的关键是结合新定义,弄清函数边界值的定义,同时要熟悉平移变换的性质.。

2011年中考数学试题分类汇总:数据的集中趋势与离散程度

2011年中考数学试题分类汇总:数据的集中趋势与离散程度

2011年全国各地中考数学试卷分类汇编第15章数据的集中趋势与离散程度1. (2011浙江省舟山,8,3分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42(C)中位数是58 (D)每月阅读数量超过40的有4个月【答案】C2.(2011 浙江湖州,5,3)数据1,2,3,4,5的平均数是A.1 B.2 C.3 D.4【答案】C3. (2011广东广州市,3,3分)某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是().A.4B.5C.6D.10【答案】B4. (2011山东德州5,3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是(A)甲运动员得分的极差大于乙运动员得分的极差(B)甲运动员得分的的中位数大于乙运动员得分的的中位数(C)甲运动员的得分平均数大于乙运动员的得分平均数(D)甲运动员的成绩比乙运动员的成绩稳定【答案】D5. (2011山东泰安,9 ,3分)某校篮球班21名同学的身高如下表:身高(cm ) 180 186 188 192 208人数(个) 4 6 5 4 2 则该校篮球班21名同学身高的众数和中位数分别是(单位:cm )( ) A.186,186 B.186,187 C.186,188 D.208,188 【答案】C6. (2011山东威海,2,3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为( )A .180, 180, 178B .180, 178, 178C .180, 178, 176.8D .178, 180, 176.8【答案】C7. (2011山东烟台,8,4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6 ,则这组数据的中位数和极差分别是( )A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.2 【答案】D8. (2011四川南充市,2,3分)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌 甲 乙 丙 丁 销售量(瓶)12321343建议学校商店进货数量最多的品牌是( )(A )甲品牌 (B )乙品牌 (C )丙品牌 (D )丁品牌【答案】D9. (2011广东湛江9,3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是20.65S =甲,20.55S =乙,20.50S =丙 20.45S =丁,则射箭成绩最稳定的是 A 甲 B 乙 C 丙 D 丁 【答案】D10. (2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃) 25 26 27 28天 数 1 1 2 3则这组数据的中位数与众数分别是( ) A .27,28 B .27.5,28 C .28,27 D .26.5,27 【答案】A11. (2011浙江衢州,1,3分)在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,47,45.则这组数据的极差为( )A.2B. 4C.6D.8【答案】C12. (2011浙江省,4,3分)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D. 极差【答案】A13. (2011浙江台州,3,4分)要反映台州某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【答案】C14. (2011浙江温州,2,4分)某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与,晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是)(A.排球B.乒乓球C.篮球D.跳绳【答案】C16. (2011浙江省嘉兴,8,4分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42(C)中位数是58 (D)每月阅读数量超过40的有4个月Array【答案】C18. (2011台湾台北,14)图(四)为某班甲、乙两组模拟考成绩的盒状图。

中考数学综合题专题复习【反比例函数】专题解析附答案

中考数学综合题专题复习【反比例函数】专题解析附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

2011年全国中考数学模拟汇编二17反比例函数

2011年全国中考数学模拟汇编二17反比例函数

17.反比例函数A 组一 选择题1.(南京市雨花台2011年中考一模)若反比例函数1k y x-=的图象位于第二、四象限,则k 的取值可以是A . 0B . 1C . 2D . 以上都不是 答案:A2.(南京市六合区2011年中考一模) 如果点(-a ,-b )在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是 ( ▲ )A .(a ,b )B .(b ,-a )C .(-a ,b )D .(-b ,a ) 答案:A3、(2011广东化州二模) 如图,两个反比例函数xk y 1=和x ky 2=(其中1k >2k >0)在第一象限内的图象依次是1C 和2C ,设点P 在1C 上,PC ⊥x 轴于点C ,交2C 于点A ,PD ⊥y 轴于点D ,交于2C 点B ,下列说法正确的是( )①ODB ∆与OCA ∆的面积相等;②四边形PAOB 的面积等于12k k -;③PA 与PB 始终相等;④当点A 是PC 的三等分点时,点B 一定是PD 三等分点。

A .①②B .①②④C .①④D .①③④ 考查内容: 答案:B4、(2011黄冈张榜中学模拟) 如图,某个反比例函数的图象经过点(-1,1),)A .)0(1>=x x y B .)0(1>-=x x y C .)0(1<=x x y D .)0(1<-=x xy考查内容: 答案:D5. 2011番禺区综合训练)点(1,2)在反比例函数1ky x-=的图象上,则k 的值是(※). (A )0 (B )1 (C )-1 (D )-2答案:D6. (2011萝岗区综合测试一)若正比例函数2y kx =与反比例函数()0ky k x=≠的图象交于点第4题图()1A m ,, 则k 的值是( ﹡ ). A.B.2-或2 C.2D答案:B7. (2011广州六校一摸)已知函数y mx =与ny x=在同一直角坐标系中的图象大致如图,则下列结论正确的是( ) A.0m >,0n > B.0m >,0n < C.0m <,0n >D.0m <,0n <答案:C二 填空题1.(2011上海市杨浦区中考模拟)若反比例函数(0)ky k x=≠的图像在第二、四象限,则一次函数y kx k =+的图像经过 象限.【答案】二、三、四;2. (2011杭州市金山学校中考模拟)(根据2010年中考数学考前知识点回归+巩固 专题12 反比例函数改编)若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在( ▲ )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限【答案】B3. (南京市玄武区2011年中考一模) 对于反比例函数xy 2-=,下列说法:① 点(21)--,在它的图象上;② 它的图象在第二、四象限;③ 当0x >时,y 随x 的增大而增大;④ 当0x <时,y 随x 的增大而减小.上述说法中,正确的序号.....是 ▲ .(填上所有你认为正确的序号) 答案:②③; 4.(南京市下关区秦淮区沿江区2011年中考一模)点(-4,3)在反比例函数图象上,则这个函数的关系式为 ▲ . 答案:y =-12x5.(南京市浦口区2011年中考一模)反比例函数xy 2-=的图像经过第 ▲ 象限.答案:二、四6.(南京市江宁区2011年中考一模)若反比例函数xky =的图象经过点A )2,1(--,则k= ▲ . 答案:27.(南京市建邺区2011年中考一模)如图,正比例函数1y x =和反比例函数2ky x=的图象都经过点A (1,1).则在第一象限内,当12y y >时,x 的取值范围是 ▲ .答案:x >18.(南京市鼓楼区2011年中考一模)若反比例函数y =k 的图象经过点(-2,2),则k 的值为 ▲ . 答案:—49.(南京市高淳县2011年中考一模)如果反比例函数y =k x的图象经过点(1,2),那么它一定经过点(-1, ▲ ). 答案:—210.(2011萧山区中考模拟)【原创】反比例函数x y 6-=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是_________。

