应用分类抛物线

合集下载

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)1.发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y=ax 2+bx ,若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?( ) A .第8秒B .第10秒C .第12秒D .第15秒2.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(a≠0).下表记录了该同学将篮球投出后的x 与y 的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为( ) x (单位:m) 024y (单位:m) 2.253.453.05 A .1.5mB .2mC .2.5mD .3m3.向空中发射一枚炮弹,第x 秒时的高度为y 米,且高度与时间的关系为2(0)y ax bx c a =++≠,若此炮弹在第6秒与第17秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第8秒B .第10秒C .第12秒D .第15秒4.在学校运动会上,一位运动员掷铅球,铅球的高()ym 与水平距离()x m 之间的函数关系式为20.2 1.6 1.8y x x =-++,则此运动员的成绩是( ) A .10mB .4mC .5mD .9m5.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是( ) A .1米B .5米C .6米D .7米6.如图,铅球的出手点C 距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为( )A .h=﹣316t 2B .y=﹣316t 2+t C .h=﹣18t 2+t+1 D .h=-13t 2+2t+1 7.教练对小明推铅球的录像进行技术分析,发现某次铅球行进高度y(m)与水平距离x(m)之间的关系为y=-112(x-4)2+3,由此可知小明这次的推铅球成绩是( )A .3mB .4mC .8mD .10m8.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为()2y ax bx c a 0.=++≠若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是( ) A .第8秒B .第10秒C .第12秒D .第15秒9.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是( )A .2mB .3mC .4mD .5m10.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h (m )可以用公式h =﹣5t 2+v 0t 表示,其中t (s )表示足球被踢出后经过的时间,v 0(m /s )是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s11.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s . 12.小明推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为y=﹣21(4)12x -+3,则小明推铅球的成绩是 m .13.一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的距离是______.此时铅球行进高度是______.14.对于向上抛的物体,在没有空气阻力的条件下,有这样的关系式:h =vt ﹣12gt 2,其中h 是上升高度,v 是初速,g 是重力加速度(为方便起见,本题目中g 取10m /s 2),t 是抛出后所经历的时间.如果将物体以v =25m /s 的速度向上抛,当t =_____s 时,物体上升到距离最高点11.25m 处?15.从地面竖直向上抛出一小球,小球的高度h (米)与小球的运动时间t (秒)之间的关系式是()230506h t tt =-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出______秒时,两个小球在空中的高度相同.16.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为_____.17.足球从地面踢出后,在空中飞行时离地面的高度()h m 与运动时间()t s 的关系可近似地表示为29.8h t t =-+,则该足球在空中飞行的时间为__________s .18.从地面竖直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的关系式是h =30t ﹣5t 2,小球运动中的最大高度是_____米. 19.校运会上,一名男生推铅球,出手点A 距地面53m ,出手后的运动路线是抛物线,当铅球运行的水平距离是4m 时,达到最大高度3m ,那么该名男生推铅球的成绩是_____m .20.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.21.在一场足球比赛中,一球员从球门正前方10米处起脚射门,当球飞行的水平距离为6米时达到最高点,此时球高为3米.(1)如图建立直角坐标系,当球飞行的路线为一抛物线时,求此抛物线的解析式. (2)已知球门高为2.44米,问此球能否射中球门(不计其它情况).22.某广场有一个小型喷泉,水流从垂直于地面的水管OA 喷出,OA 长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B 到O 的距离为3米.建立平面直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间近似满足函数关系20)y ax x c a =++≠((1)求y 与x 之间的函数关系式; (2)求水流喷出的最大高度.23.在某场足球比赛中,球员甲在球门正前方点O 处起脚射门,在不受阻挡的情况下,足球沿如图所示的抛物线飞向球门中心线,当足球飞行的水平距离为2 m 时,高度为5m 3,落地点A 距O 点12 m .已知点O 距球门9 m ,球门的横梁高为2.44 m . (1)飞行的足球能否射入球门?通过计算说明理由;(2)若守门员乙站在球门正前方2 m 处,他跳起时能摸到的最大高度为2.52 m ,他能阻止此次射门吗?并写明理由.24.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-(06t ≤≤).求小球运动时间是多少时,小球最高?小球运动中的最大高度是多少?25.如图,一位篮球运动员在离篮圈水平距离4m 处跳起投篮,球运行的高度y (m )与运行的水平距离x (m )满足解析式2y ax x c =++,当球运行的水平距离为1.5m 时,球离地面高度为3.3m ,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为3.05m .