第三章扭转
第三章 扭转
三、切应变 剪切胡克定律 1、切应变 l
a
´
c
´
b
d t
为扭转角 r0 l
r0 即
l
纵轴 T——
T
2r02t
纯剪切单元体的相对两侧面 发生微小的相对错动,
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
横轴
r0
l
47
2、剪切虎克定律
做薄壁圆筒的扭转试验可得
在弹性范围内切应力 与切应变成正比关系。
切应力与扭矩同向的顺流
51
切应变的变化规律:
Me
pq
Me
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
_ 扭转角(rad)
x
d _ dx微段两截面的
相对扭转角
边缘上a点的错动距离:
aa' Rd dx
边缘上a点的切应变:
R d
dx
发生在垂直于半径的平面内。
52
p
q
d
ae
d
c
a ' e′O b
③ 结论:①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相对转动。
②各纵向线均倾斜了同一微小角度 ,仍为直线。
③所有矩形网格均歪斜成同样大小的平行四边形。
40
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
41
2、切应力分布规律假设
Me2
Me1
n
Me3
从动轮
主动轮
从动轮
求: 作用在该轮上的外力偶矩Me。
材料力学 第三章 扭转
d T dx GI p
d t r Gr dx
Tr tr Ip
Tr tr Ip
上式为等直圆杆在扭转时横截面上任一点处切 应力的计算公式。
Tr tr Ip
2
b z
t'
dx
c c'
3.4 圆轴扭转时的应力 3.4.1 横截面上的应力 1) 变形几何关系 在小变形条件下, 等直圆杆在扭转时横截面上也 只有切应力。为求得此应力, 需从几何关系、物 理关系和静力关系三个方面着手。 为研究横截面上任一点处切应变随点的位臵而 变化的规律, 先观察一个实验。
3.4 圆轴扭转时的应力 实验:预先在等截面圆杆的表面画上任意两个相 邻的圆周线和纵向线。在杆的两端施加外 力偶矩Me。
3.3 薄壁圆筒的扭转
薄壁圆筒扭转时, 横截面上 任一点处的切应力t都是相 等的, 而其方向与圆周相切。 横截面上的内力与应力间 的静力关系为:
n
r0 x
t dA
Me
n
t dA r
A
0
t r0 dA t r0 2 r d T
A
对于薄壁圆筒, r可由平均半径r0代替。
M x 0, T M e 0
T Me
取右侧为研究对象其扭矩与取左侧为研究对象 数值相同但转向相反。
3.2.2 扭矩及扭矩图 扭矩的符号规定如下: 采用右手螺旋法则, 如果 以右手四指表示扭矩的转向, 则姆指的指向离 开截面时的扭矩为正。
反之, 姆指指向截面时则扭矩为负。
3.2.2 扭矩及扭矩图
M2
M3
M1 n
A
M4
B
C
D
M2
M3
M1
材料力学第三章 扭转
n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2
材料力学-第三章扭转
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学第3章扭转
试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学第三章 扭转
W P t 1000P 60(N m)
外力偶矩Me一分钟做功:
W Me Me 2 n(N m)
令 W W