2011年中考数学试题分类汇总--因式与因式分解单选填空

2011年中考数学试题分类汇总--因式与因式分解单选填空

2011年全国各地中考数学试卷试题分类汇编第3章 整式与因式分解一、选择题1. (2011江苏无锡,3,3分)分解因式2x 2+ 4x + 2的最终结果是( )A .2x (x + 2)B .2(x 2+ 2x + 1) C .2(x +1)2D .(2x + 2)2【答案】C **********2. (2011河北,3,2分)下列分解因式正确的是( )A .)(23a 1-a a a -+=+B .2a-4b+2=2(a-2b )C .()222-a 4-a = D .()221-a 1a 2-a =+【答案】D **********3. (2011浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )A.28B.56C.60D. 124【答案】C **********4. (2011广东广州市,7,3分)下面的计算正确的是( ). A .3x 2·4x 2=12x 2B .x 3·x 5=x 15C .x 4÷x =x 3D .(x 5)2=x 7【答案】C **********5. (2011江苏扬州,2,3分)下列计算正确的是( )A. 632a a a =∙ B. (a+b)(a-2b)=a 2-2b 2C. (ab 3)2=a 2b 6D. 5a —2a=3 【答案】C **********6. (2011山东日照,2,3分)下列等式一定成立的是( ) (A ) a 2+a 3=a 5(B )(a +b )2=a 2+b 2(C )(2ab 2)3=6a 3b 6(D )(x -a )(x -b )=x 2-(a +b )x +ab 【答案】D **********7. (2011山东泰安,2 ,3分)下列运算正确的是( )A .3a 3+4a 3=7a 6B .3a 2-4a 2=-a2C .3a 2·4a 3=12a3D .(3a 3)2÷4a 3=34a 2【答案】B **********8. (2011山东泰安,5 ,3分)下列等式不成立...的是( ) A.m 2-16=(m-4)(m+4) B.m 2+4m=m(m+4) C.m 2-8m+16=(m-4)2D.m 2+3m+9=(m+3)2【答案】D **********9. (2011山东威海,4,3分)下列运算正确的是( )A .326a a a ⋅= B .336()x x =C .5510x x x +=D .5233()()ab ab a b -÷-=-【答案】D **********10.(2011山东烟台,3,4分)下列计算正确的是( ) A.a 2+a 3=a 5B. a 6÷a 3=a 2C. 4x 2-3x 2=1 D.(-2x 2y )3=-8 x 6y 3【答案】D **********11. (2011四川南充市,1,3分)计算a+(-a)的结果是( )(A )2a (B )0 (C )-a 2(D )-2a【答案】B **********12. (2011浙江杭州,9,3)若2,2a b a b +=-≥且,则( )A .b a 有最小值12 B .b a 有最大值1 C .a b 有最大值2 D .a b 有最小值98- 【答案】C **********13. (2011 浙江湖州,2,3)计算23a a ,正确的结果是A .62aB .52aC .6aD .5a【答案】D **********14. (2011宁波市,2,3分)下列计算正确的是A . (a 2)3= a 6B .a 2+ a 2= a 4C .(3a )·(2a ) =6aD .3a -a =3【答案】A **********15. (2011宁波市,12,3分)把四张形状大小完全相同的小正方形卡片(如图○1)不重叠的放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图○2)盒子底面未被卡片覆盖的部分用阴影表示,则图○2中两块阴影部分的周长和是 A . 4m cm B . 4n cm C . 2(m +n )cm D . 4(m -n )cm【答案】B **********16. (2011浙江台州,4,4分)计算32)(a 的结果是( )A. 23a B. 32a C. 5a D. 6a**********17. (2011浙江义乌,3,3分)下列计算正确的是( )A .246x x x +=B .235x y xy +=C .632x x x ÷= D .326()x x =【答案】D **********18. (2011四川重庆,2,4分)计算(a 3)2的结果是( )A .aB .a 5C .a 6D .a9【答案】C **********19. (2011浙江省嘉兴,4,4分)下列计算正确的是( ) (A )32x x x =⋅ (B )2x x x =+ (C )532)(x x = (D )236x x x =÷【答案】A **********20.(2011台湾台北,5)计算x 2(3x +8)除以x 3后,得商式和余式分别为何?A .商式为3,余式为8x 2B .商式为3,余式为8C .商式为3x +8,余式为8x 2D .商式为3x +8,余式为0【答案】B **********21. (2011台湾台北,7)化简41(-4x +8)-3(4-5x ),可得下列哪一个结果? A .-16x -10 B .-16x -4 C .56x -40 D .14x -10【答案】D **********22. (2011台湾台北,13)若a :b :c =2:3:7,且a -b +3=c -2b ,则c 值为何?A .7B .63C .221D .421 【答案】C **********24. (2011台湾全区,3)化简)23(4)32(5x x ---之后,可得下列哪一个结果?A .2x -27B .8x -15C .12x -15D .18x -27**********25. (2011台湾全区,8)若949)7(22+-=-bx x a x ,则b a +之值为何?A .18B .24C .39D . 45 【答案】D **********26. (2011台湾全区,10)若(a -1):7=4:5,则10a +8之值为何?A . 54B 66C . 74D . 80 【答案】C **********27. (2011台湾全区,22)计算多项式536223++-x x x 除以(x -2)2后,得余式为何?A . 1B . 3C . x -1D . 3x -3 【答案】D **********28. (2011江西,4,3分)下列运算正确的是( ). 第3题图 A.a +b =ab B.a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =1 【答案】B **********29. (2011湖南邵阳,2,3分)如果□×3ab =3a 2b ,则□内应填的代数式是( ) A.abB.3abC.aD.3a【答案】C **********30. (2011湖南益阳,4,4分)下列计算正确的是A.()222x y x y +=+ B .()2222x y x xy y -=-- C .()()22222x y x y x y +-=- D .()2222x y x xy y -+=-+【答案】D **********31. (2011广东株洲,2,3分)计算x 2·4x 3的结果是( ) A .4x 3B .4x 4C .4x 5D .4x 6【答案】C32. (2011江苏连云港,2,3分)a 2·a 3( )A.a 5B. a 6C.a 8D. a 9【答案】A **********33. (2011江苏连云港,3,3分)计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )A .-2B .2C .-4D .4【答案】D **********34. (2011江苏苏州,4,3分)若m ·23=26,则m= A.2 B.4 C.6 D.8 【答案】D **********35. (2011江苏宿迁,4,3分)计算(-a 3)2的结果是( )A .-a 5B .a 5C .a 6D .-a 6【答案】C **********36. (2011江苏泰州,2,3分)计算2a 2·a 3的结果是 A .2a 6B .2a 5C .4a 5D .4a 6【答案】B **********37. (2011山东济宁,2,3分)下列等式成立的是A .a 2+a 2=a 5B .a 2-a 2=a C .a 2⋅a 2=a 6D .(a 2)3=a6【答案】D **********38. (2011山东聊城,5,3分)下列运算不正确的是( ) A .5552a a a += B .()32622aa -=-C .2122a a a -⋅= D .