(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8m ,这次跳投时,球在他头顶上方0.25m 处出手,问球出手时,他跳离地面多高?26.如图所示,以40/m s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系式.2205h t t =-(0)t ≥解答以下问题:(1)球的飞行高度能否达到15m ?如能,需要飞行多少时间? (2)球飞行到最高点时的高度是多少m ?27.一球从地面抛出的运动路线呈抛物线,如图.当球离抛出地的水平距离为30m 时,达到最大高度10m .(1)问:球被抛出多远?并求出该抛物线的解析式. (2)当球的高度为509m 时,球离抛出地的水平距离是多少?28.某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.29.小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y 与x 的几组对应值如下表所示:x(s) 0 0.5 1 1.5 2 …y(m) 0 8.75 15 18.75 20 …(Ⅰ)求y关于x的函数解析式(不要求写x的取值范围);(Ⅱ)问:小球的飞行高度能否达到22m?请说明理由.30.运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度h(m)与它的飞行时间t(s)满足二次函数关系,t与h的几组对应值如下表所示.t(s)0 0.5 1 1.5 2 …h(m)0 8.75 15 18.75 20 …(1)求h与t之间的函数关系式(不要求写t的取值范围);(2)求小球飞行3s时的高度;(3)问:小球的飞行高度能否达到22m?请说明理由.参考答案1.B 【解析】 【分析】根据题意,x=7时与x=14时y 值相等,因此得出关于a 与b 的关系式,最后代入到2bx a=-中求出x 的值进一步判断即可. 【详解】 由题意得:当x=7时,y=49a +7b , 当x=14时,y=196a +14b , ∵高度相等, ∴49a +7b=196a +14b , ∴b=-21a ,∵抛物线对称轴为:2b x a=-, 即:10.5x =,根据抛物线的对称性以及开口方向, ∴当10.5x =时,y 最大, ∵10与10.5相差最小, ∴四个选项中,第10秒最高, 故选:B. 【点睛】本题主要考查了抛物线的性质,熟练掌握相关概念是解题关键. 2.C 【解析】 【分析】用待定系数法可求二次函数的表达式,从而可得出答案. 【详解】将(0,2.25),(2,3.45),(4,3.05)代入2y ax bx c =++中得2.25423.45164 3.05c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 2.250.21c a b =⎧⎪=-⎨⎪=⎩∴220.2 2.250.25( 2.5) 3.5y xx x =-++=--+∵0.250-< ∴当 2.5x =时,max 3.5y =故选C 【点睛】本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键. 3.C 【解析】 【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案. 【详解】解:根据题意,炮弹在第6秒与第17秒时的高度相等, ∴抛物线的对称轴为:61711.52x +==秒, ∵第12秒距离对称轴最近,∴上述时间中,第12秒时炮弹高度最高; 故选:C. 【点睛】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题. 4.D 【解析】 【分析】根据铅球落地时,高度y =0,把实际问题可理解为当y =0时,即20.2 1.6 1.80y x x =-++=,求x 的值即可.在实际问题中,注意负值舍去.【详解】解:由题意知,当y =0时,20.2 1.6 1.80x x -++=, 整理,得:2890x x --=, 解得:1219x x =-=,,由于负值不符合题意,故该运动员的成绩是9m , 故答案选:D . 【点睛】本题考查二次函数的实际应用,搞清楚铅球落地时,即y =0,测量运动员成绩,也就是求x 的值,借助二次函数解决实际问题. 5.C 【解析】试题解析:∵高度h 和飞行时间t 满足函数关系式:h=-5(t-1)2+6, ∴当t=1时,小球距离地面高度最大, ∴h=-5×(1-1)2+6=6米, 故选C .考点:二次函数的应用. 6.C 【解析】 【分析】根据题意,抛物线的顶点坐标是(4,3),把抛物线经过的点(0,1),代入二次函数的顶点坐标式列出方程,解出系数则可. 【详解】根据题意,设二次函数的表达式为()243h a t =-+,抛物线过(0,1),即代入二次函数解得18a =-,这个二次函数的表达式为()221143188h t t t =--+=-++,故C 选项是正确答案. 【点睛】本题考查了用待定系数法利用顶点坐标式求函数的方法,掌握方程的解法等知识是解决本题的关键. 7.D【解析】 【分析】求出铅球落地时的水平距离,将y=0代入函数关系式,求出x 的值即可得到成绩. 【详解】由题意得,当y=0时,21(4)3=012--+x , 解得:110x =,22x =-(舍去) 故选D. 【点睛】本题考查二次函数的应用,理解当铅球高度为0时,x 的值即为铅球飞行的距离,是解决本题的关键. 8.B 【解析】 【分析】根据题意可以求得该函数的对称轴,然后根据二次函数具有对称性,离对称轴越近,对应的y 值越大,即可解答本题. 【详解】由题意可得:当x 7142+==10.5时,y 取得最大值. ∵二次函数具有对称性,离对称轴越近,对应的y 值越大,∴ t =10时,y 取得最大值. 故选B . 【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 9.B 【解析】 【分析】由题意可得到抛物线的顶点坐标(1,403),因此可设抛物线顶点式()24013=-+y a x ,抛物线与y 轴的交点为A (0,10),代入顶点式可求出抛物线,再求出抛物线与x 轴的交点,即可求出OB.解:由题意,设抛物线解析式为()24013=-+y a x ,代入A (0,10)得, 10=()240013-+a ,解得10=3-a , 所以抛物线解析式为()21040133=--+y x , 当y=0时,()210401=033--+x , 解得1=1-x ,2=3x .因为B 点在x 轴正半轴,故B 点坐标为(3,0)所以OB=3,选B.【点睛】本题考查了待定系数法求二次函数解析式,并运用抛物线的性质解决实际问题,根据题意设出合适的解析式是解题的关键.10.C【解析】【分析】因为-5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v 0.【详解】解:h=-5t 2+v 0•t ,其对称轴为t=010V , 当t=010V 时,h 最大=-5×(010V )2+v 0•010V =20, 解得:v 0=20,v 0=-20(不合题意舍去),故选C .【点睛】本题考查的是二次函数的应用,关键是利用当对称轴为t=-010V 时h 将取到最大值. 11.4根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t=1205-⨯-=4s , 故答案为4.12.