则:
Me
1000P 60
2 n
9549
P n
(N m)
注意:
主动轮上外力偶矩的转 向和轴的转向一致
从动轮上外力偶矩的转 向和轴的转向相反
二、扭矩与扭矩图 方法:截面法
Me
Mx 0 T1 M A 0
A
B
C
D
得: T1 M A 1.91kN m
MA 1 MB 2 MC 3 MD
2-2截面
M x 0 T2 M A MB 0
得: T2 M A MB 5.73kN m 3-3截面
A 1 B2 C
MA
T1
MA
M B T2
3D
M x 0 T3 M A MB MC 0
由扭矩图可知: T 5.73kN m
max
在BC和CD段
A
B
C
D
MA
MB
A
B
T / kN m
MC
MD
C
D
5.73
O
x
1.91
5.73
D
B
§3-3 薄壁圆筒的扭转 R0 10
一、薄壁圆筒扭转时的应力与变形
D
δ
D / 20
实验情形
ab cd
① 各圆周线的形状、大小和间距均未改变,只是绕轴线作相 对转动。
dx
将(a)式代入上式得:
G
G
d
dx
(b)
由(b)式可知,圆杆横截面上的切应力 和 成正比,即
切应力沿半径方向按线性规律变化,其方向垂直于半径。
材料力学第3章扭转
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
第三章扭转
T=Fs×r
材料力学
0
Fs=2 r
0
扭转/圆轴扭转时的应力
一.圆轴扭转时的应力分布规律
T
T
材料力学
扭转/圆轴扭转时的应力
1. 单元格的变化
A
B
C
A B
C
D
D
现象一: 方格的左右两边发生相对错动
横截面上存在切应力
方格的左右两边距离没有发生改变 现象二:
材料力学
横截面上没有正应力
2. 半径的变化
材料力学
扭转/纯剪切
§3.3 纯剪切
材料力学
相关概念
纯剪切:单元体各个面上只承受切应力而没有正应力。
单元体:是指围绕受力物体内一点截取一边长为无限小 的正立方体,以表示几何上的一点。
材料力学
扭转/纯剪切
一.薄壁圆筒扭转时的切应力
纯剪切的变形规律通过薄壁圆筒的纯扭转进 行研究。 受扭前,在薄壁圆筒的表面上用圆周线和 纵向线画成方格。
扭转/圆轴扭转时的变形
两横截面间相对扭转角的计算:
=TL/GIP
T:扭矩;
L:两横截面间的距离; G:切变模量; IP:极惯性矩。
材料力学
扭转/圆轴扭转时的变形
=TL/GIP
GIP越大,则越小。 GIP称为抗扭刚度。
材料力学
扭转/圆轴扭转时的变形
`=/L
`:单位长度扭转角(rad/m)。
思路:
最大扭矩
最大切应力
max
校核强度
相等
强度相同,则两轴的最大切应力 求出实心轴直径
材料力学
两轴面积比即为重量比
扭转/圆轴扭转时的应力
计算Wt:
3 Wt=D
材料力学第三章扭转
传动轮的转速n 、功率P 及其上的外力偶矩Me之
间的关系:
Me
=
P ×103 × 60 2πn
=
9.549 ×103
P n
(N • m)
Me2
Me1nMe3Fra bibliotek从动轮
主动轮 从动轮
主动轮上的外力偶矩转向与传动轴的转向相同, 从动轮上的外力偶矩转向与传动轴的转向相反。
12
二、扭矩及扭矩图
圆轴受扭时其横截面上的内力偶矩称为扭矩, 用符号T表示。
τ dA r0 x
∫ T = τr0 A d A = τr0 A
n δ
A = 2πr0δ
A:平均半径所作圆的面积。
r0
得
τ
=
T r0 A
=
T
2πr02δ
28
思考:竹竿扭转破坏沿纵向还是沿横向开 裂?纵向截面上是否存在应力?
微体互垂面 上切应力的 关系?
