集合章末综合试题(1)

合集下载

高一数学第一章集合及基本运算章末习题课

高一数学第一章集合及基本运算章末习题课

第一章章末习题课(时间:80分钟)一、单项选择题1.已知集合A={1,2},B={1},则下列关系正确的是(C)A.B∉A B.B∈AC.B⊆A D.A⊆B解析:两个集合之间不能用“∈或∉”,首先排除选项A,B,因为集合A={1,2},B={1},所以集合B中的元素都是集合A中的元素,由子集的定义知B⊆A.故选C.2.命题“存在一个无理数,它的平方是有理数”的否定是(B)A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数3.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=(A)A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5} D.{x|x≤5}解析:在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.4.“-2<x<4”是“x<4”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“-2<x<4”可得“x<4”,反之不成立,故“-2<x<4”是“x<4”的充分不必要条件.故选A.5.已知集合U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},则(∁U A)∪B=(A) A.{2,4,5} B.{1,3,4}C.{1,2,4} D.{2,3,4,5}解析:由题意知∁U A={2,5},所以(∁U A)∪B={2,4,5}.故选A.6.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为⎩⎨⎧ x >0,y >0⇒1xy >0,1xy >0⇒⎩⎨⎧ x >0,y >0或⎩⎪⎨⎪⎧ x <0,y <0,所以“⎩⎨⎧x >0,y >0”是“1xy >0”的充分不必要条件.故选A.7.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( B )A .1B .2C .3D .4 解析:集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.8.设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分别用圆表示,则下列图中阴影部分表示A -B 的是( C )解析:因为A -B ={x |x ∈A ,且x ∉B },所以A -B 是集合A 中的元素去掉A ∩B 中的元素构成的集合.故选C.二、多项选择题9.下列命题正确的有( ABD )A .0是最小的自然数B .每个正方形都有4条对称轴C .∀x ∈{1,-2,0},2x +1>0D .∃x ∈N ,使x 2≤x解析:对于A :根据自然数集的定义知,最小的自然数是0,命题A 正确;对于B :由正方形的图形特点知,每个正方形都有两条对角线和过对边中点的直线四条对称轴,命题B 正确;对于C:这是全称量词命题,当x=-2时,2×(-2)+1<0,命题C错误;对于D:这是存在量词命题,当x=1或x=0时,可得x2≤x成立,命题D正确.故选ABD.10.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x可能为(AC)A.2 B.-2C.-3 D.1解析:由题意得2=3x2+3x-4或2=x2+x-4,若2=3x2+3x-4,即x2+x-2=0,所以x=-2或x=1,检验:当x=-2时,x2+x-4=-2,与元素互异性矛盾,舍去;当x=1时,x2+x-4=-2,与元素互异性矛盾,舍去.若2=x2+x-4,即x2+x-6=0,所以x=2或x=-3,经验证x=2或x=-3为满足条件的实数x.故选AC.11.下列命题正确的有(CD)A.A∪∅=∅B.∁U(A∪B)=(∁U A)∪(∁U B)C.A∩B=B∩AD.∁U(∁U A)=A解析:在A中,A∪∅=A,故A错误;在B中,∁U(A∪B)=(∁U A)∩(∁U B),故B错误;在C中,A∩B=B∩A,故C正确;在D中,∁U(∁U A)=A,故D正确.故选CD.12.若-1<x<2是-2<x<a的充分不必要条件,则实数a的值可以是(BCD)A.1 B.2C.3 D.4解析:由题意得a≥2.所以实数a的值可以是2,3,4.故选BCD.三、填空题13.若命题p:∀a,b∈R,方程ax2+b=0恰有一解,则命题p的否定为∃a,b∈R,方程ax2+b=0无解或至少有两解.14.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁B)=__{3}__.U解析:由U={1,2,3,4},且∁U(A∪B)={4},得A∪B={1,2,3},又B={1,2},所以A中一定有元素3,没有元素4,所以A∩(∁U B)={3}.15.设p:-m≤x≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为__1__;若p 是q 的必要条件,则m 的最小值为__4__.解析:设A ={x |-m ≤x ≤m }(m >0),B ={x |-1≤x ≤4},若p 是q 的充分条件,则A ⊆B ,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤4,所以0<m ≤1,所以m 的最大值为1;若p 是q 的必要条件,则B ⊆A ,所以⎩⎪⎨⎪⎧ -m ≤-1,m ≥4,所以m ≥4,所以m 的最小值为4. 16.若“x <-1”是“x ≤a ”的必要不充分条件,则a 的取值范围是__{a |a <-1}__. 解析:若“x <-1”是“x ≤a ”的必要不充分条件,则{x |x ≤a }⊆{x |x <-1},∴a <-1.四、解答题17.已知集合A ={x |2≤x ≤5},B ={x |-2m +1<x <m },全集为R .(1)若m =3,求A ∪B 和(∁R A )∩B ;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵m =3,∴B ={x |-5<x <3}.又A ={x |2≤x ≤5},∴∁R A ={x |x <2或x >5}.∴A ∪B ={x |-5<x ≤5},(∁R A )∩B ={x |-5<x <2}.(2)∵A ∩B =A ,∴A ⊆B .∴⎩⎪⎨⎪⎧-2m +1<2,m >5,解得m >5. ∴实数m 的取值范围为{m |m >5}.18.在①{x |a -1≤x ≤a },②{x |a ≤x ≤a +2},③{x |a ≤x ≤a +3}这三个条件中任选一个,补充在下面问题中,若问题中的a 存在,求a 的值;若a 不存在,请说明理由.已知集合A =________,B ={x |1≤x ≤3}.若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:由题意知,A 不为空集,B ={x |1≤x ≤3}.当选条件①时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a -1≥1,a <3或⎩⎪⎨⎪⎧a -1>1,a ≤3,解得2≤a ≤3. 所以实数a 的取值范围是{a |2≤a ≤3}.当选条件②时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a ≥1,a +2<3或⎩⎪⎨⎪⎧a >1,a +2≤3,无解.故不存在满足题意的a . 当选条件③时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎨⎧a ≥1,a +3<3或⎩⎨⎧ a >1a +3≤3,无解. 故不存在满足题意的a .。

第一章 集合与常用逻辑用语(章末测试)(解析版)

第一章 集合与常用逻辑用语(章末测试)(解析版)

第一章集合与常用逻辑用语章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题(每题只有一个选择为正确答案,每题5分,共40分)1.(2020·浙江高一单元测试)2x2−5x−3<0的一个必要不充分条件是()A.−12<x<3B.−1<x<6C.−12<x<0D.−3<x<12【答案】B【解析】求解不等式2x2−5x−3<0可得−12<x<3,结合所给的选项可知2x2−5x−3<0的一个必要不充分条件是−1<x<6.本题选择B选项.2.(2020·浙江高一单元测试)设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则图中阴影部分表示的集合的真子集有()个A.3B.4C.7D.8【答案】C【解析】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:C U(A∩B)={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C.3.(2020·天津南开中学高三月考)设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈< ,则()A CB =( )A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}【答案】D 【解析】因为{1,2}AC =,所以(){1,2,3,4}A C B =.故选D 。

4.(2020·全国高一)设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B =∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C5.(2020·全国高一课时练习)设甲是乙的必要条件;丙是乙的充分但不必要条件,那么( ) A .丙是甲的充分条件,但不是甲的必要条件 B .丙是甲的必要条件,但不是甲的充分条件 C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件 【答案】A【解析】甲是乙的必要条件,所以乙是甲的充分条件,即乙⇒甲; 丙是乙的充分但不必要条件,则丙⇒乙,乙⇒丙,显然丙⇒甲,甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件,故选A 6.(2020·四川阆中中学高一月考)设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 【答案】B【解析】依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 7.(2020·海南枫叶国际学校高一期末)已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x =<<=<,选A . 8.(2020·湖南天心。

高中数学章末过关检测一集合与常用逻辑用语新人教A版必修第一册

高中数学章末过关检测一集合与常用逻辑用语新人教A版必修第一册

章末过关检测(一) 集合与常用逻辑用语一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.[2022·福建福州高一期中]下列关系中,正确的有( )A.∅{0} B.{0,1}={(0,1)} C.Q∈Z D.{0}∈{0,1,2}2.已知集合M={1,2},则集合M的子集个数为( )A.1 B.2 C.3 D.43.命题“∀x∈R,x2+1>0”的否定是( )A.∃x∈R,x2+1>0 B.∃x∈R,x2+1≤0C.∀x∈R,x2+1<0 D.∀x∈R,x2+1≤04.已知集合A={x|0≤x≤3},B={x|1<x<4},则A∪B=( )A.{x|1<x≤3} B.{x|0≤x<4} C.{x|1≤x≤3} D.{x|0<x<4}5.“a=1”是“|a|=1”的( )A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.已知集合A={x|-1<x≤2},B={-2,-1,0,2,4},则(∁R A)∩B=( )A.∅ B.{-1,2} C.{-2,4} D.{-2,-1,4}7.设U为全集,则“A∩B=∅”是“A⊆∁U B”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件“∀x∈R,方程x2+4x+a=0有解”是真命题,则实数a的取值范围是( ) 8.已知命题:A.a<4 B.a≤4 C.a>4 D.a≥4二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.已知集合A,B是非空集合且A⊆B,则下列说法正确的是( )A.∃x∈A,x∈B B.∀x∈A,x∈BC.A∩B=A D.A∩(∁U B)≠∅10.下列命题中是假命题的有( )A.∀x∈R,x3≥0 B.∃x∈R,x3=3C.∀x∈R,x2-1=0 D.∃x∈Z,1<4x<311.下列说法中正确的有( )A.“x>3”是“x>2”的必要条件B.“x>1”是“x2>1”的充分不必要条件C.“x=2或x=-3”是“x2+x-6=0”的充要条件D.“a>b”是“a2>b2”的必要不充分条件12.已知p:x>1或x<-3,q:x>a,则a取下面那些范围,可以使q是p的充分不必要条件( )A.a≥3 B.a≥5 C.a≤-3 D.a<1三、填空题(本题共4小题,每小题5分,共20分.)13.命题“∀x>0,2x+1≥0”的否定是________.14.已知集合A={1,a2},B={a,-1},若A∪B={-1,a,1},则a=________.15.方程x2-2x+a=0有实根的充要条件为________.16.已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4个元素的子集共有________个,其中的一个是________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)命题p:有一对实数(x,y),使x-3y+1<0.(2)命题q:∀x∈R,x2-4x+3>0.18.(本小题满分12分)已知集合A={x|x2-ax+3=0},(1)若1∈A,求实数a的值.(2)若集合B={x|2x2-bx+b=0},且A∩B={3},求A∪B.19.(本小题满分12分)已知全集为R,集合A={x|1≤x≤2},B={x|x<m或x>2m+1,m>0}.(1)当m=2时,求A∩B;(2)若A⊆∁R B,求实数m的取值范围.20.(本小题满分12分)已知命题p:∃x∈R,使x2-4x+m=0为假命题.(1)求实数m的取值集合B;(2)设A={x|3a<x<a+4}为非空集合,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.21.(本小题满分12分)已知集合A={x|-2≤x≤4},B={x|m-1<x<m2}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A∪B=A,求实数m的取值范围.22.(本小题满分12分)证明:“m<0”是“关于x的方程x2-2x+m=0有一正一负根”的充要条件.章末过关检测(一) 集合与常用逻辑用语1.解析:空集是任何非空集合的真子集,故A正确;{0,1}的元素为0,1,{(0,1)}的元素为(0,1),故B错误;因为Z⊆Q,故C错误;因为{0}{0,1,2},故D错误.答案:A2.解析:集合M={1,2},子集有:∅,{1},{2},{1,2},共4个.答案:D3.解析:全称量词命题的否定是存在量词命题,并将结论加以否定,所以命题“∀x ∈R,x2+1>0”的否定是:∃x∈R,x2+1≤0.答案:B4.解析:由A={x|0≤x≤3},B={x|1<x<4},则A∪B={x|0≤x<4}.答案:B5.解析:由a=1可推出|a|=1,由|a|=1,即a=1或a=-1,推不出a=1,故“a=1”是“|a|=1”的充分不必要条件.答案:B6.解析:因为A={x|-1<x≤2},B={-2,-1,0,2,4},所以∁R A={x|x≤-1或x>2},所以B∩(∁R A)={-2,-1,4}.答案:D7.解析:因为U为全集,若A∩B=∅,则A⊆∁U B;若A⊆∁U B,则A∩B=∅;所以“A∩B=∅”是“A⊆∁U B”的充要条件.答案:C8.解析:“∀x∈R,方程x2+4x+a=0有解”是真命题,故Δ=16-4a≥0,解得:a ≤4.答案:B9.解析:因为集合A,B是非空集合且A⊆B,所以∀x∈A,x∈B,即选项B正确,因此∃x∈A,x∈B,所以选项A正确;因为A⊆B,所以有A∩B=A,因此选项C正确;当A=B时,显然A⊆B成立,而A∩(∁U B)=A∩(∁U A)=∅,所以选项D不正确.答案:ABC10.解析:对选项A,当x=-1时,x3=-1<0,所以∀x∈R,x3≥0为假命题.对选项B,若x3=3,则x=33,所以∃x∈R,x3=3为真命题.对选项C ,若x 2-1=0,则x =±1,不满足∀x ∈R ,x 2-1=0,所以∀x ∈R ,x 2-1=0为假命题.对选项D ,1<4x <3,则14<x <34,所以不存在x ∈Z ,满足14<x <34, 即∃x ∈Z ,1<4x <3为假命题.答案:ACD11.解析:对于A ,“x >2”成立,“x >3”不一定成立,A 错误;对于B ,“x >1”可以推出“x 2>1”,取x =-2,得x 2>1,但-2<1,所以“x 2>1”不能推出“x >1”,B 正确;对于C ,x 2+x -6=0的两个根为x =2或x =-3,C 正确;对于D ,“a >b ”不能推出“a 2>b 2”,同时“a 2>b 2”也不能推出“a >b ”,D 错误. 答案:BC12.解析:p :x >1或x <-3,q :x >a ,q 是p 的充分不必要条件,故a ≥1,范围对应集合是集合{a |a ≥1}的子集即可,对比选项知AB 满足条件.答案:AB13.解析:因为命题“∀x >0,2x +1≥0”是全称量词命题,所以其否定是存在量词命题,即为∃x >0,2x +1<0.答案:∃x >0,2x +1<014.解析:因为A ={1,a 2},B ={a ,-1},A ∪B ={-1,a ,1},所以a =a 2,解得a =0或a =1(舍去,不满足集合元素的互异性).答案:015.解析:由题意可得Δ=4-4a ≥0,解得a ≤1.答案:a ≤116.解析:因为集合S ={0,1,2,3,4,5},根据题意知只要有元素与之相邻,则该元素不是孤立元素,所以S 中无“孤立元素”的4个元素的子集有{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}共6个.其中一个可以是{0,1,2,3}.答案:6 {0,1,2,3}17.解析:(1)命题p 是存在量词命题.当x =0,y =1时,x -3y +1=-2<0成立,故命题p 是真命题.(2)命题q 是全称量词命题由x 2-4x +3=(x -1)(x -3)>0,得x <1或x >3.只有当x <1或x >3时,x 2-4x +3>0成立,故命题q 是假命题.18.解析:(1)因为1∈A ,故可得1-a +3=0,解得a =4.故实数a 的值为4.(2)因为A ∩B ={3},故3是方程x 2-ax +3=0的根,则9-3a +3=0,解得a =4,此时x 2-4x +3=0,即(x -1)(x -3)=0,解得x =1或x =3,故A ={1,3};又3是方程2x 2-bx +b =0的根,则18-3b +b =0,解得b =9,此时2x 2-9x +9=0,即(2x -3)(x -3)=0,解得x =3或x =32,故B ={3,32}; 故A ∪B ={1,3,32}. 19.解析:(1)当m =2时,B ={x |x <2或x >5},又A ={x |1≤x ≤2},所以A ∩B ={x |1≤x <2};(2)因为B ={x |x <m 或x >2m +1,m >0},所以∁R B ={x |m ≤x ≤2m +1},又A ⊆∁R B ,所以⎩⎪⎨⎪⎧m ≤12≤2m +1, 解得12≤m ≤1,即m ∈[12,1]. 所以实数m 的取值范围为[12,1]. 20.解析:(1)由题意,得关于x 的方程x 2-4x +m =0无实数根,所以Δ=16-4m <0,解得m >4,即B ={m |m >4};(2)因为A ={x |3a <x <a +4}为非空集合,所以3a <a +4,即a <2,因为x ∈A 是x ∈B 的充分不必要条件,则3a ≥4,即a ≥43, 所以43≤a <2. 21.解析:(1)因为A ={x |-2≤x ≤4},x ∈Z ,所以A ={-2,-1,0,1,2,3,4},A 中共有7个元素,则A 的非空真子集的个数为27-2=126;(2)因为A ∪B =A ,所以B ⊆A ,因为m 2-m +1=(m -12)2+34>0,故B ≠∅, 则⎩⎪⎨⎪⎧m 2≤4m -1≥-2,解得:-1≤m ≤2,从而实数m 的取值范围为[-1,2]. 22.证明:充分性:若m <0,则关于x 的方程x 2-2x +m =0有一正一负根,证明如下: 当m <0时,Δ=(-2)2-4m =4-4m >0,所以方程x 2-2x +m =0有两个不相等的实根,设两根分别为x 1,x 2,则x 1x 2=m <0,所以方程x 2-2x +m =0有一正一负根,故充分性成立,必要性:若“关于x 的方程x 2-2x +m =0有一正一负根”,则m <0,证明如下:设方程x 2-2x +m =0一正一负根分别为x 1,x 2,则⎩⎪⎨⎪⎧Δ=(-2)2-4m =4-4m >0x 1x 2=m <0,所以m <0,所以若“关于x 的方程x 2-2x +m =0有一正一负根”,则m <0, 故必要性成立,所以“m <0”是“关于x 的方程x 2-2x +m =0有一正一负根”的充要条件.。