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】解:令函数式y=﹣21(4)12x -+3中,y=0, 0=﹣21(4)12x -+3, 解得x 1=10,x 2=﹣2(舍去).即铅球推出的距离是10m .故答案为10.考点:二次函数的应用.13.10m 0m【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 解:令函数式21251233y x x =-++中,y=0, 即212501233x x -++=, 解得x 1=10,x 2=−2(舍去),即铅球推出的距离是10m,此时铅球行进高度是0m.故答案为10m;0m..【点睛】本题考查了二次函数的应用以及函数式中自变量与函数表达的实际意义,需要结合题意取函数值为0,进而得出自变量的值是解题关键.14.0.5或4.5 【解析】【分析】根据关系式:h=vt﹣12gt2,列出一元二次方程求解.【详解】解:根据题意,可得出的方程为:11.25=25t﹣5t2,∴t2﹣5t+2.25=0.解得:t1=0.5,t2=4.5.故答案为:0.5或4.5.【点睛】本题考查的知识点是一元二次方程的实际应用,根据所给关系式直接代入数据,解方程即可,此题属于基础题目,易于掌握.15.2.5【解析】【分析】根据题意和二次函数的性质,可以得到第二个小球抛出多少秒时,两个小球在空中的高度相同.【详解】解:∵h=30t-5t2=-5(t-3)2+45,∴该函数的对称轴是直线t=3,∵抛出小球1秒钟后再抛出同样的第二个小球,两个小球在空中的高度相同,∴第二个小球抛出3-0.5=2.5秒时,两个小球在空中的高度相同,故答案为:2.5.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.y=-132(x﹣4)2+3【解析】【分析】根据二次函数的顶点式即可求出抛物线的解析式.解:根据题意,得设抛物线对应的函数式为y =a (x ﹣4)2+3把点(0,52)代入得: 16a+3=52解得a =﹣132, ∴抛物线对应的函数式为y =﹣132(x ﹣4)2+3 故答案为:y =﹣132(x ﹣4)2+3. 【点睛】 本题考查了用待定系数法利用顶点坐标式求函数的方法,同时还考查了方程的解法等知识,难度不大.17.9.8【解析】【分析】求当t=0时函数值,即与x 轴的两个交点,两个交点之间的距离即足球在空中飞行的时间.【详解】解:当t=0时,29.80t t -+=(9.8)0t t --=解得:120;9.8t t ==∴足球在空中的飞行时间为9.8s故答案为:9.8【点睛】本题考查二次函数的实际应用,利用数形结合思想球解题,求抛物线与x 轴的交点是本题的解题关键18.45【解析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h =30t ﹣5t 2的顶点坐标即可.【详解】解:h =﹣5t 2+30t=﹣5(t 2﹣6t +9)+45=﹣5(t ﹣3)2+45,∵a =﹣5<0,∴图象的开口向下,有最大值,当t =3时,h 最大值=45.故答案为:45.【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.19.10【解析】【分析】把(0,53)代入y=a (x-4)2+3,求出a 的值即可,再求出抛物线与x 轴的交点即可解决问题;【详解】设二次函数的解析式为y=a (x-4)2+3,把(0,53)代入y=a (x-4)2+3, 解得,a=-112, 则二次函数的解析式为:y=-112(x-4)2+3=-22531312x x ++; 令y=0得到:-22531312x x ++=0, 解得,x 1=-2(舍去),x 2=10,则铅球推出的距离为10m .故答案为10.【点睛】此题考查二次函数的实际应用,熟练掌握待定系数法求函数解析式是解题关键.20.4s【解析】【分析】把二次函数的一般式写成顶点式,找出顶点坐标,即可知道多长时间后得到最高点.【详解】 解:252012h t t =++ =52-(t-4)2+41, ∵52-<0, ∴这个二次函数图象开口向下,∴当t=4时,升到最高点,∴从点火升空到引爆需要的时间为4s .故答案为:4s .【点睛】本题考查了二次函数解析式的相互转化,以及二次函数的性质,二次函数的表达式有三种形式,一般式,顶点式,交点式.要求最高(低)点,或者最大(小)值,需要先写成顶点式.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是h=t2+20t+1252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为21.(1)y =﹣112(x ﹣4)2+3;(2)能射中球门. 【解析】【分析】(1)根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;(2)求出当x =0时,抛物线的函数值,与2.44米进行比较即可判断.【详解】(1)抛物线的顶点坐标是(4,3),设抛物线的解析式是:y =a (x ﹣4)2+3,把(10,0)代入得36a+3=0,解得a =-112, 则抛物线是y =﹣112(x ﹣4)2+3; (2)当x =0时,y =-112×16+3=3﹣43=53<2.44米. 故能射中球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是关键.22.(1)213.22y x x =-++(2)水流喷出的最大高度为2米 【解析】【分析】(1)建立平面直角坐标系,待定系数法解题,(2)求出顶点坐标即可.【详解】解:(1)由题意可得,抛物线经过(0,1.5)和(3,0), 1.5930c a c =⎧⎨⨯++=⎩解得:a=-0.5,c=1.5,即函数表达式为y=21322x x -++. (2)解:221311+2.222y x x x =-++=--() ∴当x=1时,y 取得最大值,此时y=2.答:水流喷出的最大高度为2米.本题考查了二次函数的解析式的求法,顶点坐标的应用,中等难度,建立平面直角坐标系是解题关键.23.(1)能射入球门.理由见解析;(2)不能阻止.理由见解析.【解析】【分析】(1)设抛物线解析式为()20y ax bx c a =++≠,将()5212,03⎛⎫ ⎪⎝⎭,,代入求解析式,再将9x =代入即可判断;(2)根据“守门员乙站在球门正前方2m 处”可知此时x=7,将其代入解析式即可判断.【详解】解:(1)能射入球门.设抛物线解析式为()20y ax bx c a =++≠ 将()5212,03⎛⎫ ⎪⎝⎭,,代入求解可得: 抛物线解析式为2112y x x =-+ 当9x =时,2712y =- ∵27 2.4412<, ∴能射入球门.(2)不能阻止.∵守门员乙站在球门正前方2 m 处,∴7x =当7x =时,3512y =∵35 2.5212>, ∴不能阻止.【点睛】本题考查的是待定系数法求二次函数解析式,能够求出抛物线解析式是解题的关键. 24.小球运动3秒时,最大高度是45m .【分析】首先将二次函数转换成顶点式,然后即可求出自变量和函数值的最大值.【详解】2305h t t =-25(3)45t =--+06t ≤≤∴当3t =时,h 最大45=.