dx
τ1
τ2,
τ1,dy
τ2 dz
x
z
29
二、单元体·切应力互等定理
得 τ′=τ
30
切应力互等定理
y
dz
τ'
dy
z
aτ
b
O τ'
dx
d c
τ
该定理表明:在单元体
相互垂直的两个平面上,剪 应力必然成对出现,且数值 相等,两者都垂直于两平面 的交线,其方向则共同指向 x 或共同背离该交线。
τ =τ′
τ'
a
d
单元体在其两对互相 垂直的平面上只有切应力
τ
而无正应力的状态称为纯
4.78
T 图(kN·m)
第三章 扭 转
第三章 扭 转 1 扭转的力学模型①构件特征——构件为圆截面直杆。
②受力特征——外力偶矩的作用面与杆件轴线相垂直。
③变形特征——杆件各横截面绕杆轴作相对转动。
2圆轴扭转时,横截面上的内力偶矩——扭矩 ①传动轴的速度、传递的功率与外力偶矩之间的关系为{}{}{}minr n KW P M mN e 9950=∙ ②扭矩——构件受扭时,横截面上的内力偶矩,以T 表示。
③扭矩的正负号规定——用右手螺旋法则,扭矩矢量的方向指向截面的为负,背离截面的为正。
④扭矩图——表示圆杆各截面上的扭矩沿杆轴线方向变化规律的图线。
3圆轴扭转时,横截面上的应力、强度条件 (1)横截面上的切应力①分布规律——一点的切应力的大小与该点到圆心的距离成正比,其方向与该点的半径相垂直。
②计算公式 ρτP I T =PP max W TR I T ==τ (2)极惯性矩与扭转截面系数, ①实心圆截面 432D I P π= , 316D W P π=②空心圆截面 ()()444413232αππ-=-=D dDI P ,()44116απ-=D WP式中, Dd =α (3)圆轴扭转的强度条件 []ττ≤=Pmax W T(4)强度计算的三类问题①强度校核 []ττ≤=Pmax W T②截面设计 []τTW P ≥,由P W 计算D⑧许可荷载计算 []P e W M τ≤,由T 计算e M 4.圆轴扭转时的变形,刚度条件 (1)圆轴扭转时的变形小变形时,圆轴的二任意横截面之间仅产生相对的角位移,称为相对扭转角。
① 相对扭转角 ()rad GI TLP=ϕ ②单位长度扭转角 ()m rad GI Tdx d P'==ϕϕ 计算相对扭转角ϕ的公式,应在长度L 范围内,T ,G 和P I 均为常数,若其中任意参数T 或G 或P I 不为常数,则应分段计算ϕ,然后叠加。
2)圆轴扭转时的刚度条件 []()()m GI max T max 'P '0180ϕπϕ≤⨯=5.矩形截面杆扭转的主要结果 (1)横截面上的最大切应力横截面上的最大切应力发生在矩形截面的长边中点处;即 3b Tmax βτ=式中,β为与比值h 有关的系数,可查文献1中表3—1获得。
第三章——扭转
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:τs 扭转强度极限:τb 扭转强度极限:τb 扭转屈服应力:τs 和扭转强度极限:τb ,统称为 材料的扭转极限应力τu。
23
圆轴扭转强度条件
材料的扭转许用应力为:
[τ ] =
τ
u
n
n为安ห้องสมุดไป่ตู้系数。
强度条件为:
τ
max
13
第三章 扭转
3.4 圆轴扭转时的应力
14
15
正应力为零,切应力垂直于半径。
16
dφ dx
=
T GI P
圆轴扭转变 形基本公式
τ ρ=
其中
Tρ IP
τ
max
=
IP R
T WP
17
Wp =
τ ρ=
其中
Tρ IP
τ
IP R
max
=
T WP
Wp =
IP和WP分别称为极惯性矩 抗扭截面模量 极惯性矩和抗扭截面模量 极惯性矩
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP =
π d4
32
WP =
π d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
π D4
32
IP = WP =