高中数学章末检测试卷(一)

高中数学章末检测试卷(一)

章末检测试卷(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B 等于( ) A .{-2} B .{2} C .{-2,2} D .∅ 答案 A解析 ∵A ={x |x +2=0},∴A ={-2}. ∵B ={x |x 2-4=0},∴B ={-2,2}. ∴A ∩B ={-2}.故选A.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A 答案 A解析 因为a =2+3≤10,故a ∈A .3.“三角形的三条边相等”是“三角形为等边三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 答案 C解析 三角形的三条边相等,则三角形为等边三角形,即充分性成立,三角形为等边三角形,则三角形的三条边相等,即必要性成立,则“三角形的三条边相等”是“三角形为等边三角形”的充要条件,故选C.4.设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C 等于( ) A .{2} B .{1,2,4}C .{1,2,4,6}D .{x ∈R |-1≤x ≤5}答案 B解析 A ∪B ={1,2,4,6},(A ∪B )∩C ={1,2,4},故选项B 符合. 5.已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32D .A ∪B =R考点 并集、交集的综合运算题点 并集、交集的综合运算 答案 A解析 因为B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x <32, A ={x |x <2},所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,A ∪B ={x |x <2}. 故选A.6.全称量词命题:∀x ∈R ,x 2+5x =4的否定是( ) A .∃x ∈R ,x 2+5x =4 B .∀x ∈R ,x 2+5x ≠4 C .∃x ∈R ,x 2+5x ≠4 D .以上都不正确 答案 C解析 ∵全称量词命题的否定是存在量词命题,∴∀x ∈R ,x 2+5x =4的否定是:∃x ∈R ,x 2+5x ≠4.故选C.7.设集合U ={-1,1,2,3},M ={x |x 2-5x +p =0},若∁U M ={-1,1},则实数p 的值为( ) A .-6 B .-4 C .4 D .6 答案 D解析 由题意M ={2,3},∴2×3=p ,∴p =6.8.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( ) A .必要条件 B .充分条件C .充要条件D .既不充分又不必要条件答案 A解析 由题意可知:“返回家乡”则可推出“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要条件,故选A.9.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则m 的取值范围为( ) A .-3≤m ≤4 B .-3<m <4 C .2<m <4 D .2<m ≤4 答案 D解析 ∵A ∪B =A ,∴B ⊆A .又B ≠∅.∴⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,即2<m ≤4. 10.设m 为给定的一个实常数,命题p :∀x ∈R ,x 2-4x +2m ≥0,则“m ≥3”是“命题p 为真命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 A解析 当命题p 为真时,则∀x ∈R ,x 2-4x +2m ≥0恒成立,即Δ=16-8m ≤0,即m ≥2. 因为“m ≥3”是“m ≥2”充分不必要条件,即“m ≥3”是“命题p 为真命题”的充分不必要条件, 故选A.11.给出下列四个结论:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素;④集合B=⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x ∈N 是有限集.其中正确结论的个数是( ) A .0 B .1 C .2 D .3 答案 A解析 对于①,{0}中含有元素0,不是空集,故①错误;对于②,比如0∈N ,-0∈N ,故②错误;对于③,集合A ={x |x 2-2x +1=0}={1}中有一个元素,故③错误;对于④,当x ∈Q且6x ∈N 时,6x 可以取无数个值,所以集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x ∈N 是无限集,故④错误.综上可知,正确结论的个数是0.故选A.12.已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是( )A.⎩⎨⎧⎭⎬⎫a ⎪⎪a <13 B.⎩⎨⎧⎭⎬⎫a ⎪⎪0<a ≤13 C.⎩⎨⎧⎭⎬⎫a ⎪⎪ a ≤13D.⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥13 答案 C解析 若a =0,则不等式等价为2x +3>0,对于∀x ∈R 不成立,若a ≠0,则⎩⎪⎨⎪⎧a >0,Δ=4-12a <0,解得a >13,∴命题p 为真命题的a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪ a >13, ∴使命题p 为假命题的a 的范围是⎩⎨⎧⎭⎬⎫a ⎪⎪ a ≤13.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A ={7,2m -1},B ={7,m 2},且A =B ,则实数m =________. 答案 1解析 若A =B ,则m 2=2m -1,即m 2-2m +1=0,即m =1.14.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 答案 {a |a >-1}解析 因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.15.设集合S ={x |x >-2},T ={x |x 2+3x -4=0},则(∁R S )∪T =________. 答案 {x |x ≤-2或x =1}解析 ∁R S ={x |x ≤-2},T ={x |x 2+3x -4=0} ={-4,1}.所以(∁R S )∪T ={x |x ≤-2或x =1}.16.已知集合A ={x |-1<x <2},B ={x |-1<x <m +1},若x ∈A 是x ∈B 成立的一个充分不必要条件,则实数m 的取值范围是__________. 答案 {m |m >1}解析 由x ∈A 是x ∈B 成立的一个充分不必要条件,得A B ,即⎩⎪⎨⎪⎧m +1>-1,m +1>2,即m >1. 三、解答题(本大题共6小题,共70分)17.(10分)判断下列命题是全称量词命题还是存在量词命题,并写出它们的否定: (1)p :对任意的x ∈R ,x 2+x +1=0都成立; (2)p :∃x ∈R ,x 2+2x +5>0.解 (1)由于命题中含有全称量词“任意的”,因而是全称量词命题;又由于“任意的”的否定为“存在一个”,因此,綈p :存在一个x ∈R ,使x 2+x +1≠0成立,即“∃x ∈R ,使x 2+x +1≠0成立”; (2)由于“∃x ∈R ”表示存在一个实数x ,即命题中含有存在量词“存在一个”, 因而是存在量词命题;又由于“存在一个”的否定为“任意一个”,因此,綈p :对任意一个x 都有x 2+2x +5≤0,即“∀x ∈R ,x 2+2x +5≤0”.18.(12分)已知p :-1<x <3,q :k -2≤x ≤k +5,若p 是q 的充分不必要条件,求实数k 的取值范围.解 ∵p 是q 的充分不必要条件, ∴p ⇒q ,q ⇏p ,∴⎩⎪⎨⎪⎧k -2≤-1,k +5≥3即-2≤k ≤1, 所以k 的取值范围为{k |-2≤k ≤1}.19.(12分)已知集合P ={2,x ,y },Q ={2x,2,y 2},且P =Q ,求x ,y 的值.解 ∵P =Q ,∴⎩⎪⎨⎪⎧ x =2x ,y =y 2或⎩⎪⎨⎪⎧x =y 2,y =2x , 解得⎩⎪⎨⎪⎧ x =0,y =0或1或⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =14,y =12.由元素的互异性可知x ≠y , 故x =0,y =1或x =14,y =12.20.(12分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R . (1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围. 解 (1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6} ={x |1<x ≤8}.∵∁U A ={x |x <2或x >8}, ∴(∁U A )∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,作图易知,只要a 在8的左边即可, ∴a <8.∴a 的取值范围为{a |a <8}.21.(12分)已知集合P ={x |-2≤x ≤10},Q ={x |1-m ≤x ≤1+m }. (1)求集合∁R P ;(2)若P ⊆Q ,求实数m 的取值范围; (3)若P ∩Q =Q ,求实数m 的取值范围. 解 (1)∁R P ={x |x <-2或x >10}.(2)由P ⊆Q ,需⎩⎪⎨⎪⎧1-m ≤-2,1+m ≥10,得m ≥9,即实数m 的取值范围为{m |m ≥9}.(3)由P ∩Q =Q 得,Q ⊆P ,①当1-m >1+m ,即m <0时,Q =∅,符合题意;②当1-m ≤1+m ,即m ≥0时,需⎩⎪⎨⎪⎧m ≥0,1-m ≥-2,1+m ≤10,得0≤m ≤3;综上得m ≤3,即实数m 的取值范围为{m |m ≤3}.22.(12分)已知非空集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}. (1)若a =3,求(∁R P )∩Q ;(2)若“x ∈P ”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围. 解 因为P 是非空集合,所以2a +1≥a +1,即a ≥0. (1)当a =3时,P ={x |4≤x ≤7},(∁R P )={x |x <4或x >7}, Q ={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)若“x ∈P ”是“x ∈Q ”的充分不必要条件,即P Q , 即⎩⎪⎨⎪⎧a +1≥-2,2a +1≤5,a ≥0,且a +1≥-2和2a +1≤5的等号不能同时取得,解得0≤a ≤2,即实数a 的取值范围为{a |0≤a ≤2}.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

人教版高中数学必修一1章末(1)课时练习习题(含答案解析)

人教版高中数学必修一1章末(1)课时练习习题(含答案解析)

