二次函数与实际问题(拱桥)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的运用拱桥问题
学习过程:
一、预备练习:
1、如图所示的抛物线的解析式可设为 ,若AB ∥x 轴,且AB=4,OC=1,则点A 的坐标为 ,点B 的坐标为 ;代入解析式可得出此抛物线的解析式为 。
2、 某涵洞是抛物线形,它的截面如图所示。
现测得水面宽AB=4m ,涵洞顶
点O 到水面的距离为1m ,于是你可推断点A 的坐标是 ,点B 的坐
标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解
析式可设为 。
二、新课导学:
例1、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m ,河面距拱顶
4m ,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在
正常水位基础上上涨多少米时,就会影响过往船只航行。
例2、某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m ,涵洞
顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系
式是什么?
三、练习:
1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函
数的解析式为y=225
1x ,当水位线在AB 位置时,水面宽 AB = 30米,这时水面离桥顶的高度h 是( )
A 、5米
B 、6米;
C 、8米;
D 、9米
2、、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降
1m 后,水面的宽度是多少?(结果精确到0.1m).
3、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?
4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部
C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面
2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.
5、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,
抛物线可以用y=-
4
1x 2+4表示. (1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?
(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?
6.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA ,OA=1.25m ,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m .
(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?
(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m ,要使水
流不落到池外,此时水流最大高度应达多少米?(精确到0.1m )
7.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9 m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m. ①问此球能否投中? (选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?
8.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面 10又3分之3m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.
(1)求这条抛物线的函数关系式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3又5分之3m,问此次跳水会不会失误?并通过计算说明理由.
例1、例2:
例3:第3题:
第8题、。