(1 − α )
4
π D3
16
(1 − α )
4
α =d/D
20
例3-2:如图所示轴,左段AB为实心圆截面,直径d=20mm, 右段BC为空心截面轴,内、外径分别为d1=15mm和d2=25mm。 轴承受扭力矩MA、MB与MC作用,且MA = MB =100N⋅m, MC =200 N⋅m。试计算轴内的最大扭转切应力。
《材料力学》课件——第三章 扭转
F
Me
F
M'e
汽车的转向操纵杆
3.1 扭转的概念和实例
Me
A'
A
B
B'
Me
扭转:在一对大小相等、转向相反、作用面垂直于 直杆轴线的外力偶Me作用下,直杆的相邻横截面将 绕轴线发生相对转动,杆件表面纵向线将成斜线, 而轴线仍维持直线。
3.1 扭转的概念和实例
Me
A'
g
A
B
j
B'
Me
外力偶作用平面和杆件横截面平行
M2
M3
M1
M4
解:①计算外力偶矩
M1
9.55
P1 n
9.55 500 300
A
15.9(kN m)
B
C
M2
M3
9.55
P2 n
9.55 150 300
4.78
(kN m)
M4
9.55
P4 n
9.55 200 300
6.37
(kN m)
n D
3.2 外力偶矩的计算 扭矩和扭矩图
②求扭矩(扭矩按正方向设)
M 0 , C
T1 M 2 0
T1 M 2 4.78kN m
M2 1 M2
A1 M2
M3
M1
2
3M4
n B 2 C 3D
T2 M 2 M 3 0 ,
T2 M 2 M 3
A
(4.78 4.78)
9.56kN m
T3-M4=0
T3=M4=6.37KN·m
T1
T2
T3
3.2 外力偶矩的计算 扭矩和扭矩图
代入上式得:
G g
材料力学 第三章 扭转
为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p
材料力学 第 三 章 扭转
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ
dϕ
dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。
第三章 扭转
例
传动轴,已知转速 n=300r/min,主动轮A输入功 率PA=45kW,三个从动轮输出功率分别为PB=10kW, PC=15kW,PD=20kW。试绘轴的扭矩图.
解: (1)计算外力偶矩
由公式 M 9549P / n e
(2)计算扭矩
(3) 扭矩图
MB
MC
MD
MA
B
C
D
A
T3 M A 1432N m
M e Nm
PkW 103 60 PkW 9549 nrpm 2πnrpm
§3.2 外力偶矩的计算 扭矩和扭矩图
2.扭矩和扭矩图 用截面法研究横 截面上的内力
T = Me T:截面上的扭矩
§3.2 外力偶矩的计算 扭矩和扭矩图
扭矩正负规定
右手螺旋法则
右手大拇指指向横截面外法线方向为正,反之为负
2、应力分析 取微单元体abcd
A、存在剪(切)应力 有剪切变形,单元体的两 恻必然有剪应力。
a d
B、不存在正应力 扭转过程中,圆筒的周边 线形状、大小、相邻周边线的距 离都不变, →无线应变 无轴相或周相变形 →无正应力
b c
a
b
d
c
C、剪(切)应力大小
(1)由于沿圆周线方向各点的
变形相同,同一圆周线上各点
max
注意:计算 max 应综合考虑T和WP。
5
Tmax [ ] WP
极惯性矩和抗扭截面系数的计算 实心圆轴
D Ip , 32
4
Ip d A
2 A
3
空心圆轴
其中:
D 4 (1 ) Ip (1 ), WP 16 32
材料力学第三章扭转
材料力学
中南大学土木工程学院
三、扭 矩
x 扭矩的矢量表示
Me
Me
Me
T
定义:扭转内力偶矩, 1、定义:扭转内力偶矩,用T表示 大小: 2、大小:可用截面法取局部平衡求出 扭矩大小= 截面一侧所有外扭转力偶矩之代数和 T =ΣMe 正负号: 3、正负号:扭矩矢与截面外法线一致为正 (图中T为正,必须按“设正法”画扭矩) 为正,必须按“设正法”画扭矩) 单位: 4、单位:N·m 或 kN·m