()322221a a a a -÷=-【答案】B39. (2011山东聊城,10,3分)如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是( )A .5nB .5n -1C .6n -1D .2n 2+1 【答案】C **********40. (2011四川成都,5,3分)下列计算正确的是 D (A )2x x x =+ (B)x x x 2=⋅(C)532)(x x =(D)23x x x =÷ 【答案】D **********41. (2011四川宜宾,3,3分)下列运算正确的是( )A .3a-2a=1B .632a a a =⋅C .2222)(b ab a b a +-=-D .222)(b a b a +=+ 【答案】C **********42. (2011江西南昌,4,3分)下列运算正确的是( ). A.a +b =ab B.a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =1 【答案】B **********43. (2011湖南怀化,3,3分)下列运算正确的是 A.a·a 3=a3B.(ab)3=ab3C.a 3+a 3=a 6 D.(a 3)2=a6【答案】D **********44. (2011江苏南京,2,2分)下列运算正确的是A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 8【答案】C **********45. (2011山东临沂,2,3分)下列运算中正确的是( )A .(-ab )2=2a 2b 2B .(a +1)2=a 2+1 C .a 6÷a 2=a 3D .2a 3+a 3=3a 3【答案】D **********46. (2011四川绵阳2,3)下列运算正确的是 A.a+a²=a³ B. 2a+3b= 5ab C .(a³)2= a 9D. a 3÷a 2= a 【答案】D **********47. (2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a + B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +【答案】D **********48. (2011湖南衡阳,5,3分)下列计算,正确的是( )A .()32628x x = B .623a a a ÷= C .222326a a a ⨯= D .01303⎛⎫⨯= ⎪⎝⎭【答案】A **********50. (2011湖北襄阳,2,3分)下列运算正确的是A.a a a =-2B.632)(a a -=-C.236x x x =÷D.222)(y x y x +=+【答案】B**********51. (2011湖北襄阳,3,3分)若x ,y 为实数,且011=-++y x ,则2011)(yx 的值是A.0B.1C.-1D.-2011【答案】C **********52.(2011湖南永州,9,3分)下列运算正确是( )A .1)1(--=--a aB .222)(b a b a -=-C .a a =2D .532a a a =⋅ 【答案】D **********53. (2011江苏盐城,2,3分)下列运算正确的是 A .x 2+ x 3= x 5B .x 4·x 2 = x 6C .x 6÷x 2 = x3D .( x 2 )3 = x 8【答案】B54. (2011江苏盐城,4,3分)已知a - b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5【答案】A **********55. (2011山东东营,2,3分)下列运算正确的是( )A 3362x x x +=B .824x x x ÷= C .m n mnx x x= D .5420()x x -=【答案】D **********56. (20011江苏镇江,2,2分)下列计算正确的是( )A.236a a a ∙= B. 33y y y ÷= C.3m+3n=6mn D.()236x x =答案【D 】 **********57. (2011内蒙古乌兰察布,2,3分)下列计算正确的是( )A .()236aa = B.2232a a a =+ C. 623a a a =∙ D. 339a a a =÷【答案】A **********58. (2011重庆市潼南,2,4分) 计算3a ⋅2a 的结果是A .6aB .6a 2C. 5aD. 5a 2【答案】B **********59.(2011广东湛江7,3分)下列计算正确的是A 235a a a =B 2a a += C 235()a a = D 22(1)1a a a +=+ 【答案】A **********60. (2011河北,4,2分)下列运算中,正确的是( )A .2x-x=1B .54x x x =+C .()33x 6-x 2-= D .22x y y x =÷【答案】D **********61. (2011山东枣庄,9,3分)如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +6 【答案】C **********62. (2011湖北荆州,3,3分)将代数式142-+x x 化成q p x ++2)(的形式为A .3)2(2+-x B .4)2(2-+x C .5)2(2-+x D .4)2(2++x 【答案】C **********63. (2011湖北宜昌,7,3分) 下列计算正确的是( ).A.3a -a = 3B. 2a .a 3=a 6C.(3a 3)2=2a 6D. 2a ÷a= 2**********64. (2011浙江金华,3,3分)下列各式能用完全平方式进行分解因式的是( ) A .x 2+1 B.x 2+2x -1 C.x 2+x +1 D.x 2+4x +4 【答案】D **********65. (2011山东济宁,4,3分)把代数式 322363x x y xy -+分解因式,结果正确的是( ) A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D **********66. (2011浙江丽水,3,3分)下列各式能用完全平方式进行分解因式的是( ) A .x 2 +1 B.x 2+2x -1C.x 2+x +1D.x 2+4x +4【答案】D67. (2011台湾全区,5)下列四个多项式,哪一个是3522-+x x 的因式?A .2x -1B .2x -3C .x -1D .x -3 【答案】A **********68. (2011浙江省舟山,4,3分)下列计算正确的是( ) (A )32x x x =⋅ (B )2x x x =+ (C )532)(x x = (D )236x x x =÷【答案】A **********69. (2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a + B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +【答案】D二、填空题1. (2011浙江金华,11,4分)“x 与y 的差”用代数式可以表示为.【答案】x –y2. (2011广东东莞,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东济宁,12,3分)若代数式26x x b -+可化为2()1x a --,则b a -的值是 . 【答案】54. (2011浙江杭州,12,4)当7x =-时,代数式(2x +5)(x +1)-(x -3)(x +1)的值为 . 【答案】-65. (2011浙江省,14,3分)某计算程序编辑如图所示,当输入x= 时,输出的y=3.【答案】12或32-6. (2011浙江省,15,3分)定义新运算“⊕”如下:当a ≥b 时,a ⊕b=ab +b ,当a <b 时,a ⊕b=ab-a ;若(2x -1)⊕(x +2)=0,则x = .【答案】-1或21 7. (2011浙江温州,15,5分)汛期来临前,滨海区决定实施“海堤加固”工程,某工程队承包了该项目,计划每天 加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a 米,则完成整个任务的实际时间比原计划时间少用了 天(用含a 的代数式表示). 【答案】180a8. (2011浙江丽水,11,4分)“x 与y 的差”用代数式可以表示为.【答案】x –y9. (2011广东株洲,10,3分)当x=10,y=9时,代数式x 2-y 2的值是 . 【答案】1910.(2011江苏泰州,12,3分)多项式 与m 2+m -2的和是m 2-2m . 【答案】-3m+211. (2011广东广州市,16,3分)定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗ (-1)= . 【答案】812. (2011江苏淮安,9,3分)计算: a 4·a 2= . 【答案】a 613. (2011上海,7,4分)计算:23a a ⋅=__________. 【答案】5a14. (2011四川乐山12,3分)体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元。