答:小球运动3秒时,小球最高,最大高度是45m .【点睛】此题主要考查二次函数的性质,熟练掌握,即可解题.25.(1)当球运行的水平距离为2.5m 时,达到最大高度为3.5m ;(2)球出手时,他跳离地面0.2m .【解析】【分析】(1)根据待定系数法,即可求解;(2)令0x =时,则 2.25y =,进而即可求出答案.【详解】(1)依题意得:抛物线2y ax x c =++经过点(1.5,3.3)和(4,3.05),∴221.5 1.5 3.344 3.05a c a c ⎧⨯++=⎨⨯++=⎩,解得:0.22.25a c =-⎧⎨=⎩, ∴220.2 2.250.2( 2.5) 3.5y x x x =-++=--+,∴当球运行的水平距离为2.5m 时,达到最大高度为3.5m ;(2)∵0x =时, 2.25y =,∴2.250.25 1.80.2--=m ,即球出手时,他跳离地面0.2m .【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质,是解题的关键.26.(1)能,1或3;(2)20m【解析】【分析】(1)当h=15米时,15=20t-5t 2,解方程即可解答;(2)求出当2205h t t =-的最大值即可.【详解】解;(1)解方程:215205t t =-2430t t -+=,解得:121,3t t ==,需要飞行1s 或3s ;(2)222055(t 2)20h t t =-=--+,当2t =时,h 取最大值20,∴球飞行的最大高度是20m .【点睛】本题主要考查了二次函数与一元二次方程的关系,根据题意建立方程是解决问题的关键. 27.(1)球被抛出60m ,该抛物线的解析式为y =﹣190x 2+23x ;(2)球离抛出地的水平距离是10m 或50m .【解析】【分析】(1)根据已知条件设抛物线顶点式解析式即可求解;(2)根据(1)中求得的解析式,把球的高度为509m 代入,即可求出球离抛出地的水平距离.【详解】解:(1)根据题意,得设抛物线的解析式为2(30)10y a x =-+,把(0,0)代入得190a =-.所以抛物线解析式为22112(30)1090903y x x x =--+=+. 当0y =时,10x =,260x =.或者:因为抛物线对称轴为30x =,所以抛物线与x 轴的交点为(0,0),(60,0)答:球被抛出60m .该抛物线的解析式为212903y x x =-+. (2)当509y =时,2501(30)10990x =--+,解得150x =,210x =. 答:球离抛出地的水平距离是10m 或50m .【点睛】本题考查了二次函数的应用,要恰当地把实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决问题.28.y = -0.4x 2+4【解析】【分析】根据题意设抛物线的表达式为y=ax 2+4 (0a ≠),代入(-2,2.4),即可求出a .【详解】解:设y=ax 2+4 (0a ≠)∵ 图象经过(-2,2.4)∴ 4a+4=2.4a= -0.4∴ 表达式为y= -0.4x 2+4【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.29.(Ⅰ) y =﹣5x 2+20x ;(Ⅱ)小球的飞行高度不能达到22m ,理由见解析.【解析】【分析】(Ⅰ)设y 与x 之间的函数关系式为y =ax 2+bx(a≠0),然后再根据表格代入x =1时,y =15;x =2时,y =20可得关于a 、b 的方程组,再解即可得到a 、b 的值,进而可得函数解析式; (Ⅱ)把函数解析式写成顶点式的形式可得小球飞行的最大高度,进而可得答案.【详解】(Ⅰ)∵x=0时,y=0,∴设y与x之间的函数关系式为y=ax2+bx(a≠0),∵x=1时,y=15;x=2时,y=20,∴15 4220 a ba b+=⎧⎨+=⎩,解得520ab=-⎧⎨=⎩,∴y与x之间的函数关系式为y=﹣5x2+20x;(Ⅱ)由(Ⅰ)得:y=﹣5x2+20x=﹣5(x﹣2)2+20,∴小球飞行的最大高度为20m,∵22>20,∴小球的飞行高度不能达到22m.【点睛】本题主要考查了二次函数的实际应用,熟练掌握相关方法是解题关键.30.(1)h=﹣5t2+20t;(2)小球飞行3s时的高度为15米;(3)小球的飞行高度不能达到22m.【解析】【分析】(1)设h与t之间的函数关系式为h=at2+bt(a≠0),然后再根据表格代入t=1时,h=15;t=2时,h=20可得关于a、b的方程组,再解即可得到a、b的值,进而可得函数解析式;(2)根据函数解析式,代入t=3可得h的值;(3)把函数解析式写成顶点式的形式可得小球飞行的最大高度,进而可得答案.【详解】解:(1)∵t=0时,h=0,∴设h与t之间的函数关系式为h=at2+bt(a≠0),∵t=1时,h=15;t=2时,h=20,∴a15{4220ba b+=+=,解得5 {20ab=-=,∴h与t之间的函数关系式为h=﹣5t2+20t;(2)小球飞行3秒时,t=3(s),此时h=﹣5×32+20×3=15(m).答:小球飞行3s时的高度为15米;(3)∵h=﹣5t2+20t=﹣5(t﹣2)2+20,∴小球飞行的最大高度为20m,∵22>20,∴小球的飞行高度不能达到22m.【点睛】此题主要考查了二次函数的应用,关键是掌握待定系数法求函数解析式,掌握配方法化顶点解析式.。

初中数学二次函数应用题型分类——抛物线形物体问题2(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题2(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题2(附答案)1.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1m B.2.2m C.2.3m D.2.25m2.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.10s3.某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面403m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m4.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米B.1130米C.1330米D.0.4米5.如图,某幢建筑物从2.25米高的窗口A用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A .2.5米B .3米C .3.5米D .4米6.广场上水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是()236042y x x x =-+≤≤,那么水珠的高度达到最大时,水珠与喷头的水平距离是( )A .1米B .2米C .5米D .6米 7.同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A 下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且a =﹣118.洗手液瓶子的截面图下部分是矩形CGHD .