τ =τ′
切应力互等定理
在单元体相互垂直的两个平面上, 在单元体相互垂直的两个平面上,切应力必然成对出 且数值相等,两者都垂直于两平面的交线, 现,且数值相等,两者都垂直于两平面的交线,其方 向则共同指向或共同背离该交线。 向则共同指向或共同背离该交线。
材料力学
中南大学土木工程学院
单元体的四个侧面上只有切应力而无正应 纯剪切应力状态。 力作用,这种应力状态称为纯剪切应力状态 力作用,这种应力状态称为纯剪切应力状态。
O
定义内径与 外径的比值
d α= D
D d
πD πD 4 Ip = (1 − α 4 ) 32
I p π(D 4 − d 4 ) πD 3 Wp = = = (1 − α 4 ) D 16 D 16 2
特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。 特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。
材料力学 中南大学土木工程学院
分布如图所示。 横截面上各点处的切应力τ 分布如图所示 取微面积dA,则横截面上的分布 的合成其主矢为零, 力系τ dA的合成其主矢为零,主矩就 是扭矩T。
δ
r0
O
τ
∫
上海电机学院材料力学第三章扭转
D
d
t
M
M
*
解:轴的扭矩等于轴传递的转矩
轴的内,外径之比
由强度条件
由刚度条件
已知:P=7.5kW, n=100r/min,最大切应力不得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
求: 实心轴的直径d1和空心轴的外直径D2;确定二轴的重量之比。
空心轴
d2=0.5D2=23 mm
§3.4 圆轴扭转时的应力
*
确定实心轴与空心轴的重量之比
空心轴
D2=46 mm
*
δ<<R0 ---薄壁圆筒
规定:矢量方向与横截面外法线方向一致的扭矩为正
m
m
薄壁圆筒的扭转
m
T
1
1
扭矩
切应力
对应
扭转
*
§3.3 纯剪切
一、薄壁圆筒扭转时的切应力
微机控制扭转试验机
*
扭转实验前
平面假设成立
相邻截面绕轴线作相对转动
横截面上各点的剪(切)应力的方向必与圆周线相切。
纵线
圆周线
扭转实验后
ρ
dρ
O
D
d
ρ
dρ
(2)空心圆截面
其中
*
应力公式
1)横截面上任意点:
2)横截面边缘点:
其中:
d/2
ρ
O
T
抗扭截面模量
D/2
O
T
d/2
空心圆
实心圆
扭转
*
例题2 图示空心圆轴外径D=100mm,内径d=80mm,M1=6kN·m,M2=4kN·m,材料的剪切弹性模量 G=80GPa.
材料力学,第三章 扭转
,或有使用要求(如机床主轴)要采用空心轴,否则,制
造空心轴并不总是值得的。
45
§3–5 等直圆杆在扭转时的变形 · 刚度条件
一、扭转时的变形 由公式
d T dx GI p
知:长为 l一段杆两截面间相对扭转角 为
d
l
0
T dx GI p
Tl (若T 值 不 变 ) GI p
I p A 2 dA 2 2 d
D 2 0
D 4
32
0 .1 D 4
37
d 对于空心圆截面:
I p A 2 dA 2 2 d (
D 2 d 2
d
O
D
d ) D
32 D 4 (1 4 ) 0.1D 4 (1 4 ) 32
Torsion
1
第三章
§3–1 概述
扭 转
§3–2 传动轴的外力偶矩 · 扭矩及扭矩图
§3–3 薄壁圆筒的扭转 §3–4 等直圆杆在扭转时的应力 · 强度分析 §3–5 等直圆杆在扭转时的变形 · 刚度条件
2
§ 3–1
概 述
工程中以扭转为主要变形的构件,我们一般称之为“轴”。如:
机器中的传动轴、石油钻机中的钻杆等。 工程实例
42
Tmax Wt [ ]
Tmax Wt [ ]
