武乡县高中2018-2019学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武乡县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )
①∀n ∈N *,f n (x )≤
恒成立
②若f n (x )为常数函数,则n=2
③f 4(x )在[0,
]上单调递减,在[

]上单调递增.
A .0
B .1
C .2
D .3
2. 函数f (x )=xsinx 的图象大致是( )
A .
B .
C .
D .
3. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )
A . =
B .∥
C .
D .
4. 如图所示,程序执行后的输出结果为( )
A .﹣1
B .0
C .1
D .2
5. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )
A .3
B .4
C .5
D .6
6. 若复数
2b i
i
++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C ) 13 (D ) 12
- 7. 如图所示,函数y=|2x ﹣2|的图象是( )
A .
B .
C .
D .
8. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 9. 命题“∀x ∈R ,2x 2+1>0”的否定是( )
A .∀x ∈R ,2x 2+1≤0
B .
C .
D .
10.已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )
A .(1,+∞)
B .(0,1)
C .(﹣1,0)
D .(﹣∞,﹣1)
11.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )
A .有无穷多条直线,每条直线上至少存在两个有理点
B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点
C .有且仅有一条直线至少过两个有理点
D .每条直线至多过一个有理点
12.已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )
A .(﹣∞,]
B .(﹣∞,]
C .(﹣∞,
] D .(﹣∞,
]
二、填空题
13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .
14.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=,则AC 的长为_________. 15.运行如图所示的程序框图后,输出的结果是
16.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,
则f ()= .
17.已知函数f (x )
=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写
出你认为正确的所有结论的序号)
①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点.
③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.
18.设函数f(x)=的最大值为M,最小值为m,则M+m=.
三、解答题
19.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.
(1)求曲线C的直角坐标方程;
(2)求|PA|•|PB|.
20.已知函数f(x)=ax2+lnx(a∈R).
(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数
+2ax.若在区间(1,+∞)上,函数f(x)
是f1(x),f2(x)的“活动函数”,求a的取值范围.
21.己知函数f(x)=lnx﹣ax+1(a>0).
(1)试探究函数f(x)的零点个数;
(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.
22.如图,四棱锥P ﹣ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上. (1)求证:平面AEC ⊥平面PDB ; (2)当PD=
AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.
23.已知曲线2
1()f x e x ax
=+(0x ≠,0a ≠)在1x =处的切线与直线2
(1)20160e x y --+= 平行.
(1)讨论()y f x =的单调性;
(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.
24.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).
(1)若首项a1=10,证明数列{a n}为递增数列;
(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.
武乡县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:①∵x∈[0,],∴f
(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;
n
②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,
当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣
=,当t∈时,g′(t)<0,函数g(t)单调递减;
当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.
③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,
],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.
综上可得:①②③都正确.
故选:D.
【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.
2.【答案】A
【解析】解:函数f(x)=xsinx满足f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),函数的偶函数,排除B、C,因为x∈(π,2π)时,sinx<0,此时f(x)<0,所以排除D,
故选:A.
【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.3.【答案】D
【解析】解:由图可知,,但不共线,故,
故选D.
【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.
4.【答案】B
【解析】解:执行程序框图,可得 n=5,s=0
满足条件s <15,s=5,n=4 满足条件s <15,s=9,n=3 满足条件s <15,s=12,n=2 满足条件s <15,s=14,n=1 满足条件s <15,s=15,n=0 不满足条件s <15,退出循环,输出n 的值为0.
故选:B .
【点评】本题主要考查了程序框图和算法,正确判断退出循环时n 的值是解题的关键,属于基础题.
5. 【答案】B 【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,
∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点, 对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,
但5个以上的交点不能实现.
故选B
【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.
6. 【答案】C
【解析】
b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =1
3.故选C.
7. 【答案】B
【解析】解:∵y=|2x
﹣2|=

∴x=1时,y=0, x ≠1时,y >0. 故选B .
【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.
8. 【答案】C
【解析】
试题分析:()2222
g x x x x
==+=+,故向上平移个单位.
log2log2log1log
考点:图象平移.
9.【答案】C
【解析】解:∵命题∀x∈R,2x2+1>0是全称命题,
∴根据全称命题的否定是特称命题得命题的否定是:
“”,.
故选:C.
【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.
10.【答案】D
【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.
若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),
若f(x)存在唯一的零点x0,且x0>0,
若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,
由f′(x)<0得0<x<,此时函数单调递减,
故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.
若a<0,由f′(x)>0得<x<0,此时函数递增,
由f′(x)<0得x<或x>0,此时函数单调递减,
即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),
若存在唯一的零点x0,且x0>0,
则f()>0,即2a()3﹣3()2+1>0,
()2<1,即﹣1<<0,
解得a<﹣1,
故选:D
【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.
11.【答案】C
【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),
由于也在此直线上,
所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;
当x1≠x2时,直线的斜率存在,且有,
又x2﹣a为无理数,而为有理数,
所以只能是,且y2﹣y1=0,
即;
所以满足条件的直线只有一条,且直线方程是;
所以,正确的选项为C.
故选:C.
【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.
12.【答案】D
【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,
所以(x+y)(+)=10+≥10=16,
当且仅当时等号成立,所以2m﹣1≤16,解得m;
故m的取值范围是(﹣];
故选D.
二、填空题
13.【答案】12.
【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,
所以15﹣x=12,
即所求人数为12人,
故答案为:12.
14.【答案】2
【解析】
考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.
【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).
15.【答案】0
【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,
由于sin周期为8,
所以S=sin+sin+…+sin=0.
故答案为:0.
【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.
16.【答案】1.
【解析】解:∵f(x)是定义在R上的周期为2的函数,
∴=1.
故答案为:1.
【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.
17.【答案】②④
【解析】解:
①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,
此时有无穷多个零点,故①错误;
②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,
此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0;
(Ⅱ)当0<x≤1时,,此时
f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;
(Ⅲ)当x>1时,,此时f(f(x))=f()=k+1>0,此时无零点.
综上可得,当k<0时,函数有两零点,故②正确;
③当k>0时,(Ⅰ)当x≤时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,
令f(f(x))=0,可得:,满足;
(Ⅱ)当时,kx+1>0,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0,满足;
(Ⅲ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;
(Ⅳ)当x>1时,,此时f(f(x))=f()=k+1,令f(f(x))=0得:x=
>1,满足;
综上可得:当k>0时,函数有4个零点.故③错误,④正确.
故答案为:②④.
【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.18.【答案】2.
【解析】解:函数可化为f(x)==,
令,则为奇函数,
∴的最大值与最小值的和为0.
∴函数f(x)=的最大值与最小值的和为1+1+0=2.
即M+m=2.
故答案为:2.
三、解答题
19.【答案】
【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…
∵ρcosθ=x,ρsinθ=y,
∴曲线C的直角坐标方程为y2=4x …
(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…
代入y2
=4x 得t2﹣6t﹣14=0…
设点A,B对应的参数分别t1,t2
∴t1t2=﹣14…
∴|PA|•|PB|=14.…
20.【答案】
【解析】解:(1)当时,,;
对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,
∴,.
(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)
令<0,对x∈(1,+∞)恒成立,
且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,