小王同学测得:洗手液瓶子的底面直径GH =12cm ,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q 到直线DH 的水平距离为3cm ,若学校组织学生去南京进行研学实践活动,若小王不去接,则洗手液落在台面的位置距DH 的水平距离是( )cm .A .3B .2C .3D .2 8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米9.某公园有一个圆形喷水池,喷出的水流的高度h (单位:m)与水流运动时间t (单位:s)之间的关系式为2305h t t =-,那么水流从喷出至回落到地面所需要的时间是( ) A .6 s B .4 s C .3 s D .2 s10.某公园一喷水池喷水时水流的路线呈抛物线(如图).若喷水时水流的高度y (m )与水平距离x (m )之间的函数关系式是y=﹣x 2+2x+1.25,则水池在喷水过程中水流的最大高度为( )A .1.25米B .2.25米C .2.5米D .3米11.市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x 轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分.则水喷出的最大高度是____米.12.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,以水平方向为x 轴,建立平面直角坐标系,若选取A 点为坐标原点时的抛物线的表达式为()()2313034y x x =--+≤≤,则选取点D 为坐标原点时的抛物线表达式为______,水管AB 的长为______m .13.某市民广场有一个直径16米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,水柱离中心3米处达最高5米,如图所示建立直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的他站立时必须在离水池中心O________米以内.14.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h (单位:m )与水流喷出时间t (单位:s )之间的关系式为2305h t t =-,那么水流从喷出至回落到水池所需要的时间是__________s .15.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA =1.25m ,A 处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O ,直径为线段CB .建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x 轴的距离为2.25m ,到y 轴的距离为1m ,则水落地后形成的圆的直径CB =_____m .16.如图,公园里喷水池中的水柱的形状可以看成是抛物线,小明想知道水柱的最大高度,于是画出示意图,并测出了一些数据:水柱上的点C,D 到地面的距离都是1.6米,即 1.6BC OD ==米,1AB =米,5AO =米,则水柱的最大高度是______米.17.消防员的水枪喷出的水流可以用抛物线212y x bx =-+来描述,已知水流的最大高度为20m ,则b 的值为________. 18.某体育公园的圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流(如图②),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y =-x 2+4x +94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.19.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线是抛物线y =﹣x 2+4x (单位:米)的一部分.则水喷出的最大高度是_____米.20.两幢大楼的部分截面及相关数据如图,小明在甲楼A 处透过窗户E 发现乙楼F 处出现火灾,此时A ,E ,F 在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D 处喷出,水流正好经过E ,F . 若点B 和点E 、点C 和F 的离地高度分别相同,现消防员将水流抛物线向上平移0.4m ,再向左后退了____m ,恰好把水喷到F 处进行灭火.21.要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷头,使喷出的抛物线形水柱在与水池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离中心3m.(1)在给定的坐标系中画出示意图;(2)求出水管的长度.22.如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度v x和纵向初始速度v y,θ是水龙头的仰角,且v02=v x2+v y2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v0米/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:M与A的高度之差d(米)与喷出时间t(秒)的关系为d=v y t-5t2;M与A 的水平距离为v x t米.已知该水流的初始速度v0为15米/秒,水龙头的仰角θ为53°.(1)求水流的横向初始速度v x和纵向初始速度v y;(2)用含t的代数式表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x 的取值范围);(3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)23.如图,斜坡AB长10米,按图中的直角坐标系可用y=3+5表示,点A,B分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y =13-x 2+bx +c 表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB 的最大高度;(3)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树? 24.游乐园新建的一种新型水上滑道如图,其中线段PA 表示距离水面(x 轴)高度为5m 的平台(点P 在y 轴上).滑道AB 可以看作反比例函数图象的一部分,滑道BCD 可以看作是二次函数图象的一部分,两滑道的连接点B 为二次函数BCD 的顶点,且点B 到水面的距离2BE m =,点B 到y 轴的距离是5m.当小明从上而下滑到点C 时,与水面的距离3m 2CG =,与点B 的水平距离2m CF =.(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道ABCD 的水平距离;(3)若小明站在平台上相距y 轴1m 的点M 处,用水枪朝正前方向下“扫射”,水枪出水口N 距离平台3m 2,喷出的水流成抛物线形,设这条抛物线的二次项系数为p ,若水流最终落在滑道BCD 上(包括B 、D 两点),直接写出p 的取值范围.25.