[例] 设有一实心圆轴与一内外径比为3/4的空心圆轴,两轴 材料及长度都相同。承受转矩均为m,已知两轴的最大剪应 力相等,试比较两轴的重量。 解.( 1 )实心轴直径 d与 空心轴外径D之间的关系
max
Tmax 16m [] 3 Wt d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、扭转外力偶矩的计算
当已知传递功率和 转数时可用下式换算:
P M e 9549 n
( N· ) m 式中:P 为传递的功率,单位 kW
n 为每分钟转数,单位 rpm(r/min=转/分) Me 为相当外扭转力偶矩,单位 N· m
材料力学 中南大学土木建筑学院
Me2
1、 横截面变形后仍为平面; 且形状、大小、间距都不
变。称为平面假设;
2、轴向无伸缩; 3、纵向线变形后仍为平行。
材料力学 中南大学土木建筑学院
DD d tan dx dx
a T
O1
b T
O2 D D'
d dx
A
a
d
dx
b
距圆心为任一点处的与该点到圆心的距离成正比。
答:(D)
面积 A2=4A1 ,则直径D2=2D1 ,许可载 荷与轴直径的立方成正比。
Tmax Wp [ ]
材料力学 中南大学土木建筑学院
§3.5 圆轴扭转时的变形和刚度条件
一、扭转变形
1、单位长度扭转角
d T dx GI p
rad/m
材料力学
中南大学土木建筑学院
2、相对扭转角
d —— 扭转角沿长度方向的变化率。 dx 称为单位长度扭转角。
材料力学 中南大学土木建筑学院
二、 物理关系
胡克定律:
代入上式得:
d G G dx
G
T
d G dx
切应力在横截 面上的分布为
材料力学
中南大学土木建筑学院
三、静力学关系
r0 AdA r0 2 r0 d T
T T 2 2 r0 d 2 A 0 d
中南大学土木建筑学院
二、切应力互等定理
a dy
´
b
Mz 0
d dxdy d dxdy
= G
式中:
p—剪切比例极限
G —剪切弹性模量 单位:GPa 钢材 G = 80 GPa
E G 2 1
材料力学 中南大学土木建筑学院
§3.4
等直杆扭转时的应力和强度
考虑三方面
①变形几何关系
等直圆杆横截面应力 一、变形几何关系
②物理关系
③静力学关系
等直圆杆扭转实验观察:
上式称为切应力互等定理。
´
c z dx d
d
在单元体相互垂直的两个平面上,切应力必然 成对出现,且数值相等,两者都垂直于两平面 的交线,其方向则共同指向或共同背离该交线。
材料力学 中南大学土木建筑学院
单元体的四个侧面上只有切应力而无正应力 作用,这种应力状态称为纯剪切应力状态。
三、剪切胡克定律
T A dA
2
T
dA
O d A G dA dx d 2 2 G A dA I p A dA 令 dx d T d T GI p dx dx GI p
代入物理 关系式 :
材料力学
d G dx
得
T IP
D 1
3 2
4
d
3 1
1, 2, max max
已知
得
材料力学
0.8
D2 3 1 1.194 4 d1 1 0.8
中南大学土木建筑学院
两轴的重量比
π 2 D2 d 22 D 2 1 2 W2 A2 4 2 2 π 2 W1 A1 d1 d1 4 2 2 1.194 1 0.8 0.512
中南大学土木建筑学院
Ip A dA
2
称为横截面对圆心O点 的极惯性矩,单位:mm4。
四、最大切应力
在横截面周边各点 max =R 令
max
TR IP
r
Wp
T Wp
Ip R
称为抗扭 截面系数, 单位:mm3。
Nm
mm
3
max
材料力学
=10 MPa
3
中南大学土木建筑学院
微段变形
a T
O1
d T dx GI p T d dx GI p
b
T
O2
A
a
D
D'
d
b
dx
GIp:称为抗扭 刚度,单位Nm2
材料力学
中南大学土木建筑学院
相对扭转角
Me Me
T dx GI p l
当T是常数
Tl GI p
单位:rad
正负号:同扭矩T,正负号仅表示转向。
2、实验后 ①圆周线不变;
②纵向线变成斜直线。