2011年全国各地100份中考数学试卷分类汇编实数

2011年全国各地100份中考数学试卷分类汇编实数

2011年全国各地100份中考数学试卷分类汇编第2章 实数一、选择题1. (2011福建泉州,1,3分)如在实数0,-3,32-,|-2|中,最小的是( ). A .32-B . -3C .0D .|-2|【答案】B2. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C. 12D. 3【答案】D3. (2011山东滨州,1,3分)在实数π、13、2、sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4 【答案】B4. (2011福建泉州,2,3分)(-2)2的算术平方根是( ).A . 2B . ±2C .-2D .2【答案】A5. (2011四川成都,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0>m (B)0<n (C)0<mn (D)0>-n m0m1n【答案】C6. (2011江苏苏州,1,3分)2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23【答案】B7. (2011山东济宁,1,3分)计算 ―1―2的结果是 A .-1 B .1 C .- 3 D .3 【答案】C8. (2011四川广安,2,3分)下列运算正确的是( ) A .(1)1x x --+=+ B .954-=C .3223-=- D .222()a b a b -=-【答案】C9. ( 2011重庆江津, 1,4分)2-3的值等于( ) A.1 B.-5 C.5 D.-1· 【答案】D ·10. (2011四川绵阳1,3)如计算:-1-2=A.-1B.1C.-3D.3 【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为 ( )[来源:] A.1,2 B.1,3 C.4,2 D.4,3 【答案】A12. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10【答案】A13. (2011山东菏泽,6,3分)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是A . 56B . 15C .5D .6【答案】A14. (2011四川南充市,5,3分) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D )1223= 【答案】A15. (2011浙江温州,1,4分)计算:(一1)+2的结果是( ) A .-1 B .1 C .-3 D .3 【答案】B16. (2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B .-3 C .+3 D .+4 【答案】A17. (2011台湾台北,2)计算(-3)3+52-(-2)2之值为何?A .2B . 5C .-3D .-6 【答案】D18. (2011台湾台北,11)计算45.247)6.1(÷÷--之值为何?A .-1.1B .-1.8C .-3.2D .-3.9【答案】C19. (2011台湾台北,19)若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何?A .9656710B .9356710C .6356710 D .56710[来源:学科网ZXXK] 【答案】C20.(2011四川乐山1,3分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为A .4℃B .9℃C .-1℃D .-9℃ 【答案】 C21. (2011湖北黄冈,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10 【答案】A22. (2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11o C ,最高气温为t o C ,则最低气温可表示为A. (11+t )oCB.(11-t ) oCC.(t -11) oCD. (-t -11) oC 【答案】C23. (2011广东茂名,1,3分)计算:0)1(1---的结果正确..的是 A .0 B .1C .2D .2-【答案】D24. (2011山东德州1,3分)下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 【答案】B25. (2011河北,1,2分)计算03的结果是( ) A .3B .30C .1D .0【答案】C26. (2011湖南湘潭市,1,3分)下列等式成立是 A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 【答案】A27.(2011台湾全区,2)计算33)4(7-+之值为何?A .9B . 27C . 279D . 407【答案】C28. (2011台湾全区,12)12.判断312是96的几倍?A . 1B . (31)2C . (31)6 D . (-6)2 【答案】A29. (2011台湾全区,14)14.计算)4(433221-⨯++之值为何?A .-1B .-611C .-512D .-323 【答案】B30. (2011湖南常德,9,3分)下列计算错误的是( )A.020111=B.819=±C.1133-⎛⎫= ⎪⎝⎭D.4216=【答案】B31. (2011湖北襄阳,6,3分)下列说法正确的是A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D32.(20011江苏镇江,1,2分)在下列实数中,无理数是( ) A.2 B.0 C.5 D.13答案【 C 】33. (2011贵州贵阳,6,3分)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D34(2011湖北宜昌,5,3分)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A . a < b B.a = b C. a > b D .ab > 0(第5题图)【答案】C35. (2011广东茂名,9,3分)对于实数a 、b ,给出以下三个判断: ①若b a =,则 b a =. ②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是 A .3 B .2 C .1 D .0 【答案】C二、填空题1. (2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 【答案】1002. (2011广东省,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东日照,13,4分)计算sin30°﹣2-= . 