1章末一、选择题1.已知集合M ={y |y =ax +b ,a ≠0,x ∈R}和集合P ={(x ,y )|y =ax +b ,a ≠0,x ∈R},下列关于它们的关系结论正确的是( )A .M PB .P MC .M =PD .M ∩P =∅ [答案] D[解析] 前者表示的是一个一次函数的值的集合,其中的元素是一元实数y ,而后者则是一个以一次函数的图象上的点(x ,y )为元素的集合,因此也就不具有包含、相等关系了,故选D.2.设集合A ={x |x ∈Z 且-10≤x ≤-1},B ={x |x ∈Z 且|x |≤5},则A ∪B 中元素的个数是( )A .11B .10C .16D .15 [答案] C[解析] B ={x |-5≤x ≤5,x ∈Z},A ∪B ={x |-10≤x ≤5,x ∈Z}中共有16个元素.3.奇函数f (x )的定义域为(-∞,+∞),且在(-∞,0)上递减,若ab <0,且a +b ≥0,则f (a )+f (b )与0的大小关系是( )A .f (a )+f (b )<0B .f (a )+f (b )≤0C .f (a )+f (b )>0D .f (a )+f (b )≥0 [答案] B[解析] ∵f (x )为奇函数,且在(-∞,0)上是减函数∴f (x )在(0,+∞)上是减函数.∵ab <0. 不妨设b <0∴a >0,又a +b ≥0∴a ≥-b >0∴f (a )≤f (-b )又f (-b )=-f (b )∴f (a )+f (b )≤0.4.设集合M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M 、N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( )A.13B.23C.112D.512 [答案] C[解析] 由题意知⎩⎪⎨⎪⎧n -13≥0n ≤1∴13≤n ≤1,同理0≤m ≤14. 借助数轴可知M ∩N 的长度在n =1,m =0时,有最小“长度”值为34-23=112. *5.若f (x +1)的定义域为[-2,3],则f (2x -1)的定义域为( )A .[0,52] B .[-1,4] C .[-5,5]D .[-3,7][答案] A[解析] ∵-2≤x ≤3,∴-1≤x +1≤4,∴f (x )的定义域为[-1,4].∴要使f (2x -1)有意义,须满足-1≤2x -1≤4,∴0≤x ≤52. 6.(09·四川文)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎝⎛⎭⎫52的值是( )A .0B.12 C .1D.52 [答案] A[解析] 由xf (x +1)=(1+x )f (x )得-12f ⎝⎛⎭⎫12=12f ⎝⎛⎭⎫-12, ∴-f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫12,∴f ⎝⎛⎭⎫12=0, 又12f ⎝⎛⎭⎫32=32f ⎝⎛⎭⎫12,32f ⎝⎛⎭⎫52=52f ⎝⎛⎭⎫32, ∴f ⎝⎛⎭⎫32=0,f ⎝⎛⎭⎫52=0,故选A. *7.某汽车运输公司购买了一批新型大客车投入客运,据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)满足二次函数关系如图,则每辆客车营运________年,其营运年平均利润最大( )A .4B .5C .6D .7[答案] D[解析] 由题图可设y =a (x -8)2+15过点(6,11),∴11=a (6-8)2+15,∴a =-1,∴y =-(x -8)2+15,即y =-x 2+16x -49.年平均利润u =y x =-x -49x+16=16-⎝⎛⎭⎫x +49x , ∵x ∈N *,∴x >0,此函数在(0,7]上是增函数,在[7,+∞)上是减函数.∴当x =7时,u max =2, ∴每辆客车营运7年,其年平均利润最大.二、解答题8.设f (x )=x 2+ax +b ,A ={x |f (x )=x }={a },由元素(a ,b )构成的集合为M ,求M .[分析] 认真分析A ={x |f (x )=x }={a }的含义,解题思路呼之即出.从A ={a }知集合A 中有且仅有一个元素a ,从A ={x |f (x )=x }知,集合A 中的元素是方程f (x )=x 的解.由此即知方程f (x )=x 有且仅有一个实根a ,即关于x 的一元二次方程f (x )=x 有两相等实根a .[解析] 由题意知,方程f (x )=x 有且仅有一个实数根a ,即x 2+(a -1)x +b =0仅有一实根a ,∴⎩⎪⎨⎪⎧(a -1)2-4b =0a 2+(a -1)a +b =0 解之得:a =13,b =19,∴M ={(13,19)}. 9.已知y =f (x )满足f (-x )=-f (x ),它在(0,+∞)上是增函数,且f (x )<0,试问F (x )=1f (x )在(-∞,0)上是增函数还是减函数?证明你的结论.[解析] 任取x 1、x 2∈(-∞,0)且x 1<x 2,则有-x 1>-x 2>0,因为y =f (x )在(0,+∞)上是增函数,且f (x )<0,所以f (-x 2)<f (-x 1)<0.又因为f (x )满足f (-x )=-f (x ).所以f (x 2)>f (x 1)>0.于是F (x 1)-F (x 2)=1f (x 1)-1f (x 2)=f (x 2)-f (x 1)f (x 1)·f (x 2)>0,即F (x 1)>F (x 2). 所以F (x )=1f (x )在(-∞,0)上是减函数. *10.若A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(1)若A ∩B =A ∪B ,求a 的值;(2)若∅A ∩B ,A ∩C =∅,求a 的值.[解析] 由已知得:B ={2,3},C ={2,-4}(1)∵A ∩B =A ∪B ∴A =B于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根,由韦达定理知⎩⎪⎨⎪⎧2+3=a 2×3=a 2-19解之得a =5. (2)由∅A ∩B ,A ∩C =∅得3∈A,2∉A ,-4∉A由3∈A 得32-3a +a 2-19=0解得a=5或a=-2当a=5时,A={x|x2-5x+6=0}={2,3},与2∉A矛盾,当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意,∴a=-2.。

人教版高中物理选择性必修第1册章末综合检测(一)

人教版高中物理选择性必修第1册章末综合检测(一)

章末综合检测(一)时间:60分钟满分:100分一、单项选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.人从高处跳到低处,为了安全,一般都是脚尖先着地,且双腿要弯曲,这样做的目的是( )A.减小着地时所受冲量B.使动量增量变得更小C.增大人对地面的压强,起到安全作用D.延长对地面的作用时间,从而减小地面对人的作用力2.如图所示,某人站在一辆平板车的右端,车静止在光滑的水平地面上,现人用铁锤连续敲击车的右端.下列对平板车的运动情况描述正确的是( )A.锤子抡起的过程中,车向右运动B.锤子下落的过程中,车向左运动C.锤子抡至最高点时,车速度为0D.锤子敲击车瞬间,车向左运动3.如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( )A.减小球的动量的变化量B.减小球对手作用力的冲量C.减小球的动量变化率D.延长接球过程的时间来减小动量的变化量4.在光滑的水平面上有a、b两球,其质量分别为m a、m b,两球在t0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图像如图所示,下列关系式正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断 5.沿水平方向飞行的手榴弹,它的速度是20 m/s ,此时在空中爆炸,分裂成1 kg 和0.5 kg 的两块,其中0.5 kg 的那块以40 m/s 的速率沿原来速度相反的方向运动,此时另一块的速率为( )A .10 m/sB .30 m/sC .50 m/sD .70 m/s 6.质量m =100 kg 的小船静止在平静水面上,船两端载着m 甲=40 kg 、m 乙=60 kg 的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s 的速度跃入水中,如图所示,则小船的运动速率和方向为( )A .0.6 m/s ,向左B .3 m/s ,向左C .0.6 m/s ,向右D .3 m/s ,向右7.如图所示,质量为m 的小球A 以水平速度v 与静止在光滑水平面上质量为3m 的小球B 正碰后,小球A 的速率变为v2,则碰后B 球的速度为(以v 的方向为正方向)( )A.v6 B .-v C .-v 3 D.v 28.如图,横截面积为5 cm 2的水柱以10 m/s 的速度垂直冲到墙壁上,已知水的密度为1×103 kg/m 3,假设水冲到墙上后不反弹而顺墙壁流下,则墙壁所受水柱冲击力为( )A .5×105N B .50 N C .5×103 N D .5×102 N二、多项选择题(本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.)9.如图所示,质量为m 的物体从竖直轻弹簧的正上方自由落下将弹簧压缩.已知物体下落高度h ,经历时间为t ,物体压在弹簧上的速度为v ,则在此过程中地面对弹簧支持力的冲量I 为( )A .0B .mgt -mvC .mgt +mvD .-mgt -mv10.如图所示,甲、乙两车的质量均为M ,静置在光滑的水平面上,两车相距为L.乙车上站立着一个质量为m 的人,他通过一条轻绳拉甲车,甲、乙两车最后相接触,以下说法正确的是( )A .甲、乙两车运动中速度之比为M +mMB .甲、乙两车运动中速度之比为MM +mC .甲车移动的距离为M +m2M +m LD .乙车移动的距离为M2M +mL11.一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零12.如图(a),一长木板静止于光滑水平桌面上,t=0时,小物块以速度v0滑到长木板上,图(b)为物块与木板运动的v­t图像,图中t1、v0、v1已知,重力加速度大小为g.由此可求得( )A.木板的长度B.物块与木板的质量之比C.物块与木板之间的动摩擦因数D.从t=0开始到t1时刻,木板获得的动能三、实验题(共12分)13.(12分)现利用图甲所示的装置验证动量守恒定律.在图甲中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A的质量m1=0.310 kg,滑块B的质量m2=0.108 kg,遮光片的宽度d=1.00 cm;打点计时器所用交流电的频率f=50.0 Hz.将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时器显示的时间为Δt B=3.500 ms,碰撞前后打出的纸带如图乙所示.若实验允许的相对误差绝对值(碰撞前后总动量之差碰前总动量×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.四、计算题(本题共4小题,共48分.要有必要的文字说明和解题步骤,有数值计算的要注明单位)14.(10分)冰球运动是一项对抗性极强的冰雪体育竞技项目.如图所示,甲、乙两冰球运动员为争抢冰球而合理水平冲撞,冲撞过程中运动员手中的冰球杆未与地面接触.已知甲运动员的质量为60 kg,乙运动员的质量为70 kg,冲撞前两运动员速度大小均为5 m/s,方向相反,冲撞结束,甲被撞回,速度大小为2 m/s,如果冲撞接触时间为0.2 s,忽略冰球鞋与冰面间的摩擦.问:(1)撞后乙的速度大小是多少?方向又如何?(2)冲撞时两运动员相互间的平均作用力多大?15.(12分)如图所示,质量为M,内壁光滑的半圆槽放在光滑的水平面上,其左侧紧靠台阶,槽的半径为R.今从槽左侧A点的正上方D点自由释放一个质量为m的小球,球恰从A点进入槽的内壁轨道.为使小球沿槽的内壁恰好运动到右端B点,试求D点至A点的高度.16.(12分)如图,质量为M=0.2 kg的长木板静止在光滑的水平地面上,现有一质量为m=0.2 kg的滑块以v0=1.2 m/s的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数μ=0.4,小滑块刚好没有滑离长木板,求:(g取10 m/s2)(1)小滑块的最终速度v.(2)在整个过程中,系统产生的热量Q.(3)以地面为参照物,小滑块滑行的距离s为多少?17.(14分)如图所示,水平轨道O点左侧粗糙,右侧光滑,在A、B 两物块中间安放一颗微型炸药,并紧挨着放置于O点保持静止,物块C 静置在O点右侧的P点上.某时刻引爆炸药,使A、B两物块向相反方向运动,A滑行到Q点后停止,B与C相碰后粘在一起向右运动.已知物块A与水平轨道间的动摩擦因数μ=0.10,O、Q间的距离L=2.0 m,物块的质量分别为m A=2.0 kg,m B=1.0 kg,m C=3.0 kg,重力加速度g=10 m/s2,A、B、C均可视为质点,爆炸时间极短.求:(1)爆炸瞬间,物块A获得的速率v A;(2)爆炸瞬间,物块B获得的速率v B;(3)物块B与物块C相碰时产生的内能E.。