1)若,令p′(x)=0,得极值点x1=1,,
当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,
此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;
当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;
2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,
从而p(x)在区间(1,+∞)上是减函数;
要使p(x)<0在此区间上恒成立,只须满足,
所以≤a≤.
又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,
h(x)<h(1)=+2a≤0,所以a≤
综合可知a的范围是[,].
【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.
21.【答案】
【解析】解:(1),
令f'(x)>0,则;令f'(x)<0,则.
∴f(x)在x=a时取得最大值,即
①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞
∴f(x)的图象与x轴有2个交点,分别位于(0,)及()
即f(x)有2个零点;
②当,即a=1时,f(x)有1个零点;
③当,即a>1时f(x)没有零点;
(2)由得(0<x1<x2),
=,令
,设,t∈(0,1)且h(1)=0
则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0
即,又,
∴f'(x0)=<0.
【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算
比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学
生的综合能力有比较高的要求.
22.【答案】
【解析】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面AEC⊥平面PDB.
(Ⅱ)解:设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O ,E 分别为DB 、PB 的中点,
∴OE ∥PD ,

又∵PD ⊥底面ABCD , ∴OE ⊥底面ABCD ,OE ⊥AO ,
在Rt △AOE 中,

∴∠AEO=45°,即AE 与平面PDB 所成的角的大小为45°.
23.【答案】(1)()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2
+∞. 【解析】
试题解析:(1)由条件可得2
21
'(1)1f e e a
=-
=-,∴1a =, 由2
1()f x e x x
=+,可得22222
11'()e x f x e x x -=-=, 由'()0f x >,可得2210,0,
e x x ⎧->⎨≠⎩解得1x e >或1
x e <-;
由'()0f x <,可得2210,0,
e x x ⎧-<⎨≠⎩解得10x e -<<或1
0x e <<.
所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1
(0,)e
上单调递减.
(2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>,
由()ln kf s t t ≥,可得ln ()
t t
k f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立, 即max ln ()t t k f s ⎡⎤≥⎢
⎥⎣⎦max
()()g t f s ⎡⎤
=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值.
由(1)可知,()f s 在1(0,)e 上单调递减,在1
(,)e +∞上单调递增,
故()f s 的最小值为1
()2f e e
=,
由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立,
所以()g t 在(1,]e 上的最大值为()ln g e e e e ==, 所以只需122
e k e ≥
=, 所以实数的取值范围是1[,)2
+∞.
考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.
【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).
24.【答案】 【解析】解:(Ⅰ)
∵,

(x >0),
当a=2
时,则
在(0,+∞)上恒成立,
当1<a <2时,若x ∈(a ﹣1,1),则f ′(x )<0,若x ∈(0,a ﹣1)或x ∈(1,+∞),则f ′(x )>0, 当a >2时,若x ∈(1,a ﹣1),则f ′(x )<0,若x ∈(0,1)或x ∈(a ﹣1,+∞),则f ′(x )>0, 综上所述:当1<a <2时,函数f (x )在区间(a ﹣1,1)上单调递减, 在区间(0,a ﹣1)和(1,+∞)上单调递增; 当a=2时,函数(0,+∞)在(0,+∞)上单调递增;
当a >2时,函数f (x )在区间(0,1)上单调递减,在区间(0,1)和(a ﹣1,+∞)上单调递增. (Ⅱ)若a=2
,则
,由(Ⅰ)知函数f (x )在区间(0,+∞)上单调递增,
(1)因为a 1=10,所以a 2=f (a 1)=f (10)=30+ln10,可知a 2>a 1>0, 假设0<a k <a k+1(k ≥1),因为函数f (x )在区间(0,+∞)上单调递增,
∴f(a k+1)>f(a k),即得a k+2>a k+1>0,
由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,
∴数列{a n}为递增数列.
(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,
∴f(a1)>a1,即(a1为正整数),
设(x≥1),则,
∴函数g(x)在区间上递增,
由于,g(6)=ln6>0,又a1为正整数,
∴首项a1的最小值为6.
【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.
选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】。

相关文档
最新文档