【答案】23-; 4. (2011四川南充市,11,3分)计算(π-3)0= .【答案】15. (2011江西,9,3分)计算:-2-1= .[来源:学科网ZXXK] 【答案】-36. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】110067. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.【答案】658. (2011江西南昌,9,3分)计算:-2-1= . 【答案】-3输入数 ( )2-1 ( )2+1 输出数 减去59. (2011湖南怀化,11,3分)定义新运算:对任意实数a 、b ,都有ab=a 2-b,例如,32=32-2=7,那么21=_____________. 【答案】310.(2011安徽,14,5分)定义运算a ✞b=a (1-b ),下面给出了关于这种运算的几个结论:①2✞(-2)=6 ②a ✞b= b ✞ a[来源:学,科,网Z,X,X,K]③若a +b=0,则(a ✞ a )+(b ✞ b )=2 ab ④若a ✞b=0,则a =0其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 【答案】①③11. (2011广东汕头,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】2612. (20011江苏镇江,9,2分)计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______; 112-⎛⎫- ⎪⎝⎭=_______. 答案:12,12,1,-2 13.(2011广东湛江20,4分)已知:23233556326,54360,5432A A A A =⨯==⨯⨯==⨯⨯⨯=, ,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)【答案】>14. (2010湖北孝感,17,3分)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)] 【答案】115. (2011湖南湘潭市,16,3分)规定一种新的运算:ba b a 11+=⊗,则=⊗21____. 【答案】112三、解答题1. (2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.2. (2011广东东莞,11,6分)计算:001(20111)18sin452--+-【解】原式=1+2322⨯-4 =03. (1) (2011福建福州,16(1),7分)计算:016|-4|+2011- 【答案】解:原式414=+-1=[来源:Z|xx|]4. (2011江苏扬州,19(1),4分)(1)30)2(4)2011(23-÷+---【答案】(1)解:原式=)8(4123-÷+-=21123--=0 5. (2011山东滨州,19,6分)计算:()1013-3cos3012 1.22π-︒⎛⎫+-++- ⎪⎝⎭【答案】解:原式=332123122=23--++-+6. (2011山东菏泽,15(1),6分)计算:027(4)6cos302--π-+- 解:原式=333-16+22-⨯=1 7. (2011山东济宁,16,5分)计算:084sin 45(3)4-︒+-π+-【答案】.解:原式2224142=-⨯++ 5=8. (2011山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .【答案】(1)111n n -+ ············································································································ 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ·························· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ………………5分 9. (2011 浙江湖州,17,6)计算:0022sin304(2)π--++- 【答案】解:原式=1222142-⨯++= 10.(2011浙江衢州,17(1),4分) 计算:()0232cos 45π---+︒.【答案】解:(1)原式2212122=-+⨯=+ 11. (2011浙江绍兴,17(1),4分)(1)计算:0182cos454π--+︒+(-2);[来源:Z§xx§]【答案】解:原式21=221224-+⨯+ 3=32.4-12. (2011浙江省,17(1),4分)(1)计算:12)21(30tan 3)21(01+-+---【答案】(1)解:12)21(30tan 3)21(01+-+---= 3213332++⨯--=13-13. (2011浙江台州,17,8分)计算:203)12(1+-+- 【答案】解:原式= 1+1+9=1114. (2011浙江温州,17(1),5分)计算:20(2)(2011)12-+--; 【答案】解:20(2)(2011)124123523-+--=+-=-15. (2011浙江义乌,17(1),6分)(1)计算: 45sin 2820110-+;【答案】(1)原式=1+22-2=1+ 216. (2011广东汕头,11,6分)计算:001(20111)18sin452--+-【解】原式=1+2322⨯-4 =017. (2011浙江省嘉兴,17,8分)(1)计算:202(3)9+--. 【答案】原式=4+1-3=218. (2011浙江丽水,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.19. (2011福建泉州,18,9分)计算:()()2201131313272π-⎛⎫-+-⨯--+ ⎪⎝⎭.【答案】解:原式=3+(-1)⨯1-3+4…………………………(6分) =3…………………………(9分)20.(2011湖南常德,17,5分)计算:()317223-÷-⨯【答案】2921. (2011湖南邵阳,17,8分)计算:0201043-+-。

