2.2.1 圆的标准方程 课件(北师大必修2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 7 即圆心坐标为C(-4,4). 又∵圆的半径r=|OC|= 12 72 -4 +4 = 25 8,
12 7 2 25 ∴所求的圆的方程为(x+4) +(y-4) = 8 .
[一点通]
求圆的标准方程一般有两种思路:一是
用待定系数法,二是几何法.
1.用待定系数法求圆的标准方程的一般步骤是: ①根据题意,设所求的圆的标准方程为(x-a)2+ (y-b)2=r2; ②根据已知条件,建立关于a,b,r的方程组;
a2+b2-4a+6b=r2-13, 2 2 2 即a +b +4a+10b=r -29, a-2b-3=0. a=-1, ∴b=-2, r2=10. ∴所求圆的方程为(x+1)2+(y+2)2=10.
法三:设圆心C为(2b+3,b), 因为有|AC|=|BC|, 所以 2b+3-22+b+32 = 2b+3+22+b+52. 解得b=-2,所以圆心为(-1,-2), 半径r=|AC|= 10. 故所求圆的方程为(x+1)2+(y+2)2=10.
条件
与x轴相切 与y轴相切
方程形式
(x-a)2+(y-b)2=b2(b≠0) (x-a)2+(y-b)2=a2(a≠0) (x-a)2+(y-b)2=a2
与两坐标轴都相切 (|a|=|b|≠0) 直径的两端点为 (x-x1)(x-x2)+(y-y1)·
(x1,y1),(x2,y2)
(y-y2)=0
2.对于特殊位置的圆的方程
条件 过原点,圆心为(a,b) 圆心在x轴上 圆心在y轴上 方程形式 (x-a)2+(y-b)2=a2+b2
(a2+b2≠0)
(x-a)2+y2=r2(r≠0) x2+(y-b)2=r2(r≠0)
圆心在x轴上且过原点
圆心在y轴上且过原点
(x-a)2+y2=a2(a≠0)
x2+(y-b)2=b2(b≠0)
③解方程组,求出a,b,r的值,并把它们代入所设
的方程中,得到圆的方程. 2.几何法主要是根据已知条件,抓住圆的性质,构 造几何图形确定圆心和半径.
3.△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),
C(2,-8),求它的外接圆的方程.
解:设所求圆的方程是 (x-a)2+(y-b)2=r2,① 因为A(5,1),B(7,-3),C(2,-8)都在圆上,所以它 们的坐标都满足方程①.于是 5-a2+1-b2=r2, 7-a2+-3-b2=r2, 2-a2+-8-b2=r2,
地总高120m的摩天轮.
中国最高的摩天轮“南昌之星”位于江西省南昌市红谷 滩新区红角洲赣江边上的赣江市人民公园,是南昌市标志 性建筑.该摩天轮总高度为160m,转盘直径为153m,比 位于英国泰晤士河边的135m高的“伦敦之眼”摩天轮还要 高,成为世界上较高的摩天轮之一.如何写出圆的方程呢?
问题1:在平面直角坐标系中,确定圆的几何要素是 什么? 提示:圆心和半径. 问题2:圆是到定点的距离等于定长的点的集合,到 点(1,2)的距离等于1的点(x,y)的集合怎样用方程表示?
Байду номын сангаас
1.写出下列方程表示的圆的圆心和半径.
(1)x2+y2=4;(2)x2+(y-2)2=a2(a≠0);
(3)(x-3)2+y2=b2(b≠0);
(4)(x+3)2+(y+4)2=12.
解:(1)原方程化为(x-0)2+(y-0)2=22. 所以圆心(0,0),半径r=2. (2)原方程可化为(x-0)2+(y-2)=a2(a≠0). 所以圆心为(0,2),半径r=|a|.
(x-a)2+(y-b)2=r2 .
(2)当圆心在坐标原点时,半径为r的圆的标准方程为
x2+y2=r2
.
1.根据圆的定义,确定圆的条件是两个:即圆心
和半径,只需确定了这两者,圆就被唯一确定了.
2.圆的标准方程中具有三个参变量a,b,r,因此 确立圆的方程需三个独立的条件,根据条件列出以a,
b,r为变量的方程组,解方程组求出a,b,r的值即能
(3)原方程可化为(x-3)2+(y-0)2=b2(b≠0). 所以圆心为(3,0),半径r=|b|. (4)原方程化为[x-(-3)]2+[y-(-4)]2=(2 所以圆心为(-3,-4),半径r=2 3. 3)2.
2.写出下列圆的标准方程. (1)圆心在C(-3,4),半径长是 5. (2)圆心在C(8,-3),且经过点M(5,1).
∴点 A 在圆内.
∵|BM|=
1-02+8-12= 50=r,
∴点 B 在圆上. ∵|CM|= 6-02+5-12= 52>r,
∴点 C 在圆外.
[一点通]
求圆的方程,只需确定圆心和半径就可
以写出其标准方程;判定点与圆的位置关系,可以判定 该点与圆心的距离和圆的半径的大小关系,也可将该点 坐标代入圆的方程判断.
∴半径r= 29. ∴所求圆的标准方程为(x-1)2+(y+3)2=29.
(3)由圆的几何意义知圆心坐标(2,-3), 半径r= 2-02+-3+22= 5,
∴圆的方程为(x-2)2+(y+3)2=5.
[一点通]
直接法求圆的标准方程,就是根据
题设条件,直接求圆心坐标和圆的半径这两个几 何要素,然后代入标准方程.
a=2, 解此方程组,得b=-3, r2=25, ∴△ABC的外接圆的方程是(x-2)2+(y+3)2=25.
4.求过点A(2,-3),B(-2,-5)且圆心C在直线x-
2y-3=0上的圆的方程.