高中数学必修一第一章集合分节练习和章末测试题含答案

高中数学必修一第一章集合分节练习和章末测试题含答案

中学数学必修1 第一章 集合 分节练习和章末综合测试题含答案§1 集合的含义与表示1、下列各组对象能否组成一个集合?(1)接近于0的数的全体; (2)2的近似值的全体; (3)平面上到点O 的距离等于1的点的全体; (4)正三角形的全体; (5)漂亮的小鸟; (6)直角坐标系中第一象限内的点;(7)某学校的全部高个子男同学; (8)方程092=-x 在实数范围内的解.2、已知∈2x {1,0,x },求实数x 的值.3、下列四个集合中,空集是哪一个?(A ){0} (B ){x │x >8,且x <5} (C ){x ∈N │2x -1=0} (D ){x │x >4}4、用符号∉∈或填空: (1)设集合A 是正整数的集合,则0___A ,2___A ;(2)设集合B 是小于11的全部实数组成的集合,则32___B , 1+2___B.5、用列举法表示下列集合:(1)方程2x -9=0的解的集合; (2)由大于3小于10的整数组成的集合;(3){x ∈R │21)-(x (x +1)=0}; (4){x ∈N │∈x-66N }; (5){y ∈N │y =-2x +6,x ∈N }; (6){(x ,y)│y =-2x +6,x ∈N ,y ∈N }.6、用描述法表示下列集合:(1)小于10的全部有理数组成的集合; (2)全部偶数组成的集合;(3){2,4,6,8}; (4){1,21,31,41}; (5)直角坐标平面内第四象限内的点集;(6)抛物线y =2x -2x +2上的点组成的集合.7、对于集合A ={2,4,6,8},若A a ∈,则A a ∈-8,则由a 的值组成的集合为_________ §2 集合的基本关系1、设A ={正方形},B ={矩形},C ={平行四边形},D ={梯形},则下列包含关系不正确的是( ) (A )A ⊆B (B )B ⊆C (C )C ⊆D (D )A ⊆C2、在下列集合中,只有一个子集的集合是 ( )A. {02≤x x 丨}B. {03≤x x 丨}C. {02<丨x x }D. {03<丨x x }3、已知集合A ={12=丨x x },B ={1=丨ay y ,a 为常数},若B ⊆A ,则由实数a 的取值构成的集合是 ( )A. {-1}B. {1}C. {-1,1}D. {-1,0,1}4、集合M ={丨=丨丨x y R y ∈},N ={2m x R x =丨∈,R m ∈},则下列关系正确的是 ( )A. N M ≠⊃B. N M =C. N M ≠D. M N ≠⊃5、 设集合A ={1,3, a },B ={1, 12+-a a },且A ⊇B ,则a 的值为_______.6、 已知M ={1>丨x x },N ={a x x >丨},且N M ⊆,则a 的取值范围是_______. 7、若{1,a ,ab }={0,2a ,b a +},则20132014b a +=_______.8、计算下列集合的子集的个数并写出其全部子集:(1) (2){0}; (3){丨x ()()()03212=--+x x x }.9、集合A ={23<<丨-x x },B ={121+<<-丨m x m x }且B ⊆A ,求实数m 的取值范围.§3 集合的基本运算1、已知集合=A {1,3,5,7,9},=B {0,3,6,9,12},则B A ⋂等于 ( )A.{3,5}B.{3,6}C.{3,7}D.{3,9}2、设全集=U {1,2,3,4,5},=A {1,3,5},=B {2,4,5}则(A C u )⋂(B C u )等于 ( )A. B. {4} C. {1,5} D. {2,5}3、下列命题正确的是A. )(P C C u u ={P }B. 若=M { 1,,{2} },则{2}≠⊂MC. Q C R =QD. 若=N {1,2,3},=S {1,3,4,2,5},则N ≠⊂S4、若集合=A {2≤x x 丨},=B {a x x ≥丨}满意B A ⋂={2},则实数a =_______.5、设=A {31≤x x <丨-},=B {42<丨x x ≤},则)(B A C R ⋃=_______.6、已知关于x 的方程052=+-px x 与052=+-q x x 的解的集合分别为M 、S ,且=S M ⋂{3},则=q p _______.7、设=A {33≤≤x x 丨-},=B {t x y y +=-丨2},若B A ⋂=, 则实数t 的取值范围是_______.8、设全集是实数集R ,=A {03722≤+-丨x x x },=B {02<+丨a x x }.(1)当a =-4时,求B A ⋂和B A ⋃;(2)若(A C R ) B B =,求实数a 的取值范围.9、集合A ={11<<丨-x x },B ={a x x <丨}.(1)若=B A ⋂,求实数a 的取值范围;(2)若=B A ⋃{1<丨x x },求实数a 的取值范围;本章综合测试题一、选择题1.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素;(4)集合(){}R y x xy y x ∈≤,,0|,是指其次和第四象限内的点集。

【创新设计】2022数学湘教版必修1:章末检测(一)

【创新设计】2022数学湘教版必修1:章末检测(一)

章末检测一、选择题1.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N等于() A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}答案C解析运用集合的运算求解.M∩N={-2,-1,0},故选C.2.设全集为R,函数f(x)=1-x2的定义域为M,则∁R M为()A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞) D.(-∞,-1)∪(1,+∞)答案D解析由1-x2≥0,知-1≤x≤1.∴M=[-1,1],∴∁R M=(-∞,-1)∪(1,+∞).3.设全集U=R,M={x|x<-2,或x>2},N={x|1<x<3},则图中阴影部分所表示的集合是()A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}答案C解析阴影部分所表示集合是N∩(∁U M),又∵∁U M={x|-2≤x≤2},∴N∩(∁U M)={x|1<x≤2}.4.下列图象中不能作为函数图象的是()答案B解析B选项对于给定的变量有两个值与其对应,不是函数的图象.5.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3C.5 D.9答案C解析用列举法把集合B中的元素一一列举出来.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.依据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.6.设f(x)=⎩⎪⎨⎪⎧x+3,x>10,f(f(x+5)),x≤10,则f(5)等于()A.23 B.24C.25 D.26答案B解析 f (5)=f (f (10))=f (f (f (15)))=f (f (18))=f (21)=24.7.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( )A .(13,23)B .[13,23)C .(12,23)D .[12,23)答案 A解析 作出示意图可知:f (2x -1)<f (13)⇔-13<2x -1<13,即13<x <23.故选A. 8.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0答案 A解析 依据条件可确定函数图象的开口方向和对称轴,化简即得.由于f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a=2,所以4a +b =0,故选A.9.函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的取值范围是( ) A .(-∞,-2]∪[2,+∞) B .(-∞,-2)∪(2,+∞) C .(-∞,-3)∪(3,+∞) D .(-∞,-3]∪[3,+∞) 答案 A解析 ∵y =f (x )是偶函数,且在(-∞,0]上是增函数, ∴y =f (x )在[0,+∞)上是减函数,由f (a )≤f (2), 得f (|a |)≤f (2).∴|a |≥2,得a ≤-2或a ≥2.10.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M 、N 都是集合{x |0≤x ≤1}的子集,假如把b -a叫作集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.13B.23C.112D.512答案 C解析 由集合长度的定义知M 的长度为34,N 的长度为13,若要使M ∩N 的长度最小则应使M 的左端点m 与N的右端点n 离得最远,又∵M 、N 都是集合{x |0≤x ≤1}的子集,∴应使m =0,n =1.此时M ={x |0≤x ≤34},N={x |23≤x ≤1},此时M ∩N ={x |23≤ x ≤34},其长度为34-23=112.二、填空题11.已知函数f (x )=x -1.若f (a )=3,则实数a =________. 答案 10 解析 由于f (a )=a -1=3,所以a -1=9,即a =10.12.设集合A ={x |1<x <2},B ={x |x <a },满足A ⊆B ,则实数a 的取值范围是________. 答案 {a |a ≥2} 解析 如图,可知a ≥2.13.已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________. 答案 [25,+∞)解析 函数f (x )的增区间为[m8,+∞),函数在区间[-2,+∞)上是增函数, 所以m8≤-2,m ≤-16,-m ≥16.f (1)=4-m +5≥4+16+5=25.14.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么不等式f (x +2)<5的解集是________. 答案 {x |-7<x <3} 解析 设x <0,则-x >0. ∵当x ≥0时,f (x )=x 2-4x , ∴f (-x )=(-x )2-4(-x ).∵f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ), ∴f (x )=x 2+4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5得⎩⎨⎧x 2-4x =5,x ≥0或⎩⎪⎨⎪⎧x 2+4x =5,x <0,∴x =5或x =-5.观看图象可知由f (x )<5,得-5<x <5.∴由f (x +2)<5, 得-5<x +2<5, ∴-7<x <3.∴不等式f (x +2)<5的解集是{x |-7<x <3}. 三、解答题15.已知集合A ={x |2-a ≤x ≤2+a },B ={x |x ≤1,或x ≥4}. (1)当a =3时,求A ∩B ;(2)若A ∩B =∅,求实数a 的取值范围. 解 (1)当a =3时,A ={x |-1≤x ≤5}, B ={x |x ≤1,或x ≥4},∴A ∩B ={x |-1≤x ≤1,或4≤x ≤5}. (2)(ⅰ)若A =∅,此时2-a >2+a ,∴a <0,满足A ∩B =∅.(ⅱ)当a ≥0时,A ={x |2-a ≤x ≤2+a }≠∅, ∵A ∩B =∅,∴⎩⎪⎨⎪⎧2-a >1,2+a <4,∴0≤a <1.综上可知,实数a 的取值范围是(-∞,1). 16.已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值. (1)证明 任取x ∈R ,且h >0, f (x +h )-f (x )=-2(x +h )+m , -(-2x +m )=-2h <0, ∴f (x )为R 上的减函数. (2)解 ∵f (x )为奇函数.∴f (-x )=2x +m =-f (x )=2x -m , ∴m =0.17.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值. 解 f (x )=4(x -a2)2-2a +2,①当a2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a +2. 由a 2-2a +2=3,得a =1± 2. ∵a ≤0,∴a =1- 2. ②当0<a2<2,即0<a <4时,f (x )min =f (a2)=-2a +2.由-2a +2=3,得a =-12∉(0,4),舍去.③当a2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数,f (x )min =f (2)=a 2-10a +18. 由a 2-10a +18=3,得a =5±10. ∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.18.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f (xy )=f (x )-f (y ).(1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)-f (13)<2.解 (1)在f (xy )=f (x )-f (y )中,令x =y =1,则有f (1)=f (1)-f (1),∴f (1)=0. (2)∵f (6)=1,∴f (x +3)-f (13)<2=f (6)+f (6),∴f (3x +9)-f (6)<f (6), 即f (x +32)<f (6).∵f (x )是(0,+∞)上的增函数, ∴⎩⎪⎨⎪⎧x +32>0,x +32<6解得-3<x <9.即不等式的解集为(-3,9).。

高一数学必修一 集合与函数章末检测题 附答案解析 人教版

高一数学必修一 集合与函数章末检测题 附答案解析 人教版

必修一 第一章 集合与函数概念章末检测题一、单选题1.已知全集U ={0,1,2}且U A ={2},则集合A 的真子集共有( ). A .3个B .4个C .5个D .6个2.设集合A ={x |1<x ≤2},B ={ x |x <a },若A ⊆B ,则a 的取值范围是( ). A .{a |a ≥1} B .{a |a ≤1} C .{a |a ≥2} D .{a |a >2} 3.A ={x |x 2+x -6=0},B ={x |mx +1=0},且AB A =,则m 的取值集合是( ).A .⎭⎬⎫⎩⎨⎧21- ,31B .⎭⎬⎫⎩⎨⎧21- ,31- ,0C .⎭⎬⎫⎩⎨⎧21- ,31 ,0 D .⎭⎬⎫⎩⎨⎧21 ,31 4.设I 为全集,集合M ,N ,P 都是其子集,则图中的阴影部分表示的集合为( ). A .M ∩(N ∪P )B .M ∩(P ∩I N )C .P ∩(I N ∩I M )D .(M ∩N )∪(M ∩P )5.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-,x y y x |)(, P ={(x ,y )|y ≠x +1},那么U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}6.下列四组中的f (x ),g (x ),表示同一个函数的是( ).A .f (x )=1,g (x )=x 0B .f (x )=x -1,g (x )=xx 2-1C .f (x )=x 2,g (x )=(x )4D .f (x )=x 3,g (x )=39x7.函数f (x )=x1-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 8.函数f (x )=11+x 2(x ∈R )的值域是( ).A .(0,1)B .(0,1]C .[0,1)D .[0,1]9.已知f (x )在R 上是奇函数,f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ). A .-2 B .2 C .-98 D .9810.定义在区间(-∞,+∞)的奇函数f (x )为增函数;偶函数g (x )在区间[0,+∞)的图(第4题)PN象与f (x )的图象重合.设a >b >0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b );②f (b )-f (-a )<g (a )-g (-b ); ③f (a )-f (-b )>g (b )-g (-a );④f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( ).A .①与④B .②与③C .①与③D .②与④ 二、填空题11.函数x x y +-=1的定义域是 .12.若f (x )=ax +b (a >0),且f (f (x ))=4x +1,则f (3)= .13.已知函数f (x )=ax +2a -1在区间[0,1]上的值恒正,则实数a 的取值范围是 .14.已知I ={不大于15的正奇数},集合M ∩N ={5,15},(I M )∩(I N )={3,13},M ∩(I N )={1,7},则M = ,N = .15.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则m 的取值范围是_________.16.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+x 3),那么当x ∈(-∞,0]时,f (x )= .三、解答题17.已知A ={x |x 2-ax +a 2-19=0},B ={ x |x 2-5x +6=0},C ={x |x 2+2x -8=0},且∅(A ∩B ),A ∩C =∅,求a 的值.18.设A 是实数集,满足若a ∈A ,则a-11∈A ,a ≠1且1A ∉.(1)若2∈A ,则A 中至少还有几个元素?求出这几个元素. (2)A 能否为单元素集合?请说明理由. (3)若a ∈A ,证明:1-a1∈A .19.求函数f (x )=2x 2-2ax +3在区间[-1,1]上的最小值.20.已知定义域为R 的函数f (x )=ab-x x +2+21+是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.参考答案一、选择题1.A解析:条件U A={2}决定了集合A={0,1},所以A的真子集有∅,{0},{1},故正确选项为A.2.D解析:在数轴上画出集合A,B的示意图,极易否定A,B.当a=2时,2∉B,故不满足条件A⊆B,所以,正确选项为D.3.C解析:据条件A∪B=A,得B⊆A,而A={-3,2},所以B只可能是集合∅,{-3},{2},所以,m的取值集合是C.4.B解析:阴影部分在集合N外,可否A,D,阴影部分在集合M内,可否C,所以,正确选项为B.5.B解析:集合M是由直线y=x+1上除去点(2,3)之后,其余点组成的集合.集合P是坐标平面上不在直线y=x+1上的点组成的集合,那么M P就是坐标平面上除去点(2,3)外的所有点组成的集合.由此U(M P)就是点(2,3)的集合,即U(M P)={(2,3)}.故正确选项为B.6.D解析:判断同一函数的标准是两函数的定义域与对应关系相同,选项A,B,C中,两函数的定义域不同,正确选项为D.7.C解析:函数f(x)显然是奇函数,所以不难确定正确选项为C.取特殊值不难否定其它选项.如取x=1,-1,函数值不等,故否A;点(1,0)在函数图象上,而点(0,1)不在图象上,否选项D,点(0,-1)也不在图象上,否选项B.8.B解析:当x=0时,分母最小,函数值最大为1,所以否定选项A,C;当x的绝对值取值越大时,函数值越小,但永远大于0,所以否定选项D.故正确选项为B.9.A解析:利用条件f (x +4)=f (x )可得,f (7)=f (3+4)=f (3)=f (-1+4)=f (-1),再根据f (x )在R 上是奇函数得,f (7)=-f (1)=-2×12=-2,故正确选项为A .10.C解析:由为奇函数图像关于原点对称,偶函数图象关于y 轴对称,函数f (x ),g (x )在区间[0,+∞)上图象重合且均为增函数,据此我们可以勾画两函数的草图,进而显见①与③正确.故正确选项为C .二、填空题11.参考答案:{x | x ≥1}.解析:由x -1≥0且x ≥0,得函数定义域是{x |x ≥1}. 12.参考答案:319. 解析:由f (f (x ))=af (x )+b =a 2x +ab +b =4x +1,所以a 2=4,ab +b =1(a >0),解得a =2,b =31,所以f (x )=2x +31,于是f (3)=319.13.参考答案:⎪⎭⎫ ⎝⎛ 21,. 解析:a =0时不满足条件,所以a ≠0. (1)当a >0时,只需f (0)=2a -1>0; (2)当a <0时,只需f (1)=3a -1>0. 综上得实数a 的取值范围是⎪⎭⎫⎝⎛ 21,. 14.参考答案:{1,5,7,15},{5,9,11,15}.解析:根据条件I ={1,3,5,7,9,11,13,15},M ∩N ={5,15},M ∩(I N )={1,7},得集合M ={1,5,7,15},再根据条件(I M )∩(I N )={3,13},得N ={5,9,11,15}.15.参考答案:(2,4].解析:据题意得-2≤m +1<2m -1≤7,转化为不等式组⎪⎩⎪⎨⎧7 ≤1-21-2<1+2- ≥1+m m m m ,解得m 的取值范围是(2,4].16.参考答案:x (1-x 3).解析:∵任取x ∈(-∞,0],有-x ∈[0,+∞),+∞ +∞∴ f (-x )=-x [1+(-x )3]=-x (1-x 3), ∵ f (x )是奇函数,∴ f (-x )=-f (x ). ∴ f (x )=-f (-x )=x (1-x 3),即当x ∈(-∞,0]时,f (x )的表达式为f (x )=x (1-x 3). 三、解答题17.参考答案:∵B ={x |x 2-5x +6=0}={2,3}, C ={x |x 2+2x -8=0}={-4,2}, ∴由A ∩C =∅知,4A -∉,2∉A ; 由∅(A ∩B )知,3∈A .∴32-3a +a 2-19=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}=B ,与A ∩C =∅矛盾. 当a =-2时,经检验,符合题意. 18.参考答案:(1)∵ 2∈A ,∴a -11=2-11=-1∈A ; ∴a -11=1+11=21∈A ;∴a -11=21-11=2∈A .因此,A 中至少还有两个元素:-1和21. (2)如果A 为单元素集合,则a =a-11,整理得a 2-a +1=0,该方程无实数解,故在实数范围内,A 不可能是单元素集.(3)证明: a ∈A ⇒a -11∈A ⇒ a1-1-11∈A ⇒1+-1-1a a ∈A ,即1-a 1∈A .19.参考答案: f (x )=222⎪⎭⎫ ⎝⎛a x -+3-22a .(1)当2a<-1,即a <-2时,f (x )的最小值为f (-1)=5+2a ; (2)当-1≤2a ≤1,即-2≤a ≤2时,f (x )的最小值为⎪⎭⎫⎝⎛2a f =3-22a ;。