2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》

2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》

1 9
B.
1 3
C.
2 3
D.
2 9
【答案】A 8. (2011 浙江绍兴,7,4 分)在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除 颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 ( ) A.2 【答案】B 9. (2011 浙江义乌,9,3 分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷 锋活动, 其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 ( ) 1 A. 3 【答案】A 10. (2011 浙江省嘉兴,12,5 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 . 1 B. 9 1 C. 2 2 D. 3 B.4 C.12 D.16
【答案】C 21. (2011 山东临沂,10,3 分)如图,A、B 是数轴上的亮点,在线段 AB 上任取一点 C, 则点 C 到表示-1 的点的距离不大于 ...2 的概率是( A. ) D.
1 2
B.
2 3
C.
3 4
4 5
【答案】D 22. (2011 四川凉山州,4,4 分)下列说法正确的是( A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。 B.从 1,2,3,4,5 中随机取一个数,取得奇数的可能性较大。 C.某彩票中奖率为 36 0 0 ,说明买 100 张彩票,有 36 张中奖。 D.打开电视,中央一套正在播放新闻联播。 【答案】B 23. (2011 四川绵阳 3,3)掷一个质地均匀且六个面上分别刻有 1 到 6 的点数的正方体骰 子,如图.观察向上的ー面的点数,下列属必然事件的是 )
1 【答案】 3 2. (2011 浙江省舟山,12,4 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 .

2011年中考数学试题汇编--反比例函数

2011年中考数学试题汇编--反比例函数

选择题(每小题x 分,共y 分)〔2011•盐城市〕6.对于反比例函数y = 1x ,下列说法正确的是CA .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 (2011•茂名市)6、若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是A .2->m B.2-<m C.2>m D.2<m〔2011•广州市〕5.下列函数中,当x>0时,y 值随x 值增大而减小的是( D ) A.2x y = B. 1-=x y C. x y 43=D. xy 1= (1)〔2011•凉山州〕二次函数2y ax bx c =++的图像如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图像是( B )二、填空题(每小题x 分,共y 分)〔2011•湖北省武汉市〕 16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=__12___.〔2011•山东省烟台市〕18、如图,在平面直角坐标系中,点O 为原点, (2011•益阳市)13.在1-,1,2这三个数中任选2个数分别作为P 点的横坐标和纵坐标,过P 点画双曲线ky x=,该双曲线位于第一、三象限的概率是13. 〔2011•福州市〕13.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是 y=x3.〔2011•广东省〕9.已知一次函数b x y -=与反比例函数xy 2=的图象,有一个交点的纵坐标是2,则b 的值为______-1__。

11、(2011·济宁)反比例函数 xm y 1-=的图象在第一、三象限,则m 的取值范围是 m>1 。

2011年中考数学试题分类11 函数与一次函数

2011年中考数学试题分类11 函数与一次函数
【答案】C
30.(2011湖北黄石,10,3分)已知梯形ABCD的四个顶点的坐标分别为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为
A.- B.- C.- D.-
【答案】A
31.(2011湖南衡阳,6,3分)函数 中自变量x的取值范围是()
【答案】A
46.(2011江苏南通,9,3分)甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图像如图所示.根据图像信息,下列说法正确的是
A.甲的速度是4千米/小时
B.乙的速度是10千米/小时
【答案】B
3.(2011广东广州市,9,3分)当实数x的取值使得有意义时,函数y=4x+1中y的取值范围是().
A.y≥-7B.y≥9C.y>9D.y≤9
【答案】B
4.(2011山东滨州,6,3分)关于一次函数y=-x+1的图像,下列所画正确的是( )
【答案】C
5.(2011重庆江津,4,4分)直线y=x-1的图像经过象限是( )
C.x≥D.x<
【答案】A
25.(2011四川乐山3,3分)下列函数中,自变量x的取值范围为x<1的是
A. B. C. D.
【答案】D
26.(2011四川乐山8,3分)已知一次函数 的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式 的解集为
A.x<-1 B.x>-1 C.x>1 D.x<1
A.第一、二、三象限B.第一、二、四象限
C.第二、三、四象限D.第一、三、四象限

2011年全国各地中考数学试卷试题分类汇编——第12章《反比例函数》

2011年全国各地中考数学试卷试题分类汇编——第12章《反比例函数》

2011年全国各地中考数学试卷试题分类汇编第12章反比例函数一、选择题1. (2011广东汕头,6,4分)已知反比例函数kyx=的图象经过(1,-2).则k=.【答案】-22.(2011湖南邵阳,5,3分)已知点(1,1)在反比例函数kyx=(k为常数,k≠0)的图像上,则这个反比例函数的大致图像是()【答案】C提示:反比例函数过第一象限(也可由点(1,1)求得k=1),故选C。

3.(2011江苏连云港,4,3分)关于反比例函数4yx=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【答案】D4. (2011甘肃兰州,15,4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k kyx++=的图象上。

若点A的坐标为(-2,-2),则k的值为A.1 B.-3 C.4 D.1或-3【答案】D5. (2011湖南怀化,5,3分)函数2y x =与函数1y x-=在同一坐标系中的大致图像是【答案】D6. (2011江苏淮安,8,3分)如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D7. (2011四川乐山10,3分)如图(6),直线 6y x =- 交x 轴、y 轴于A 、B 两点,P是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。