如图,在喷水池的中心A 处竖直安装一个水管AB .水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C .高度为3m .水柱落地点D 离池中心A 处3m .建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB 的长.26.某小区有一半径为8m 的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线.在距水池中心3m 处达到最高,高度为5m ,且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合.以水平方向为x 轴,喷水池中心为原点建立如图所示的平面直角坐标系.(1)求水柱所在抛物线对应的函数关系式;(2)王师傅在喷水池维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8m 的王师傅站立时必须在离水池中心多少米以内?27.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子OA ,点O 恰好在水面中心,安装在柱子顶端A 处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任意平面上,水流喷出的高度()y m 与水平距离()x m 之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为2y x 2x 3=-++.请完成下列问题:(1)将2y x 2x 3=-++化为()2y a x h k =-+的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米? 28.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64 m 的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3 m 处达到最高,高度为1 m .(1)求喷灌出的圆形区域的半径;(2)在边长为16 m 的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)29.某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈抛物线状,喷出的水流高度y (m )与喷出水流喷嘴的水平距离x (m )之间满足2122y x x =-+ (l )喷嘴能喷出水流的最大高度是多少?(2)喷嘴喷出水流的最远距离为多少?30.图1是一个倾斜角为α的斜坡的横截面,1tan 2α=.斜坡顶端B 与地面的距离BC 为3米.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A喷出的水珠在空中走过的曲线可以看作抛物线的一部分.设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),y 与x 之间近似满足函数关系2y ax bx =+(a ,b 是常数,0a ≠),图2记录了x 与y 的相关数据.(1)求y关于x的函数关系式;(2)斜坡上有一棵高1.8米的树,它与喷头A的水平距离为2米,通过计算判断从A 喷出的水珠能否越过这棵树.参考答案1.D【解析】【分析】设抛物线的解析式为y= a(x-1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【详解】解:由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x-1)2+3(0≤x≤3),代入(3,0)得,0=a×(3-1)2+3,求得:a=34.将a值代入得到抛物线的解析式为:y=-34(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.则水管长为2.25m,故选:D.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.2.C【解析】【分析】将h关于t的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.【详解】解:∵h=﹣2t2+20t+1=﹣2(t﹣5)2+51,∴当t=5时,礼炮升到最高点.故选:C.【点睛】本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.3.B【解析】【分析】以OB为x轴,OA为y轴建立平面直角坐标系,A点坐标为(0,10),M点的坐标为(1,403),设出抛物线的解析式,代入解答球的函数解析式,进一步求得问题的解.【详解】解:设抛物线的解析式为y=a(x﹣1)2+403,把点A(0,10)代入a(x﹣1)2+403,得a(0﹣1)2+403=10,解得a=﹣103,因此抛物线解析式为y=﹣103(x﹣1)2+403,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.4.B【解析】【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=54,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=54,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴9305240.8a b cbac++=⎧⎪⎪-=⎨⎪=⎪⎩,解得:8154345abc⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以解析式为:y=815-x2+43x+45,当x=2.75时,y=13 30,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣1330=1130,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键5.B【解析】【分析】由题意可以知道M(1,3),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+3,把A(0,2.25)代入,得2.25=a+3,a=-0.75.∴抛物线的解析式为:y=-0.75(x-1)2+3.当y=0时,0=-0.75(x-1)2+3,解得:x1=-1(舍去),x2=3.OB=3米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.6.B【解析】【分析】先把函数关系式配方,即可求出函数取最大值时自变量的值.【详解】解:∵y=-32x2+6x=-32(x2-4x)=-32[(x-2)2-4]=-32(x-2)2+6,∴当x=2时,y有最大值,∴水珠的高度达到最大时,水珠与喷头的水平距离是2.故选B.【点睛】本题考查了二次函数的实际应用,关键是把二次函数变形,求出当函数取最大值时自变量的值,此题为数学建模题,借助二次函数解决实际问题.7.B【解析】【分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【详解】解:如图:根据题意,得Q (9,15.5),B (6,16),OH =6,设抛物线解析式为y =﹣118x 2+bx +c , 12×81915.5,,183114.