【高中数学】章末综合检测(一) 集合与常用逻辑用语

【高中数学】章末综合检测(一)  集合与常用逻辑用语

章末综合检测(一)集合与常用逻辑用语A卷——学业水平考试达标练(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3},B={1,3,5},则A∪B=()A.{1,2,3}B.{1,2}C.{1,3,5} D.{1,2,3,5}解析:选D由题意得,A∪B={1,2,3}∪{1,3,5}={1,2,3,5},故选D.2.已知集合A={x|x=2k-1,k∈Z},B={-1,0,1,3,6},则A∩B中的元素个数为() A.1 B.2C.3 D.4解析:选C由题意,因为集合A={x|x=2k-1,k∈Z}={奇数},B={-1,0,1,3,6},所以A∩B={-1,1,3},所以A∩B中的元素个数为3.3.设x∈R,则“x>2”是“|x|>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由|x|>2得x>2或x<-2,即“x>2”是“|x|>2”的充分不必要条件.故选A.4.已知集合A={0,1,2,4},集合B={x∈R|0<x≤4},集合C=A∩B,则集合C可表示为()A.{0,1,2,4} B.{1,2,3,4}C.{1,2,4} D.{x∈R|0<x≤4}解析:选C因为集合A中的元素为0,1,2,4,而集合B中的整数元素为1,2,3,4,所以C=A∩B={1,2,4},所以C正确.5.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是() A.1 B.2C.3 D.4解析:选B集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M ={a1,a2,a4}.6.命题“对任意x∈R,都有x3≥0”的否定为()A.对任意x∈R,都有x3<0B.不存在x∈R,使得x3<0C.存在x∈R,使得x3≥0D .存在x ∈R ,使得x 3<0解析:选D “对任意x ∈R ”的否定为“存在x ∈R ”,对“x 3≥0”的否定为“x 3<0”.故选D.7.已知三个集合U ,A ,B 之间的关系如图所示,则(∁U B )∩A =( )A .{3}B .{0,1,2,4,7,8}C .{1,2}D .{1,2,3}解析:选C 由Venn 图可知U ={0,1,2,3,4,5,6,7,8},A ={1,2,3},B ={3,5,6},所以(∁U B )∩A ={1,2}.8.已知非空集合M ,P ,则M P 的充要条件是( )A .∀x ∈M ,x ∉PB .∀x ∈P ,x ∈MC .∃x 1∈M ,x 1∈P 且x 2∈M ,x 2∉PD .∃x ∈M ,x ∉P 解析:选D 由M P ,可得集合M 中存在元素不在集合P 中,结合各选项可得,MP 的充要条件是∃x ∈M ,x ∉P .故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)9.用列举法表示集合:M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪10m +1∈Z ,m ∈Z=________________. 解析:由10m +1∈Z ,且m ∈Z ,知m +1是10的约数,故|m +1|=1,2,5,10,从而m 的值为-11,-6,-3,-2,0,1,4,9.答案:{-11,-6,-3,-2,0,1,4,9}10.已知A ={x |x ≤1或x >3},B ={x |x >2},则(∁R A )∪B =________. 解析:∵∁R A ={x |1<x ≤3},∴(∁R A )∪B ={x |x >1}. 答案:{x |x >1}11.下列不等式:①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中,可以是x 2<1的一个充分条件的所有序号为________.解析:由于x 2<1即-1<x <1,①显然不能使-1<x <1一定成立,②③④满足题意. 答案:②③④12.若x ∈A ,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.解析:具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案:3三、解答题(本大题共4小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤)13.(8分)设全集U ={1,2,3,4,5,6,7,8,9,10},A ={1,2,3,4,5},B ={4,5,6,7,8},C ={3,5,7,9}. 求:(1)A ∩B ,A ∪B ; (2)A ∩(∁U B ),A ∪(B ∩C )解:(1)A ∩B ={4,5},A ∪B ={1,2,3,4,5,6,7,8}. (2)∵B ={4,5,6,7,8},∴∁U B ={1,2,3,9,10}. ∴A ∩(∁U B )={1,2,3},A ∪(B ∩C )={1,2,3,4,5,7}. 14.(10分)已知集合A ={x |-1<x <3},B ={x |x -m >0}. (1)若A ∩B =∅,求实数m 的取值范围; (2)若A ∩B =A ,求实数m 的取值范围. 解:(1)∵A ={x |-1<x <3},B ={x |x >m }, 又A ∩B =∅,∴m ≥3.故实数m 的取值范围为[3,+∞). (2)∵A ={x |-1<x <3},B ={x |x >m }, 由A ∩B =A ,得A ⊆B ,∴m ≤-1. 故实数m 的取值范围为(-∞,-1].15.(10分)写出下列命题的否定,并判断真假. (1)正方形都是菱形; (2)∃x ∈R ,使4x -3>x ; (3)∀x ∈R ,有x +1=2x ;(4)集合A 是集合A ∩B 或集合A ∪B 的子集. 解:(1)命题的否定:正方形不都是菱形,是假命题.(2)命题的否定:∀x ∈R ,有4x -3≤x .因为当x =2时,4×2-3=5>2,所以“∀x ∈R ,有4x -3≤x ”是假命题.(3)命题的否定:∃x ∈R ,使x +1≠2x .因为当x =2时,x +1=2+1=3≠2×2,所以“∃x ∈R ,使x +1≠2x ”是真命题.(4)命题的否定:集合A 既不是集合A ∩B 的子集也不是集合A ∪B 的子集,是假命题.16.(12分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.解:∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件, ∴B A .当B =∅时,得a =0;当B ≠∅时,则当B ={1}时,得a =1; 当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,12,1.B 卷——高考应试能力标准练 (时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.若集合X ={x |x >-1},下列关系式中成立的为( ) A .0⊆X B .{0}∈X C .∅∈XD .{0}⊆X解析:选D 选项A ,元素0与集合之间为∈或∉的关系,错误;选项B ,集合{0}与集合X 之间为⊆或⊇的关系,错误;选项C ,∅与集合X 之间为⊆或⊇的关系,错误;选项D ,集合{0}是集合X 的子集,故{0}⊆X 正确.故选D.2.若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( ) A .{x |-1≤x ≤1} B .{x |x ≥0} C .{x |0≤x ≤1}D .∅解析:选C ∵A ={x |-1≤x ≤1},B ={y |y ≥0}, ∴A ∩B ={x |0≤x ≤1}.3.设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A |x -2|<1⇔1<x <3.于{x |1<x <2}是{x |1<x <3}的真子集,所以“1<x <2”是“|x -2|<1”的充分不必要条件.4.已知集合A ,B 是非空集合且A ⊆B ,则下列说法错误的是( ) A .∃x ∈A ,x ∈B B .∀x 0∈A ,x 0∈B C .A ∩B =AD .A ∩(∁U B )≠∅解析:选D ∵集合A ,B 是非空集合且A ⊆B , ∴∃x ∈A ,x ∈B ;∀x ∈A ,x ∈B ;A ∩B =A ; A ∩(∁U B )=∅.因此A 、B 、C 正确,D 错误.故选D.5.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( ) A .-2 B .2 C .4D .2或4解析:选A 若a =2,则|a |=2,不符合集合元素的互异性,则a ≠2;若|a |=2,则a =2或-2,可知a =2舍去,而当a =-2时,a -2=-4,符合题意;若a -2=2,则a =4,|a |=4,不符合集合元素的互异性,则a -2≠2.综上,可知a =-2.故选A.6.集合A ={x ∈N |0<x <4}的真子集个数为( ) A .3 B .4 C .7D .8解析:选C ∵集合A ={x ∈N|0<x <4}={1,2,3},∴真子集的个数是23-1=7,故选C.7.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵“⎩⎪⎨⎪⎧x >0,y >0”⇒“1xy >0”,“1xy >0”⇒“⎩⎪⎨⎪⎧x >0,y >0或⎩⎪⎨⎪⎧x <0,y <0,”∴“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的充分不必要条件.故选A.8.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:选D 解x 2-3x +2=0得x =1或x =2.所以A ={1,2}.又B ={1,2,3,4},所以满足A ⊆C ⊆B 的集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.故D 正确.9.下列命题中是全称量词命题并且是真命题的是( ) A .∀x ∈R ,3x -1>0B.若2x为偶数,则∀x∈NC.所有正方形的四条边都相等D.π是无理数解析:选C对A,是全称量词命题,但不是真命题,故A不正确;对B,是真命题,但不是全称量词命题,故B不正确;对C,是全称量词命题,也是真命题,故C正确;对D,是真命题,但不是全称量词命题,故D不正确,故选C.10.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么()A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙既不是甲的充分条件,也不是甲的必要条件解析:选A因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒/丙,如图.综上,有丙⇒甲,但甲⇒/丙,即丙是甲的充分条件,但不是甲的必要条件.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)11.设集合M={m∈Z|-3<m<2},N={n∈Z|-2≤n≤3},则M∩N=________.解析:因为M={m∈Z|-3<m<2}={-2,-1,0,1},N={n∈Z|-2≤n≤3}={-2,-1,0,1,2,3},所以M∩N={-2,-1,0,1}.答案:{-2,-1,0,1}12.某校高一某班共有40人,摸底测验数学成绩23人得优,语文成绩20人得优,两门都不得优者有6人,则两门都得优者有________人.解析:设两门都得优的人数是x,则依题意得(23-x)+(20-x)+x+6=40,整理,得-x+49=40,解得x=9,即两门都得优的人数是9人.答案:913.设全集U={x||x|<4,且x∈Z},S={-2,1,3},若P⊆U,(∁U P)⊆S,则这样的集合P共有________个.解析:U={-3,-2,-1,0,1,2,3},∵∁U(∁U P)=P,∴存在一个∁U P,即有一个相应的P(如当∁U P={-2,1,3}时,P={-3,-1,0,2};当∁U P={-2,1}时,P={-3,-1,0,2,3}等).由于S的子集共有8个,∴P也有8个.答案:814.若a ,b 都是实数,试从①ab =0;②a +b =0;③a (a 2+b 2)=0;④ab >0中选出适合下列条件的,用序号填空:(1)“使a ,b 都为0”的必要条件是________. (2)“使a ,b 都不为0”的充分条件是________. (3)“使a ,b 至少有一个为0”的充要条件是________. 解析:①ab =0⇔a =0或b =0,即a ,b 至少有一个为0;②a +b =0⇔a ,b 互为相反数,则a ,b 可能均为0,也可能为一正一负; ③a (a 2+b 2)=0⇔a =0或⎩⎪⎨⎪⎧a =0,b =0; ④ab >0⇔⎩⎪⎨⎪⎧a >0,b >0或⎩⎪⎨⎪⎧a <0,b <0,则a ,b 都不为0.答案:(1)①②③ (2)④ (3)①三、解答题(本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(8分)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假. (1)∀x ∈N ,2x +1是奇数; (2)存在一个x ∈R ,使1x -1=0; (3)存在一组m ,n 的值,使m -n =1; (4)至少有一个集合A ,满足A {1,2,3}.解:(1)是全称量词命题.因为对任意自然数x,2x +1都是奇数,所以该命题是真命题. (2)是存在量词命题.因为不存在x ∈R ,使1x -1=0成立,所以该命题是假命题. (3)是存在量词命题.当m =4,n =3时,m -n =1成立,所以该命题是真命题. (4)是存在量词命题.存在A ={3},使A {1,2,3}成立,所以该命题是真命题. 16.(10分)已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求满足下列条件的a 的值.(1)9∈(A ∩B ); (2){9}=A ∩B .解:(1)∵9∈(A ∩B ),∴9∈B 且9∈A , ∴2a -1=9或a 2=9,∴a =5或a =±3. 检验知a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈(A ∩B ), ∴a =5或a =-3.当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去;当a=-3时,A={-4,-7,9},B={-8,4,9},A∩B={9},满足题意.综上可知a=-3.17.(10分)已知A={x|-1<x<2},B={x|x-1>0}.(1)求A∩B;(2)若记符号A-B={x|x∈A且x∉B},在图中把表示“集合A-B”的部分用阴影涂黑,并求出A-B.解:(1)由x-1>0得x>1,即B={x|x>1}.所以A∩B={x|1<x<2}.(2)集合A-B如图中的阴影部分所示.由于A-B={x|x∈A,且x∉B},又A={x|-1<x<2},B={x|x>1},所以A-B={x|-1<x≤1}.18.(10分)已知集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,x∈R},若B⊆A,求实数a的取值范围.解:A={x|x2+4x=0,x∈R}={0,-4},因为B⊆A,所以B=A或B A.当B=A时,B={-4,0},即-4,0是方程x2+2(a+1)x+a2-1=0的两根,代入得a=1,此时满足条件,即a=1符合题意.当B A时,分两种情况:若B=∅,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.若B≠∅,则方程x2+2(a+1)x+a2-1=0有两个相等的实数根,所以Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0},符合题意.综上所述,所求实数a的取值范围是(-∞,-1]∪{1}.19.(12分)求关于x的方程ax2+2x+1=0至少有一个负的实根的充要条件.解:(1)当a=0时显然符合题意.(2)当a≠0时显然方程没有零根.若方程有两异号的实根,则a<0;若方程有两个负的实根,则必须有⎩⎪⎨⎪⎧a >0,-2a <0,Δ=4-4a ≥0解得0<a ≤1.综上知,若方程至少有一个负的实根,则a ≤1;反之,若a ≤1,则方程至少有一个负的实根.因此,关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件是a ≤1.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题