则AF BE ⋅=A .8B .6C .4D . 【答案】A8. (2011湖北黄石,3,3分)若双曲线y=x k 12-的图象经过第二、四象限,则k 的取值范围是 A.k >21 B. k <21 C. k =21D. 不存在 【答案】B9. (2011湖南邵阳,5,3分)已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图像上,则这个反比例函数的大致图像是( )【答案】C10. (2011贵州贵阳,10,3分)如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是(第10题图)(A )-1<x <0 (B )-1<x <1(C )x <-1或0<x <1 (D )-1<x <0或x >1 【答案】C11. (2011广东茂名,6,3分)若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->m B .2-<mC .2>mD .2<m【答案】B12.(2011江苏盐城,6,3分)对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C13. (2011山东东营,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A. S 1<S 2<S 3B. S 1>S 2>S 3C. S 1=S 2>S 3D. S 1=S 2<S 3 【答案】D14. (2011福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y x=C .3y x=-D .12y x =【答案】 B15. (2011江苏扬州,6,3分)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A. (-3,2)B. (3,2)C. (2,3)D. (6,1) 【答案】A16. (2011山东威海,5,3分)下列各点中,在函数6y x=-图象上的是( ) A .(-2,-4) B .(2,3) C .(-1,6)D .1(,3)2-【答案】C17. (2011四川南充市,7,3分) 小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )【答案】B.18. (2011浙江杭州,6,3)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( )A .102x x <-<<或B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或图1【答案】D19. (2011浙江台州,9,4分)如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( ) A. -3,1 B. -3,3 C. -1,1 D.3,-1【答案】A20. (2011浙江温州,4,4分)已知点P (-l ,4)在反比例函数(0)ky k x=≠的图象上,则k 的值是( )A .14- B .14C .4D .-4【答案】D21. (2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为A .2y x=B .2y x=-C .12y x=D .12y x=-【答案】B22. (2011广东湛江12,3分)在同一直角坐标系中,正比例函数y x =与反比例函数2y x=的图像大致是A B C D【答案】B23. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作PQ ∥x 轴交图象于点P,Q ,连接OP,OQ.则以下结论 ①x <0时,x2y =, ②△OPQ 的面积为定值, ③x >0时,y 随x 的增大而增大 ④MQ=2PM⑤∠POQ 可以等于90°图5—2图5—1PQM其中正确的结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤【答案】B24. (2011山东枣庄,8,3分)已知反比例函数xy 1=,下列结论中不正确的是( ) A.图象经过点(-1,-1) B.图象在第一、三象限C.当1>x 时,10<<yD.当0<x 时,y 随着x 的增大而增大 【答案】D25. ( 2011重庆江津, 6,4分)已知如图,A 是反比例函数xky =的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( ) A.3 B.-3 C.6 D.-6·【答案】C ·第6题图26. (2011湖北宜昌,15,3分)如图,直线y=x +2与双曲线y=xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )(第15题图) 【答案】B 二、填空题1. (2011浙江金华,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y = kx,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是.(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是 .【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-4 2. (2011广东东莞,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 【答案】-23. (2011山东滨州,18,4分)若点A(m ,-2)在反比例函数4y x=的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________. 【答案】x ≤-2或x>04. (2011四川南充市,14,3分)过反比例函数y=xk(k≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B,C ,如果⊿ABC 的面积为3.则k 的值为 .【答案】6或﹣6.5. (2011宁波市,18,3分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y =2x(x >0)的图像上,顶点A 1、B 1分别在x 轴和y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2x(x >0)的图象上,顶点A 3在x 轴的正半轴上,则点P 3的坐标为【答案】(3+1,3-1)6. (2011浙江衢州,5,4分)在直角坐标系中,有如图所示的t ,R ABO AB x ∆⊥轴于点B ,(0)kx x=>的图像经过AO 的中点C ,且与【答案】382(,)7. (2011浙江绍兴,13,5分) 若点12(1,),(2,)A y B y 是双曲线3y x=上的点,则 1y 2y (填“>”,“<”“=”). 【答案】>8. (2011浙江丽水,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y = k x,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′.(1)当点O ′与点A 重合时,点P 的坐标是 .(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是.【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-49. (2011湖南常德,5,3分)如图1所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________. 【答案】3y x10.(2011江苏苏州,18,3分)如图,已知点A 的坐标为(3,3),AB ⊥x 轴,垂足为B ,连接OA ,反比例函数y=xk(k>0)的图象与线段OA 、AB 分别交于点C 、D.若AB=3BD ,以点C 为圆心,CA 的45倍的长为半径作圆,则该圆与x 轴的位置关系是___________(填“相离”、“相切”或“相交”)【答案】相交11. (2011山东济宁,11,3分)反比例函数1m y x-=的图象在第一、三象限,则m 的取值范围是 . 【答案】x >112. (2011四川成都,25,4分)在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小.若该反比例函数的图象与直线y x =-都经过点P ,且OP =k=_________. 【答案】37. 13. (2011安徽芜湖,15,5分)如图,在平面直角坐标系中有一正方形AOBC ,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(4-ABC ,则k 的值为 .【答案】414. (2011广东省,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 【答案】-215. (2011江苏南京,15,2分)设函数2y x=与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________. 【答案】12-16. (2011上海,11,4分)如果反比例函数ky x=(k 是常数,k ≠0)的图像经过点(-1,2),那么这个函数的解析式是__________.【答案】2y x=-17. (2011湖北武汉市,16,3分)如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=x k 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE面积的5倍,则k =_____.【答案】1218. (2011湖北黄冈,4,3分)如图:点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.【答案】-419. (2011湖北黄石,15,3分)若一次函数y=kx +1的图象与反比例函数y =x1的图象没有公共点,则实数k 的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年中考数学试卷试题分类汇编 反比例函数 答案一、选择题1. (2011江苏连云港,4,3分)关于反比例函数4y x=的图象,下列说法正确的是( ) A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称【答案】D2. (2011甘肃兰州,15,4分)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。

若点A 的坐标为(-2,-2),则kA .1B .-3C .4D .1或-3【答案】D3. (2011湖南怀化,5,3分)函数2y x =与函数1y x-=【答案】D4. (2011江苏淮安,8,3分)如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2 【答案】D5. (2011四川乐山10,3分)如图(6),直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。