解:法一:因为A(2,-3),B(-2,-5), 1 所以AB中点D(0,-4),kAB=2, AB的垂直平分线方程为y-(-4)=-2(x-0), 即2x+y+4=0.
2x+y+4=0, 由方程组 x-2y-3=0, x=-1, 得 y=-2.
即圆心为(-1,-2). r=|CA|= -1-22+-2+32= 10. 故所求圆的方程为(x+1)2+(y+2)2=10.
法二:设所求圆的圆心坐标为(a,b),半径为r, 则方程为(x-a)2+(y-b)2=r2. 2-a2+-3-b2=r2, 2 2 2 由已知条件得-2-a +-5-b =r , a-2b-3=0,
或者利用几何法找出圆的圆心和半径.
[精解详析]
法一:∵圆心在直线y=x+2上,
∴设圆心坐标为(a,a+2),半径为r,则圆的方 程为(x-a)2+(y-a-2)2=r2. ∵点O(0,0)和P(1,3)在圆上,
0-a2+0-a-22=r2, ∴ 1-a2+3-a-22=r2,
提示: (y-2)2=1. x-12+y-22=1,化简得(x-1)2+
问题3:方程
x-22+y2=4表示的几何意义是什么?
提示:方程表示(x,y)到(2,0)的距离等4.
1.确定圆的条件 (1)几何特征:圆上任一点到圆心的距离等于 定长 . (2)确定圆的条件:圆心和半径. 2.圆的标准方程 (1)以C(a,b)为圆心,半径为r的圆的标准方程为
[例3]
已知两点P(-5,6)和Q(5,-4),求以P、Q为
直径端点的圆的标准方程,并判断点A(2,2),B(1,8),
C(6,5)是在圆上,在圆内,还是在圆外.
[思路点拨] 确定圆心、半径,写出圆的标准方程,
求出点到圆心的距离,作出判断.
[精解详析] 由已知条件及圆的性质可知,圆心 M 在直 径 PQ 的中点处,∴圆心 M 的坐标为(0,1). 1 1 半径 r= |PQ|= × -5-52+6+42=5 2 2 ∴圆的标准方程为 x2+(y-1)2=50. ∵|AM|= 2-02+2-12= 5<r, 2.
写出圆的标准方程.
3.点到圆的位置关系的判断 给出点M(x0,y0)和圆C:(x-a)2+(y-b)2=r2,通 过比较点到圆心的距离和半径的大小关系,得到: (1)点M在圆C上⇔(x0-a)2+(y0-b)2=r2;
(2)点M在圆C外⇔(x0-a)2+(y0-b)2>r2;
(3)点M在圆C内⇔(x0-a)2+(y0-b)2<r2.
y=x-3, 由 y=4, x=7, 得 y=4.
可得经过B、C、D三点的圆的方程为(x-7)2+(y -4)2=20. ∵(4-7)2+(2-4)2=13≠20, ∴A不在此圆上,因此A、B、C、D四点不在同一 个圆上.
1.确定圆的标准方程的方法 (1)直接法:直接确定圆和半径,适合易确定圆心和半 径的圆; (2)待定系数法:大部分求圆方程的题目均可以使用; (3)几何法:充分利用平面几何的知识,结合交点问 题和距离公式求解.
解:(1)代入圆的标准方程得 (x+3)2+(y-4)2=5. (2)∵半径r= 8-52+-3-12=5. 所以圆的标准方程为: (x-8)2+(y+3)2=25.
[例2]
一圆过原点O和点P(1,3),圆心在直线y=x+2
上,求此圆的标准方程. [思路点拨] 利用代数法,构造方程求解a、b、r,
[例1]
求满足下列条件的圆的标准方程.
(1)圆心为(2,-2),且过点(6,3). (2)过点A(-4,-5),B(6,-1)且以线段AB为直径. (3)圆心在直线x=2上且与y轴交于两点A(0,-4),
B(0,-2).
[思路点拨] 首先确定圆心坐标和半径大小,然后再
写出圆的标准方程.
[精解详析](1)由两点间距离公式,得r= 6-22+3+22= 41, ∴所求圆的标准方程为(x-2)2+(y+2)2=41. (2)圆心即为线段AB的中点,为(1,-3). 又|AB|= -4-62+-5+12=2 29,
1 a=-4, 解得 r2=25. 8 12 7 2 25 ∴所求的圆的方程为(x+4) +(y-4) = 8 .
法二:由题意,圆的弦OP所在直线的斜率为3,中 1 3 点坐标为(2,2), 3 1 1 ∴弦OP的垂直平分线方程为y-2=-3(x-2), 即x+3y-5=0. ∵圆心在直线y=x+2上,且圆心在弦OP的垂直平 分线上, 1 y=x+2, x=-4, ∴由 解得 x+3y-5=0, y=7, 4
5.若点(3, a )在圆x2+y2=16的外部,则a的取值范围 是________.
解析:∵(3, a)在圆x2+y2=16的外部, ∴9+( a)2>16, ∴a>7.
答案:(7,+∞)
6.判断四点A(4,2),B(5,0),C(3,2),D(3,6)是否在同一个 圆上.
解:∵BC的中点为(4,1),kBC=-1, ∴BC的垂直平分线方程为y=x-3. CD的垂直平分线方程为y=4.
世界上较大的摩天轮中坐落于泰晤士河畔的 英航伦敦眼(BA London Eye),距地总高达135m. 然而,由于伦敦眼属于观景摩天轮结构,有些人认为其在 排行上应该与重力式的Femis Wheel分开来计算,因此世 界上最大的重力式摩天轮应是位于日本福冈的天空之梦福
冈(Sky Dream Fukuoka, SDF),是座轮身直径112m,离
相关文档
最新文档