高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题

章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( ) A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合答案 D解析任何一种算法都是由上述三种逻辑结构组成的,它可以含有三种结构中的一种、两种或三种.2.下面一段程序执行后的结果是( )A.6B.4C.8D.10答案 A解析由程序知a=2,2×2=4,4+2=6,故最后输出a的值为6,故选A.3.执行如图所示的程序框图,若输出的结果为11,则M处可填入的条件为( )A.k≥31B.k≥15C.k>31D.k>15答案 B解析依题意k=1,S=0,进入循环,循环过程依次为:S=0+1=1,k=2×1+1=3;S=1+3=4,k=2×3+1=7;S=4+7=11,k=2×7+1=15,终止循环,输出S=11.结合选项知,M处可填k≥15.4.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s为( )A.7B.12C.17D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件输出s=17,故选C.5.执行如图所示的程序框图,输出的S值为( )A.1B.3C.7D.15答案 C解析由程序框图得S=0+20=1,k=1;S=1+21=3,k=2;S=3+22=7,k=3,输出S的值为7.6.运行如图所示的程序,当输入的数据为75,45时,输出的值为( ) INPUT “输入两个不同正整数m,n=”;m,nDOIF m>n THENm=m-nELSEn=n-mEND IFLOOP UNTIL m=nPRINT mENDA.24B.18C.12D.15答案 D解析由程序语句知,此程序是用更相减损术求75,45的最大公约数.7.执行如图所示的框图,输入N=5,则输出S的值为( )A.54B.45C.65D.56 答案 D解析 第一次循环,S =0+11×2=12,k =2; 第二次循环,S =12+12×3=23,k =3;第三次循环,S =23+13×4=34,k =4;第四次循环,S =34+14×5=45,k =5;第五次循环,S =45+15×6=56,此时k =5不满足判断框内的条件,跳出循环, 输出S =56,故选D.8.若如图所示的程序框图的功能是计算1×12×13×14×15的结果,则在空白的执行框中应该填入( )A .T =T ·(i +1)B .T =T ·iC .T =T ·1i +1D .T =T ·1i答案 C解析 程序框图的功能是计算1×12×13×14×15的结果,依次验证选项可得C 正确.9.如图所示的程序运行时,从键盘输入-3,则输出值为( ) INPUT “x=”;x IF x >0 THEN y =1 ELSEIF x =0 THENy =0 ELSEy =-1 END IF END IF PRINT y END A .-3B .3C .1D .-1 答案 D解析 由程序知,当x >0时,y =1;否则,当x =0时,y =0;当x <0时,y =-1. 即y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.10.执行如图所示的程序框图,若输出的k =5,则输入的整数p 的最大值为( )A .7B .15C .31D .63 答案 B解析 由程序框图可知:①S =0,k =1;②S =1,k =2;③S =3,k =3;④S =7,k =4;⑤S =15,k =5,输出k ,此时S =15≥p ,则p 的最大值为15,故选B.11.执行如图所示的程序框图,若输出的结果是4,则判断框内实数m 的取值X 围是( )A .(2,6]B .(6,12]C .(12,20]D .(2,20] 答案 B解析 由程序框图,知第一次循环后,S =0+2=2,k =2; 第二次循环后,S =2+4=6,k =3; 第三次循环后,S =6+6=12,k =4.∵输出k =4,∴循环体执行了3次,此时S =12,∴6<m ≤12,故选B.12.执行如图所示的程序框图,若输出的结果为2,则输入的正整数a 的取值的集合是( )A.{1,2,3,4,5}B.{1,2,3,4,5,6}C.{2,3,4,5}D.{2,3,4,5,6}答案 C解析若输入a=1,则a=2×1+3=5,i=0+1=1,因为5>13不成立,所以继续循环;a =2×5+3=13,i=1+1=2,因为13>13不成立,所以继续循环;a=2×13+3=29,i=2+1=3,因为29>13成立,所以结束循环,输出的结果为3,不为2,所以a≠1,排除A,B,若输入a=6,则a=2×6+3=15,i=0+1=1,因为15>13成立,所以结束循环,输出的结果为1,不为2,所以a≠6,排除D,故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.答案 3解析第1次循环:i=1,a=1,b=8,a<b;第2次循环:i=2,a=3,b=6,a<b;第3次循环:i=3,a=6,b=3,a>b,输出i的值为3.14.将二进制数110101(2)化成十进制数,结果为________,再将该结果化成七进制数,结果为________.答案53 104(7)解析110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53,然后用除7取余法得53=104(7).15.执行如图所示的程序框图,则输出结果S=________.答案1010解析根据程序框图知,S=(-1+2)+(-3+4)+…+(-2019+2020)=1010,故输出的S 的值为1010.16.阅读下面的程序,该算法的功能是_____________________.S=0t=1i=1DOS=S+it=t*ii=i+1LOOP UNTIL i>20PRINT S,tEND答案求S=1+2+3+…+20,t=1×2×3×…×20三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.解辗转相除法:470=1×282+188,282=1×188+94,188=2×94,所以282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.235-141=94,141-94=47,94-47=47,所以470与282的最大公约数为47×2=94.18.(12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.解(1)本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:19.(12分)下列是某个问题的算法,将其改为程序语言,并画出程序框图. 算法:第一步,令i =1,S =0.第二步,若i ≤999成立,则执行第三步; 否则,输出S ,结束算法. 第三步,S =S +1i.第四步,i =i +2,返回第二步. 解 程序如下: i =1 S =0WHILE i<=999 S =S +1/i i =i +2 WEND PRINT S END程序框图如图:20.(12分)下列语句是求S =2+3+4+…+99的一个程序,请回答问题: i =1 S =0DOS =S +ii =i +1LOOP UNTIL i >=99PRINT SEND(1)程序中是否有错误?若有,请加以改正;(2)把程序改成另一种类型的循环语句.解 (1)错误有两处:第一处:语句i =1应改为i =2.第二处:语句LOOPUNTIL i >=99应改为LOOPUNTIL i >99.(2)改为当型循环语句为:i =2S =0WHILE i <=99S =S +ii =i +1WENDPRINT SEND21.(12分)输入x ,求函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2的值的程序框图如图所示.(1)指出程序框图中的错误之处并写出正确的算法步骤;(2)重新绘制程序框图,并回答下面提出的问题.①要使输出的值为7,则输入的x 的值应为多少?②要使输出的值为正数,则输入的x 应满足什么条件?解 (1)函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断x ≥2是否成立.若是,则y =3x -2;否则y =-2.第三步,输出y .(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则3x -2=7,故x =3,即输入的x 的值应为3.②要使输出的值为正数,则⎩⎪⎨⎪⎧ x ≥2,3x -2>0,得x ≥2.故当x ≥2时,输出的值为正数.22.(12分)为了节约用水,学校改革澡堂收费制度,开始实行计时收费,30min 以内每分钟收费0.1元,30min 以上超过部分每分钟收费0.2元,编写程序并画出程序框图,要求输入洗澡时间,输出洗澡费用.解 用y (单位:元)表示洗澡费用,x (单位:min)表示洗澡时间,则y =⎩⎪⎨⎪⎧ 0.1x ,0<x ≤30,3+0.2x -30,x >30.程序如下:INPUT xIF x <=30 THENy =0.1*xELSEy =3+0.2*x -30END IFPRINT yEND程序框图如图所示.。

高一数学集合章末质量检测考卷(一)

高一数学集合章末质量检测考卷(一)

高一数学集合章末质量检测考卷(一)一、选择题(每题1分,共5分)1. 下列哪个选项表示空集?()A. {0}B. { }C. {x|x=0}D. {x|x≠x}2. 设A={1,2,3},B={x|x是A中的元素},则A与B的关系是()A. A⊂BB. A=BC. A⊃BD. A∩B=∅3. 若集合M={x|2≤x≤5},则下列哪个数不属于集合M?()A. 3B. 4.5C. 6D. 24. 已知集合P={x|1<x<3},Q={x|0≤x≤2},则P∩Q的结果是()A. {x|1<x<0}B. {x|0≤x<3}C. {x|0≤x≤2}D. {x|1<x<3}5. 下列哪个集合是无限集?()A. 自然数集B. 整数集C. 有理数集D. 实数集二、判断题(每题1分,共5分)1. 任何集合都至少包含一个元素。

()2. 空集是任何集合的子集。

()3. 集合的交集运算满足交换律。

()4. 两个集合的并集等于它们的交集。

()5. 若A⊂B,则A∩B=A。

()三、填空题(每题1分,共5分)1. 若集合A={1,2,3},则A的元素个数为______。

2. 设集合B={x|x²3x+2=0},则B中的元素为______。

3. 若集合C={x|ax+b=0},且C为单元素集合,则a与b的关系为______。

4. 已知集合D={x|2<x≤5},则D的补集为______。

5. 若集合E={x|2<x<3},F={x|0≤x<4},则E∪F的结果为______。

四、简答题(每题2分,共10分)1. 简述集合的交集与并集的概念。

2. 举例说明什么是空集。

3. 如何判断两个集合是否相等?4. 请写出集合A={1,2,3}的所有子集。

5. 解释什么是集合的补集。

五、应用题(每题2分,共10分)1. 已知集合M={x|x²4x+3=0},求M的元素。

2. 设集合A={x|x²x6=0},B={x|x²3x+2=0},求A∩B。

第一章:集合与常用逻辑用语章末测试-【题型分类归纳】高一数学上学期同步讲与练(解析版)