则AF BE ⋅= A .8 B .6 C .4 D . 【答案】A6. (2011贵州贵阳,10,3分)如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是(A )-1<x <0 (B )-1<x <1(C )x <-1或0<x <1 (D )-1<x <0或x >1 【答案】C7. (2011山东东营,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A. S 1<S 2<S 3B. S 1>S 2>S 3C. S 1=S 2>S 3D. S 1=S 2<S 3 【答案】D8. (2011四川南充市,7,3分) 小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )【答案】B.9. (2011浙江杭州,6,3)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( )A .102x x <-<<或B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或 【答案】D10. (2011浙江台州,9,4分)如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( ) A. -3,1 B. -3,3 C. -1,1 D.3,-1【答案】A11. (2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为A .2y x =B .2y x =-C .12y x =D .12y x=-【答案】B12. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作PQ ∥x 轴交图象于点P,Q ,连接OP,OQ.则以下结论①x <0时,x2y =, ②△OPQ 的面积为定值, ③x >0时,y 随x 的增大而增大 ④MQ=2PM⑤∠POQ 可以等于90°其中正确的结论是( )A .①②④B ②④⑤C .③④⑤D .②③⑤【答案】B13. ( 2011重庆江津, 6,4分)已知如图,A 是反比例函数xky =的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( ) A.3 B.-3 C.6 D.-6· 【答案】C14. (2011湖北宜昌,15,3分)如图,直线y=x +2与双曲线y=xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为( ) 【答案】B二、第14题图5—2图5—1P QM二、填空题1. (2011浙江金华,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y = kx,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′.(1)当点O ′与点A 重合时,点P 的坐标是.(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是 . 【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-42. (2011山东滨州,18,4分)若点A(m ,-2)在反比例函数4y x=的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________.【答案】x ≤-2或x>0 3. (2011四川南充市,14,3分)过反比例函数y=xk(k≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B,C ,如果⊿ABC 的面积为3.则k 的值为 .【答案】6或﹣6. 4. (2011宁波市,18,3分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y =2x(x >0)的图像上,顶点A 1、B 1分别在x 轴和y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2x(x >0轴上,则点P 3的坐标为 【答案】(3+1,3-1)5. (2011浙江衢州,5,4t ,R ABO AB x ∆⊥轴于点B ,斜边10AO AOB =∠,sin 反比例函数(0)ky x x=>的图像经过AO 的中点C ,且与交于点D ,则点D 的坐标为 . 【答案】382(,)6.(2011江苏苏州,18,3分)如图,已知点A 的坐标为(3,3),AB⊥x 轴,垂足为B ,连接OA ,反比例函数y=xk(k>0)的图象与线段OA 、AB 分别交于点C 、D.若AB=3BD ,以点C 为圆心,CA 的45倍的长为半径作圆,则该圆与x 轴的位置关系是___________(填“相离”、“相切”或“相交”) 【答案】相交7. (2011四川成都,25,4分)在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x的增大而减小.若该反比例函数的图象与直线y x =-都经过点P,且OP =,则实数k=_________.【答案】37. 8. (2011江苏南京,15,2分)设函数2y x =与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________.【答案】12-9. (2011湖北武汉市,16,3分)如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k =_____. 【答案】1210. (2011湖北黄冈,4,3分)如图:点A 在双曲线ky x=上, AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.【答案】-4 11. (2011内蒙古乌兰察布,17,4分)函数1(0)y x x =≥ ,xy 92=(0)x >的图象如图所示,则结论: ① 两函数图象的交 点A 的坐标为(3 ,3 ) ② 当3x >时,21y y > ③ 当 1x =时, BC = 8 ④当 x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小. 其中正确结论的序号是_ . 【答案】①③④12. (2010湖北孝感,15,3分) 如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 的面积为矩形,则它的面积为 . 【答案】213. (2011湖北荆州,16,4分)如图,双曲线)0(2x xy =经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 . 【答案】2y第10题图yy 1=xy 2=9xx第11题图三、解答题1. (2011安徽,21,12分)如图,函数b x k y +=11的图象与函数xk y 22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小.【答案】(1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k∴ 31+-=x y ; 又A 点在函数x k y 22=上,所以 212k =,解得22=k , 所以x y 22=;解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==2111y x , ⎩⎨⎧==1222y x . 所以点B 的坐标为(1, 2). (2)当x =1或x =2时,y 1=y 2;当1<x <2时,y 1>y 2;当0<x <1或x >2时,y 1<y 2.2. (2011山东菏泽,17(1),7分)已知一次函数2y x =+与反比例函数ky x=,其中一次函数2y x =+的图象经过点P (k ,5).①试确定反比例函数的表达式;②若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标 【答案】解:因一次函数y =x +2的图象经过点P (k ,5), 所以得5=k +2,解得k =3 所以反比例函数的表达式为3y x= (2)联立得方程组23y x y x =+⎧⎪⎨=⎪⎩解得13x y =⎧⎨=⎩或31x y =-⎧⎨=-⎩故第三象限的交点Q 的坐标为(-3,-1) 3. (2011山东济宁,20,7分)如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上 求一点P ,使PA PB +最小.【答案】(1) 设A 点的坐标为(a ,b ),则kb a=.∴ab k =. ∵112ab =,∴112k =.∴2k =. ∴反比例函数的解析式为2y x =. (2) 由212y xy x ⎧=⎪⎪⎨⎪=⎪⎩ 得2,1.x y =⎧⎨=⎩ ∴A 为(2,1). 设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,1-). 令直线BC 的解析式为y mx n =+.∵B 为(1,2)∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴BC 的解析式为35y x =-+. ·················· 6分当0y =时,53x =.∴P 点为(53,0).…………………………7分 4. (2011山东泰安,26 ,10分)如图,一次函数y=k 1x+b 的图象经过A (0,-2),B (1,0)两点,与反比例函数y=12x的图象在第一象限内的交点为M ,若△OBM 的面积为2。

相关文档
最新文档