×36616,18b c b c b c ⎧-++=⎧⎪=⎪⎪⎨⎨⎪⎪=-++=⎩⎪⎩解得, 所以抛物线解析式为y =﹣118x 2+23x +14. 当y =0时,即0=﹣118x 2+23x +14, 解得:x =2(负值舍去),又OH=6, 所以洗手液落在台面的位置距DH 的水平距离是2cm .故选:B .【点睛】本题考查了二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.8.A【解析】)∵y=-x 2+4x=2x-24-+(),∴当x=2时,y 有最大值4,∴最大高度为4m9.A【解析】由于水流从抛出至回落到地面时高度h 为0,把h =0代入h =30t -5t 2即可求出t ,也就求出了水流从抛出至回落到地面所需要的时间.解:水流从抛出至回落到地面时高度h 为0,把h =0代入h =30t −5t 2得:5t 2−30t =0,解得:t 1=0(舍去),t 2=6.故水流从抛出至回落到地面所需要的时间6s.故选A.10.B【解析】试题分析:直接利用二次函数解析式得出水流离地面的最大高度.解:∵y=﹣x 2+2x+1.25=﹣(x ﹣1)2+2.25,∴水池在喷水过程中水流的最大高度为2.25米.故选B .考点:二次函数的应用.11.4【解析】【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线24y x x =-+的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【详解】水在空中划出的曲线是抛物线24y x x =-+, ∴喷水的最大高度就是水在空中划出的抛物线24y x x =-+的顶点坐标的纵坐标, ∴()22424y x x x =-+=--+,∴顶点坐标为:()2,4, ∴喷水的最大高度为4米.故答案为:4.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.12.()()2323304y x x =-++-≤≤ 2.25. 【解析】【分析】直接利用二次函数的平移规律进而得出答案,再由题意可得,3x =-时得到的y 值即为水管的长.【详解】以喷水池中心A 为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系. 抛物线的解析式为:()23134y x =--+, 当选取点D 为坐标原点时,相当于将原图象向左平移3个单位, 故平移后的抛物线表达式为:()()2323304y x x =-++-≤≤; 令3x =-,则33 2.254y =-+=. 故水管AB 的长为2.25m . 故答案为:()()2323304y x x =-++-≤≤;2.25. 【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.13.7【解析】【分析】根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a 值,求出函数解析式,利用二次函数图象上点的坐标特征,求出当y=1.8时x 的值,由此即可得出结论;【详解】设水柱所在抛物线(第一象限部分)的函数表达式为y=a (x -3)2+5(a≠0),将(8,0)代入y=a (x -3)2+5,得:25a+5=0,解得:a=-15,∴水柱所在抛物线(第一象限部分)的函数表达式为y=-15(x-3)2+5(0<x<8).当y=1.8时,有-15(x-3)2+5=1.8,解得:x1=-1(舍去),x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.故答案为:7【点睛】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:根据点的坐标,用利用待定系数法求出二次函数表达式并利用二次函数图象上点的坐标特征求出当y=1.8时x的值.14.6【解析】【分析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.【详解】水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2得:5t2-30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s.故答案为:6【点睛】本题考查的是二次函数在实际生活中的应用,关键是正确理解题意,利用函数解决问题,结合实际判断所得出的解.15.5【解析】【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.25,将A(0,1.25)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B 坐标,从而可得CB 的长.【详解】解:设y 轴右侧的抛物线解析式为:y =a (x ﹣1)2+2.25∵点A (0,1.25)在抛物线上∴1.25=a (0﹣1)2+2.25解得:a =﹣1∴抛物线的解析式为:y =﹣(x ﹣1)2+2.25令y =0得:0=﹣(x ﹣1)2+2.25解得:x =2.5或x =﹣0.5(舍去)∴点B 坐标为(﹣2.5,0)∴OB =OC =2.5∴CB =5故答案为:5.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.16.7225【解析】【分析】设解析式为2y ax bx c =++,由题意可知点D 为(0,1.6),点C 为(4,1.6),点A 为(5,0),代入后得到三元一次方程组,解方程组即可求出抛物线解析式,再求顶点坐标即可.【详解】解:设解析式为2y ax bx c =++,由题意可知点D 为(0,1.6),点C 为(4,1.6),点A 为(5,0), ∴ 1.6164 1.62550c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得825322585a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩, ∴解析式为:2832825255y x x =-++, ∴当3225282()25x =-=⨯-时,y 有最大值为7225. ∴水柱的最大高度是7225米. 【点睛】此题主要考查了二次函数的应用,用待定系数法求出二次函数的解析式是解题关键. 17.±【解析】【分析】利用二次函数的性质列出关于b 的方程,求出方程的解即可得到b 的值.【详解】解:抛物线y =12-x 2+bx , 根据题意得: 2b a - =122b -⎛⎫⨯- ⎪⎝⎭=b ,当x =b 时,取得最大值为20,21202b b b -+=, 12b 2=20, b =±. 故答案为:b =±. 【点睛】本题主要考查了二次函数的应用,解决本题的关键是要熟练掌握二次函数的性质. 18.92【解析】【详解】当y=0时,即-x2+4x+94=0,解得x1=92,x2=-12(舍去).答:水池的半径至少92米时,才能使喷出的水流不落在水池外.故答案是:92.19.4米【解析】【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选A.