第一章:集合与常用逻辑用语章末测试-【题型分类归纳】高一数学上学期同步讲与练(解析版)

第一章:集合与常用逻辑用语章末测试一、单选题:本大题巩8个小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.若全集{}1,2,3,4,5,6,7,8,9U =,{}1,2,3,5A =,{}1,2,4,6,7,8B =,则()()U U A B =痧( ) A .∅B .{}3,4,5,6,7,8,9C .{}9D .{}1,2 【答案】C【分析】求出U U {4,6,7,8,9},{3,5,9}A B ==痧,根据集合的交集运算即可求得答案.【解析】由题意可得U U {4,6,7,8,9},{3,5,9}A B ==痧,故()()U U {9}A B =痧,故选:C 2.已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( ) A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【分析】通过对集合N 的化简即可判定出集合关系,得到结果. 【解析】因为集合{}21,M x x k k ==+∈Z , 集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.3.若集合{}21,A m =,集合{}2,4B =,若{}1,2,4A B ⋃=,则实数m 的取值集合为( )A .{B .{C .{}2,2-D .{2,2,-【答案】D 【分析】由题中条件可得22m =或24m =,解方程即可.【解析】因为{}21,A m =,{}2,4B =,{}1,2,4A B ⋃=, 所以22m =或24m =,解得m =2m =±,所以实数m 的取值集合为{2,2,-.故选:D.4.已知集合{}3,2,1,0,1,2,3M =---,非空集合P 满足:(1)P M ⊆;(2)若x P ∈,则x P -∈,则集合P 的个数是( )A .7B .8C .15D .16【答案】C【分析】根据题意把M 中元素按相反数分成4组,这4组元素中一定是一组元素全属于P 或全不属于P ,由此结合集合的子集的性质可得P 的个数.【解析】满足条件的集合P 应同时含有3,3-或2,2-或1,1-或0,又因为集合P 非空,所以集合P 的个数为42115-=个,故选:C .5.已知集合{}2,21,21M a a a =--,若1M ∈,则M 中所有元素之和为( )A .3B .1C .3-D .1- 【答案】C【分析】根据1M ∈,依次令{}2,21,21M a a a =--中的三个元素分别等于1,根据集合中元素的互异性作出取舍,求得结果.【解析】若1a =,则211a -=,矛盾;若211a -=,则1a =,矛盾,故2211a -=,解得1a =(舍)或1a =-,故{}1,3,1M =--,元素之和为3-,故选:C.6.集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦ C .()[),10,-∞-⋃+∞ D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A【分析】根据B A ⊆,分B =∅和B ≠∅两种情况讨论,建立不等关系即可求实数a 的取值范围.【解析】B A ⊆,∴①当B =∅时,即10ax +…无解,此时0a =,满足题意.②当B ≠∅时,即10ax +…有解,当0a >时,可得1x a-…, 要使B A ⊆,则需要011a a >⎧⎪⎨-<-⎪⎩,解得01a <<. 当0a <时,可得1x a -…,要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩…,解得103a -<…, 综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A . 7.图1中的四块区域Ⅰ,Ⅱ,Ⅲ,Ⅳ分别表示下列四个集合:A B ,U A B ð,()U A B ⋂ð,()()U U A B ⋂痧,则图2中的阴影部分表示的集合为( )A .ABC ⋂⋂B .()U A BC ⋂⋂ð C .()U A B C ⋂⋂ðD .U A B C ⋂⋂ð【答案】D 【分析】由集合的运算与Venn 图表示判断.【解析】由题意知题图2中的阴影部分为:集合A 与集合B 的交集去掉属于集合C 的部分,即图2中的阴影部分表示的集合为U A B C ⋂⋂ð.故选:D .8.对于集合A ,B ,定义{|,}A B x x A x B -=∈∉,()()⊕=--A B A B B A .设{}1,2,3,4,5,6M =,{}4,5,6,7,8,9,10N =,则M N ⊕中元素的个数为( ).A .5B .6C .7D .8【答案】C 【分析】根据新定义,先计算差集,再计算M N ⊕.【解析】由已知{}{}1,2,3,7,8,9,10M N N M -=-=,∴()(){1,2,3,7,8,9,10}M N M N N M ⊕=-⋃-=.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列关系式错误的是( )A .{0}∅∈B .{2}{1,2}⊆C QD .0∈Z【答案】AC【分析】由元素和集合之间的关系以及集合和集合之间的关系判断4个选项即可.【解析】A 选项由于符号∈用于元素与集合间,∅是任何集合的子集,所以应为{0}∅⊆,A 错误;B 选项根据子集的定义可知正确;C 选项由于符号⊆用于集合与集合间,C 错误;D 选项Z 是整数集,所以0∈Z 正确.故选:AC.10.下列说法正确的是( )A .“对任意一个无理数x ,2x 也是无理数”是真命题B .“0xy >”是“0x y +>”的充要条件C .命题“2R,10x x ∃∈+=”的否定是“2R,10x x ∀∈+≠”D .若“13x <<”的必要不充分条件是“22m x m -<<+”,则实数m 的取值范围是[1,3]【答案】CD【分析】根据命题的真假,充分必要条件,命题的否定的定义判断各选项. 【解析】x 22x =是有理数,A 错;1,2x y =-=-时,0xy >,但30x y +=-<,不是充要条件,B 错;命题2,10x x ∃∈+=R 的否定是:2,10x R x ∀∈+≠,C 正确;“13x <<”的必要不充分条件是“22m x m -<<+”,则2123m m -≤⎧⎨+≥⎩,两个等号不同时取得.解得13m ≤≤.D 正确. 故选:CD .11.下列说法中正确的个数是( )A .命题“所有的四边形都是矩形”是存在量词命题;B .命题“2,20x R x ∀∈+<”是全称量词命题;C .命题“x R ∃∈,2440x x ++≤”是存在量词命题.D .命题“不论m 取何实数,方程20x x m +-=必有实数根”是真命题;【答案】BC【分析】根据存在量词命题和全称量词命题的定义判断ABC ,根据判别式判断D.【解析】A 中命题“所有的四边形都是矩形”是全称量词命题,故A 错误;B 中命题“2,20x R x ∀∈+<”是全称量词命题,故B 正确;C 中命题“x R ∃∈,2440x x ++≤”是存在量词命题,故C 正确;D 中选项中当140m ∆=+<时,即当14m <-时,方程20x x m +-=没有实数根,因此,此命题为假命题.故选:BC12.下列说法中,正确的是( )A .若a ∈Z ,则a -∈ZB .R 中最小的元素是0CD .一个集合中不可以有两个相同的元素【答案】AD【分析】根据集合的概念及集合中元素的三个特性:确定性、无序性、互异性即可判断四个选项的正误.【解析】若a ∈Z ,则-a 也是整数,即a -∈Z ,故A 正确;因为实数集中没有最小的元素,所以B 错误;因为”不具有确定性,所以不能构成集合,故C 错误;同一集合中的元素是互不相同的,故D 正确.故选:AD.三、填空题:本题共4小题,每小题5分,共20分13.命题“1x ∀>,20x x ->”的否定是_______【答案】1x ∃>,20x x -≤,【分析】根据全称量词命题的否定即可求解.【解析】“1x ∀>,20x x ->”的否定是:1x ∃>,20x x -≤,故答案为:1x ∃>,20x x -≤.14.用列举法表示方程220x x --=的解集为______________.【答案】{1,2}-【分析】解方程220x x --=可得答案.【解析】由220x x --=得1x =-或2x =,所以方程220x x --=的解集为{1,2}-.故答案为:{1,2}-15.设集合12|3A x N y N x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 的子集个数为________【答案】16【分析】先化简集合A ,再利用子集的定义求解.【解析】{}0,1,3,9=A ,故A 的子集个数为4216=,故答案为:1616.设P ,Q 为两个非空实数集合,P 中含有0,2两个元素,Q 中含有1,6两个元素,定义集合P+Q 中的元素是a+b ,其中a P Î,b Q Î,则P Q +中元素的个数是_________.【答案】4【分析】求得P Q +的元素,由此确定正确答案.【解析】依题意,011,066,213,268+=+=+=+=,所以P Q +共有4个元素.故答案为:4四、解答题:本小题共6小题,共70分。

高中生物 章末综合测评1(含解析)新人教版高一必修1生物试题

高中生物 章末综合测评1(含解析)新人教版高一必修1生物试题

章末综合测评(一)(第1~2章)(满分:100分时间:90分钟)一、选择题(每题2分,共25题,共50分)1.草履虫是一种身体微小的单细胞生物。

下列关于草履虫生命特征的叙述,正确的是( )A.它是一个开放的生命系统B.其代谢是指体内的物质合成反应C.无法完成生命的繁衍D.不具有对内外环境变化的应激能力A[草履虫是单细胞原生生物,能直接与外界环境进行物质交换,是一个开放的生命系统,A正确;草履虫的代谢是指体内发生的所有的化学反应,包括物质的合成反应和分解反应,B错误;生物都能进行繁殖,完成生命的繁衍,C错误;草履虫具有对内外环境变化的应激能力,D错误。

]2.生命活动离不开细胞,下列与细胞有关的叙述中,不正确的是( )A.细胞是生物体结构和功能的基本单位B.一只草履虫就是一个细胞,也是一个生物个体C.流感病毒没有细胞结构,所以其生命活动与细胞无关D.细胞是地球上最基本的生命系统C[细胞代谢、遗传与变异、细胞增殖与分化等一切生命活动都离不开细胞,细胞是生物体结构和功能的基本单位,没有细胞结构的病毒只有依赖活细胞才能生活,A正确,C错误;草履虫是单细胞动物,单个细胞就能完成各种生命活动,B正确;各种生物的生命活动都是在细胞内或在细胞参与下完成的,细胞是地球上最基本的生命系统,D正确。

] 3.CCTV在8月用镜头跟踪拍摄了东非角马大迁徙的壮观场景,从生命系统的结构层次上看,跟踪的对象属于( )A.个体B.种群C.群落D.生态系统B[东非角马大迁徙是以种群为单位进行的。

]4.观察水绵细胞时,将低倍物镜换成高倍物镜后,物像大小、细胞数目和视野亮度的变化是( )A.变大、变多、变亮B.变大、变少、变暗C.变小、变多、变亮D.变小、变多、变暗B[低倍物镜换成高倍物镜后,物像会变大,细胞数目会变少,视野亮度会变暗。

] 5.下列关于原核细胞和真核细胞的叙述,不正确的是( )A.都有膜结构B.都有染色体(染色质)C.两者最根本的区别是原核细胞无以核膜为界限的细胞核D.都有细胞膜、细胞质和DNA,体现了细胞的统一性B[原核细胞和真核细胞都有细胞膜结构,A正确;真核细胞有染色体(染色质),原核细胞没有,B错误;两者最根本的区别是有无以核膜为界限的细胞核,C正确;都有细胞膜、细胞质和DNA,体现了细胞的统一性,D正确。

5 章末综合检测(一)

5 章末综合检测(一)

章末综合检测(一)(满分:100分)一、选择题:本题包括10个小题,每小题2分,共20分。

每小题只有一个选项符合题目要求。

1.下列化学用语表述正确的是()A.镁原子由1s22s22p63s13p1→1s22s22p63s2时,释放能量,由激发态转化成基态B.基态Se的价层电子排布式:3d104s24p4C.基态铍原子最外层电子的电子云轮廓图为D.在同一能级上运动的电子,其运动状态肯定相同解析:选A。

A.镁原子由1s22s22p63s13p1→1s22s22p63s2时,释放能量,由激发态转化成基态,A正确;B.基态Se的价层电子排布式为4s24p4,B错误;C.基态Be的价层电子排布式为2s2,则基态铍原子最外层电子的电子云轮廓图呈球形,C错误;D.不同电子无论是否处于同一能级,其运动状态肯定不同,D错误。

2.下列关于原子结构的说法中,不正确的是()A.原子结构决定元素的性质B.2p x、2p y、2p z轨道相互垂直,且能量相等C.随着核电荷数递增,电子总是填满一个能层,再填下一个能层D.电子云是处于一定空间运动状态的电子在原子核外空间的概率密度分布的形象化描述解析:选C。

A.最外层电子数的多少决定元素的化学性质,则原子结构决定元素的性质,A说法正确;B.2p能级有2p x、2p y、2p z三个轨道,且2p x、2p y、2p z轨道相互垂直,能量相等,B说法正确;C.随着核电荷数递增,电子并不总是填满一个能层,再填下一个能层,如电子先填充4s能级,再填充3d能级,C说法错误;D.电子云是处于一定空间运动状态的电子在原子核外空间的概率密度分布的形象化描述,电子云图中的小点是电子在原子核外出现的概率密度的形象描述,小点越密表示概率密度越大,D说法正确。

3.下列说法不正确的是()A.1s电子云轮廓图呈球形,表示电子绕原子核做圆周运动B.第四周期基态原子未成对电子数为1的元素有5种C.电子排布式为1s22s22p63s23p1的元素,其价态为+3 时最稳定D.元素周期表中第ⅢB族到第ⅡB族共10个纵列的元素都是金属元素解析:选A。