①圆筒表面的各圆周线的形状、大小和间距 均未改变,只是绕轴线作了相对转动。 结 ②各纵向线均倾斜了同一微小角度 。 论 ③所有矩形网格均歪斜成同样大小的平行四 边形。
材料力学 中南大学土木建筑学院
横截面上各点处,只 产生垂直于半径的均匀分 布的切应力 ,沿周向大 小不变,方向与该截面的 扭矩方向一致。 横截面上分布力的合成为扭矩
T(kN· m)
9.56
15.9
从受力角度看,显然主动轮的位置对轴的内力有 影响。应选择合理布置方式。
材料力学 中南大学土木建筑学院
§3.3
薄壁圆筒扭转
一、横截面上的切应力
薄壁圆筒——壁厚d远小于平均半径 r0。 1、实验前 ①绘纵向线,圆周线; ②施加一对外力偶 M。
材料力学
中南大学土木建筑学院
②计算并校核切应力强度
扭矩图略
max
T 1.592 10 23.6MPa [ ] 3 Wp 70 16
6
③此轴满足强度要求。
材料力学 中南大学土木建筑学院
实心圆截面轴Ⅰ和空心圆截面轴Ⅱ (= d2/D2 =0.8)的 材料、扭转力偶矩 Me 和长度l 均相同。试求在两圆轴 横截面上最大切应力相等的情况下,D2/d1之比以及两 轴的重量比。
T
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
材料力学 中南大学土木建筑学院
六、圆轴扭转强度条件
max
T W p max
①强度校核
公式仅适用于各向同性、 线弹性材料,在小变形 时的等截面圆直杆。
max
n
B C D
Me A MeB
PA 150 9.55 9.55 4.78 (kN m) n 300
MeD
材料力学
PD 200 9.55 9.55 6.37 (kN m) n 300
中南大学土木建筑学院
②求扭矩(扭矩按正方向设)
MeA
1
MeB
MeC
MeD
2 n
l
l r0
材料力学
r0 l
中南大学土木建筑学院
T=Me
通过扭转实验发现
T
l ( ) r0
( 2A0d )
剪切胡克定律:当切应力不超过材料的剪切比例极限
时( ≤ P ),切应力与切应变成正比关系。
材料力学 中南大学土木建筑学院
当 ≤ p 时
解决三 类问题
Tmax [ ] Wp
②截面设计 ③确定许可载荷
Tmax Wp [ ]
Tmax Wp [ ]
材料力学
中南大学土木建筑学院
等直圆杆扭转时斜截面上的应力 低碳钢试件: 沿横截面断开。
铸铁试件: 沿与轴线约成45的 螺旋线断开。 因此还需要研究斜截面上的应力,第七章再研究。
材料力学 中南大学土木建筑学院
MeA
MeB
MeC
MeD
n
A B C D 6.37
T
(kN· m) 4.78 9.56
材料力学 中南大学土木建筑学院
若把主动轮C置于右端,则其扭矩图变为下面所示
MeA MeB MeC MeD
MeA MeB MeD MeC
A
B
C
6.37
D
A
4.78
B
D
C
4.78
9.56
3
MeA=4.78KN· m MeB=4.78KN· m MeC=15.9KN· m MeD= 6.37KN· m
A
1 B
2 C
3
D
T M e T1 M e A 4.78kN m
T2 M e A M e B 9.56kN m T3 M e D 6.37kN m
材料力学 中南大学土木建筑学院
四、扭矩图
表示沿杆轴线各横截面上扭矩变化规律的图线。
作扭矩图步骤 1、计算各段扭矩 2、作扭矩图 作内力图的要求 ① 标明内力性质 ② 正确画出内力沿杆轴分布规律 ③ 标明特殊截面的内力数值 ④ 标明正负号 ⑤ 注明单位(只在内力标志后面写一个)
材料力学 中南大学土木建筑学院
Ip
D 2 d 2
π 4 2 π d D d 4 32
3
O
πD 1 4 32 d 其中 D
4
D d
πD 4 d 4 πD 3 4 1 Wp D/2 16 D 16 Ip
材料力学 中南大学土木建筑学院
应力分布
T
材料力学 中南大学土木建筑学院
为什么矩形截面轴扭转时横截面 四个角点处切应力一定为零?