新教材2023年秋高中数学章末综合测评1集合与常用逻辑用语

新教材2023年秋高中数学章末综合测评1集合与常用逻辑用语

章末综合测评(一) 集合与常用逻辑用语(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022·全国甲卷)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)=( )A.{1,3} B.{0,3}C.{-2,1} D.{-2,0}2.设集合M={x|0<x<4},N=,则M∩N等于( )A.B.C.{x|4≤x<5} D.{x|0<x≤5}3.(2022·山东省郓城一中月考)关于命题p:∃x∈R,x2+3x+2<0的叙述正确的是( ) A.p的否定:∀x∈R,x2+3x+2<0B.p的否定:∃x∈R,x2+3x+2≥0C.p是真命题,p的否定是假命题D.p是假命题,p的否定是真命题4.(2022·辽宁沈阳月考)已知a,b∈R,则“a-2b=0”是“=2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.如图,U为全集,M,P,S是U的三个子集,则阴影部分所表示的集合是( ) A.(M∩P)∩SB.(M∩P)∪SC.(M∩P)∩(∁U S)D.(M∩P)∪(∁U S)6.(2022·河南伊川县实验高中月考)已知全集为U,A,B是U的非空子集且A⊆∁U B,则下列关系一定正确的是( )A.∃x∈U,x∉A且x∈BB.∀x∈A,x∈BC.∀x∈U,x∈A或x∈BD.∃x∈U,x∈A且x∈B7.有限集合A中元素的个数,用card(A)表示.若集合M={x∈Z|-2<x<a},N={-3,-2,2,3},且card(M)=5,则card(M∩N)=( )A.4 B.3C.2 D.18.(2022·保定市第一中学月考)已知集合M=,集合N=,则( )A.M∩N=∅B.M∪N=MC.N M D.M N二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知集合A={x|x2-2x=0},则有( )A.∅⊆A B.-2∈AC.{0,2}⊆A D.A⊆{y|y<3}10.下列存在量词命题中,是真命题的是( )A.∃x∈Z,x2-2x-3=0B.至少有一个x∈Z,使x能同时被2和3整除C.∃x∈R,|x|<0D.有些自然数是偶数11.(2022·江苏南京师大附中月考)我们知道,如果集合A⊆S,那么S的子集A的补集为∁S A ={x|x∈S且x∉A},类似地,对于集合A,B,我们把集合{x|x∈A且x∉B},叫做集合A和B 的差集,记作A-B,例如:A={1,2,3,4,5},B={4,5,6,7,8},则有A-B={1,2,3},B-A={6,7,8},下列解析正确的是( )A.已知A={4,5,6,7,9},B={3,5,6,8,9},则B-A={3,7,8}B.如果A-B=∅,那么A⊆BC.已知全集、集合A、集合B关系如图中所示,则B-A=A∩(∁U B)D.已知A={x|x<-1或x>3},B={x|-2≤x<4},则A-B={x|x<-2或x≥4}12.设集合A={x|x=m+n,m,n∈N*},若x1∈A,x2∈A,x1⊕x2∈A,则运算⊕可能是( ) A.加法B.减法C.乘法D.除法三、填空题:本题共4小题,每小题5分,共20分.13.已知集合A={a,|a|,a-2},若2∈A,则实数a的值为________.14.命题“∀1≤x≤2,使x2-a≥0”是真命题,则a的取值范围是________.15.设集合A={x|0<x<1},B={x|0<x<3},那么“m∈A”是“m∈B”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)16.(2022·江苏南京月考)某班50名学生中,有围棋爱好者27人,足球爱好者33人,同时爱好这两项的人最多________人,最少________人.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)判断下列命题是全称量词命题还是存在量词命题,并写出它们的否定:(1)p:对任意的x∈R,x2+x+1=0都成立;(2)p:∃x∈R,x2+2x+5>0.18.(本小题满分12分)已知集合A={x|-1≤x≤2},B={x|a≤x≤a+2}.(1)若a=1,求A∪B;(2)在①∁R A⊆∁R B,②A∪B=A,③A∩B=B,这三个条件中任选一个作为条件,求实数a的取值范围.注:如果选择多个条件分别解答,则按第一个解答计分.19.(本小题满分12分)(2022·河北沧州月考)已知集合A={x|a<x<3a},集合B={x|2-x≤0},C={x|x-3≤0}.(1)求B∪C,B∩C;(2)设a>0,若“x∈A”是“x∈B∩C”的必要不充分条件,求实数a的取值范围.20.(本小题满分12分)已知全集U={x∈N|1≤x≤6},集合A={x|x2-6x+8=0},集合B ={3,4,5,6}.(1)求A∩B,A∪B;(2)写出集合(∁U A)∩B的所有子集.21.(本小题满分12分)已知集合A为非空数集,定义A+={x|x=a+b,a,b∈A},A-={x|x =|a-b|,a,b∈A}.(1)若集合A={-1,1},直接写出集合A+及A-;(2)若集合A={x1,x2,x3,x4},x1<x2<x3<x4,且A-=A,求证:x1+x4=x2+x3.22.(本小题满分12分)(2022·湖北武汉市第六中学月考)设a,b,c分别是△ABC的三条边长,且a≤b≤c,请利用边长a,b,c给出△ABC为锐角三角形的一个充要条件,并证明之.综合测评卷详解答案章末综合测评(一)1.D2.B3.C4.B5.C6.A7.C8.D9.ACD[∵A={0,2},∴∅⊆A,-2∉A,{0,2}⊆A,A⊆{y|y<3}.故选ACD.] 10.ABD[A中,x=-1时,满足x2-2x-3=0,所以A是真命题;B中,6能同时被2和3整除,所以B是真命题;D中,2既是自然数又是偶数,所以D是真命题;C中,因为所有实数的绝对值非负,所以C是假命题.故选ABD.]11.BD[对于A,由B-A={x|x∈B且x∉A},故B-A={3,8},错误;对于B,由A-B={x|x∈A且x∉B},则A-B=∅,故A⊆B,正确;对于C,由Venn图知:B-A如图阴影部分,所以B-A=B∩(∁U A),错误;对于D,∁R B={x|x<-2或x≥4},则A-B=A∩(∁R B)={x|x<-2或x≥4},正确.故选BD.]12.AC[由题意可设x1=m1+n1,x2=m2+n2,其中m1,m2,n1,n2∈N*,则x1+x2=(m1+m2)+(n1+n2),x1+x2∈A,所以加法满足条件,A正确;x1-x2=(m1-m2)+(n1-n2),当n1=n2时,x1-x2∉A,所以减法不满足条件,B错误;x1x2=m1m2+3n1n2+(m1n2+m2n1),x1x2∈A,所以乘法满足条件,C正确;,当=λ(λ>0)时,∉A,所以除法不满足条件,D错误.]13.-2 [∵2∈A,∴a=2或|a|=2或a-2=2,∴a=-2或a=2或a=4.又|a|≠a,∴a=2或4舍去.故a=-2.]14.{a|a≤1}[命题p:a≤x2在1≤x≤2上恒成立,y=x2在1≤x≤2上的最小值为1,∴a≤1.]15.充分不必要[由于A={x|0<x<1},所以A B,所以“m∈A”是“m∈B”的充分不必要条件.]16.27 10 [设围棋爱好者组成集合A,足球爱好者为集合B,全体学生为集合U,由Venn 图可知:图①图②当A∪B=U时,同时爱好这两项的人数最少,如图①,最少为:27+33-50=10.当A⊆B时,A∩B=A,同时爱好这两项的人数最多,如图②,最多为27人.]17.解:(1)由于命题中含有全称量词“任意的”,因而是全称量词命题;又由于“任意”的否定为“存在一个”,因此,p的否定:存在一个x∈R,使x2+x+1≠0成立,即“∃x∈R,使x2+x+1≠0成立”.(2)由于“∃x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,因而是存在量词命题;又由于“存在一个”的否定为“任意一个”,因此,p的否定:对任意一个x都有x2+2x+5≤0,即“∀x∈R,x2+2x+5≤0”.18.解:(1)当a=1时,B={x|1≤x≤3},所以A∪B={x|-1≤x≤3}.(2)三个条件∁R A⊆∁R B,A∪B=A,A∩B=B都表示B⊆A,所以1≤a≤0,所以实数a的取值范围为{a|-1≤a≤0}.19.解:(1)由B={x|2-x≤0}得2-x≤0,所以x≥2;由C={x|x-3≤0}得x-3≤0,所以x≤3,所以B∪C=R,B∩C={x|2≤x≤3}.(2)因为a>0,所以A={x|a<x<3a},B∩C={x|2≤x≤3},因为“x∈A”是“x∈B∩C”的必要不充分条件,所以B∩C A,所以1<a<2.即实数a的取值范围是{a|1<a<2}.20.解:(1)全集U={x∈N|1≤x≤6}={1,2,3,4,5,6},集合A={x|x2-6x+8=0}={2,4},集合B={3,4,5,6}.A∩B={4},A∪B={2,3,4,5,6}.(2)∵∁U A={1,3,5,6},∴(∁U A)∩B={3,5,6},它的所有子集是∅,{3},{5},{6},{3,5},{3,6},{5,6},{3,5,6},共8个.21.解:(1)根据题意,由A={-1,1},则A+={-2,0,2},A-={0,2}.(2)证明:由于集合A={x1,x2,x3,x4},x1<x2<x3<x4,且A-=A,所以A-中也只包含四个元素,即A-={0,x2-x1,x3-x1,x4-x1},剩下的x3-x2=x4-x3=x2-x1,所以x1+x4=x2+x3.22.解:a2+b2>c2.证明如下:充分性:∵a2+b2>c2,∴△ABC不是直角三角形,假设△ABC是钝角三角形,∵a≤b≤c,∴∠C最大,即∠B<90°,∠C>90°,过点A作BC的垂线,交BC的延长线于点D(如图1),图1由勾股定理,得c2=AD2+BD2=AD2+(CD+a)2=AD2+CD2+a2+2·CD·a=AC2+a2+2·CD·a =b2+a2+2·CD·a>a2+b2,与已知a2+b2>c2矛盾,∴△ABC为锐角三角形.必要性:∵△ABC为锐角三角形,∴∠B<90°,∠C<90°,过点A作BC的垂线,垂足为D(如图2),图2由勾股定理知,c2=AD2+BD2=AD2+(a-CD)2=AD2+CD2+a2-2·CD·a=b2+a2-2·CD·a<a2+b2.综上,△ABC为锐角三角形的一个充要条件为a2+b2>c2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合练习题2
1.下列集合的表示法正确的是( )
A .实数集可表示为R ;
B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;
C .集合{}1,2,2,5,7;
D .不等式14x -<的解集为{}5x <
2.对于{}(1)3217,(2)3,(3)0,(4)0,x x Q N ∉≤∈∈∉∅其中正确的个数是( )
A . 4 B. 3 C. 2 D. 1
3.集合{},,a b c 的子集共有( )
A .5个
B .6个
C .7个 D.8个
4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则P Q =( )
A .{}1,2
B .{}3,4
C .{}1
D .{}2,1,0,1,2--
5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0⋂∅.=∅其中错误..
的个数为( ) A .1 B .2 C .3 D .4
6.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )
A .{}|9a a <
B .{}|9a a ≤
C .{}|19a a <<
D .{}|19a a <≤
7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( )
A .A
B B .A B
C .()()U U C A C B
D .()()U U C A C B
8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅,则实数m 的取值范围是( )
A .1m ≥-
B .1m >-
C .1m ≤-
D .1m <-
9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( )
A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,10
10.集合{}{}
22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( ) A .1- B .0或1 C .0 D . 2
11.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为
( )
A .1
B .—1
C .1或—1
D .1或—1或0 12.设集合{}21<≤-=x x M ,{}0≤-=k x x N ,若M
N M =,
则k 的取值范围( ) (A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D)]2,1[-
13.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( )
A 、 ()M P S
B 、 ()M P S
C 、 ()u M P C S
D 、 ()u M P C S
14.设{}022=+-=q px x x A ,{}
05)2(62=++++=q x p x x B ,若⎭⎬⎫
⎩⎨⎧=21B A ,则=B A ( ) (A )⎭⎬⎫⎩⎨⎧-4,31,21 (B )⎭⎬⎫⎩⎨⎧-4,21 (C )⎭⎬⎫⎩⎨⎧31,21 (D)⎭⎬⎫⎩⎨⎧21
15. 设{}{}I a A a a =-=-+241222,,,,,若{}1I C A =-,则a=__________。

16.已知集合A ={1,2},B ={x x A ⊆},则集合B= .
17.已知集合{}{}A x y y x B x y y x ==-==()|()|,,,322那么集合A B =
18.50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人.
19.已知集合{}{}A a a d a d B a aq aq =++=,,,,,22,其中a ,d ,q R ∈,若A=B ,求q 的值。

20.已知全集U={}22,3,23a a +-,若A={},2b ,{}5U C A =,求实数的a ,b 值
21.若集合S={}23,a ,{}|03,T x x a x Z =<+<∈且S∩T={}1,P=S ∪T,求集合P 的所有子集
22.已知集合A={}
37x x ≤≤,B={x|2<x<10},C={x | x<a },全集为实数集R.
(1) 求A ∪B ,(C R A)∩B ;(2) 如果A∩C≠φ,求a 的取值范围。

23.已知方程02=++q px x 的两个不相等实根为βα,。

集合},{βα=A , =B {2,4,5,6},=C {1,2,3,4},A∩C =A ,A∩B =φ,求q p ,的值?
24.已知集合22{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m 的取值范围。

25.已知集合}023|{2=+-=x x x A ,}0)5()1(2|{22=-+++=a x a x x B ,
(1)若}2{=B A ,求实数a 的值; (2)若A B A = ,求实数a 的取值范围;。

相关文档
最新文档