【点睛】考点:二次函数的应用.理解二次函数性质是关键.2010【解析】设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,∴k=-0.6,∴y =-0.6x +21.2. 把y =6.2代入得, -0.6x +21.2=6.2, ∴x =25, ∴F (25,6.2).设抛物线解析式为:y=ax 2+bx +1.2, 把E (20,9.2), F (25,6.2)代入得,40020 1.29.262525 1.2 6.2a b a b ++=⎧⎨++=⎩解之得0.041.2a b =-⎧⎨=⎩ , ∴y =-0.04x 2+1.2x +1.2,设向上平移0.4m ,向左后退了h m, 恰好把水喷到F 处进行灭火由题意得 y =-0.04(x +h )2+1.2(x+h )+1.2+0.4, 把F (25,6.2)代入得,6.2=-0.04×(25+h )2+1.2(25+h )+1.2+0.4, 整理得 h 2+20h -10=0, 解之得110x =-,210x =-(舍去).∴向后退了10)m点睛:本题考查了二次函数和一次函数的实际应用,设直线AE 的解析式为:y =kx +21.2. 把E (20,9.2)代入求出直线解析式,从而求出点F 的坐标.把E (20,9.2), F (25,6.2)代入y=ax 2+bx +1.2求出二次函数解析式.设向左平移了h m ,表示出平移后的解析式,把点F 的坐标代入可求出k 的值.21.(1)详见解析;(2)水管长为2.25m . 【解析】 【分析】(1)以池中心为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系; (2)设抛物线的解析式为y =a (x ﹣1)2+3(0≤x ≤3),将(3,0)代入求得a 值,则x =0时得的y 值即为水管的长. 【详解】解:(1)建立以池中心为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系;(2)由于在距池中心的水平距离为1m 时达到最高,高度为3m , 则设抛物线的解析式为: y =a (x ﹣1)2+3(0≤x ≤3), 代入(3,0)求得:a =﹣34. 将a 值代入得到抛物线的解析式为: y =﹣34(x ﹣1)2+3(0≤x ≤3), 令x =0,则y =94=2.25. 故水管长为2.25m .【点睛】此题主要考查二次函数的应用,解题的关键是根据图形建立合适的直角坐标系. 22.(1)水流的横向初始速度v x 是9米/秒,纵向初始速度v y 是12米/秒;(2)y=-2581x +43x+15;(3)水流在山坡上的落点C 离喷射点A 的水平距离是27米,需要把喷射点A 沿坡面AB 方向移动610 【解析】【分析】(1)根据题意利用θ的正弦和余弦定义可得结论;(2)由(1)的表示出v x 表示出x ,OA 已知,利用y=d+OA ,代入OA 的值和d 与t 的函数关系式,可以得解;(3)先求得点A 和点B 的坐标,进而写出其直线解析式,再将其与(2)中抛物线解析式联立,从而求得落点C 的坐标,再利用平移知识及勾股定理可以求解. 【详解】解:(1)∵v 0为15米/秒,水龙头的仰角θ为53°,∴cosθ=0xv v ,sinθ=0y v v ,∴v x =15cos53°=15×35=9,v y =15sin53°=15×45=12;答:水流的横向初始速度v x 是9米/秒,纵向初始速度v y 是12米/秒; (2)x=v x t=9t , ∴t=9x , 又M 与A 的高度之差d (米)与喷出时间t (秒)的关系为d=v y t-5t 2∴y=d+OA=12t-5t 2+15=-5×2()9x +12×9x +15=-2581x +43x+15;∴y 与x 的关系式为:y=-2581x +43x+15.(3)∵坡顶的铅直高度OA 为15米,山坡的坡比为13,∴OB=45米,点A (0,15)点B (45,0)∴直线AB 的解析式为:y=13x -+15,将其与抛物线解析式联立得:254158131153y x x y x ⎧=-++⎪⎪⎨⎪=-+⎪⎩, 解得015x y =⎧⎨=⎩(舍)或276x y =⎧⎨=⎩,∴水流在山坡上的落点C 坐标为(27,6),喷射点A 沿坡面AB 方向移动的距离等于BC 的距离,而答:水流在山坡上的落点C 离喷射点A 的水平距离是27米,需要把喷射点A 沿坡面AB 方向移动 【点睛】本题考查了二次函数的应用以及坡度问题和解直角三角形的应用等知识,正确构造出直角三角形是解题关键. 23.(1)y =-13x 2+3x +5;(2)当x=2时,水柱离坡面的距离最大,最大距离为254;(3)水柱能越过树,理由见解析 【解析】 【分析】(1)根据题意先求出A,B 的坐标,再把其代入解析式即可 (2)由(1)即可解答(3)过点C 作CD ⊥OA 于点D ,求出ODOD 代入解析式即可 【详解】(1)∵AB =10、∠OAB =30°, ∴OB =12AB =5、OA则A (0)、B (0,5),将A 、B 坐标代入y =-13x 2+bx +c,得:175035c c ⎧-⨯++=⎪⎨⎪=⎩,解得:5b c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为y =-13x 2+5; (2)水柱离坡面的距离d =-13x 2+3x +5-(-3x +5)=-13x 2+533x =-13(x 2-53x ) =-13(x -532)2+254, ∴当x =532时,水柱离坡面的距离最大,最大距离为254; (3)如图,过点C 作CD ⊥OA 于点D ,∵AC =2、∠OAB =30°, ∴CD =1、AD 3 则OD 3, 当x 3时,y =-13×(32+33×3>1+3.5, 所以水柱能越过树. 【点睛】此题考查二次函数的应用,解题关键在于求出A,B 的坐标 24.(1)10y x=,25x ≤≤;(2)7m ;(3)91332128p -≤≤-. 【解析】 【分析】(1)在题中,BE=2,B 到y 轴的距离是5,即反比例函数图象上一点的横坐标和纵坐标都已告知,则可求出比例系数k ;(2)根据B ,C 的坐标求出二次函数解析式,得到点D 坐标,即OD 长度再减去AP 长度,可得滑道ABCD 的水平距离;(3)由题意可知点N 为抛物线的顶点,设水流所成抛物线的表达式为213(1)2y p x =-+,通过计算水流分别落到点B 和点D 可以得出p 的取值范围.。

抛物线的定义及标准方程

抛物线的定义及标准方程

(二)四种抛物线的标准方程
图形 标准方程 焦点坐标 准线方程
y2 2 px
p 0
p ,0 2
x p 2
y2 2 px
p 0
p ,0 2
x p 2

x2 2 py 0, p
p 0 2
y p 2
x2 2 py 0, p
p 0 2
y p 2
(三)区别与联系
1、四种形式标准方程及图像的共同特征
a
其中 2 p 1
a
①当a>0时,
p 2
=
1 4a
,抛物线的开口向上
焦点坐标是(0 , )41a ,准线方程是: y=
1 4a
②当a<0时, p
2
=
1 ,抛物线的开口向下
4a
焦点坐标是(0 ,4)1a ,准线方程是: y=
1 4a
作业
P73 A组 :1,2(必做)
补充:求经过点p(4,-2)的抛物线 的标准方程。
y 2 2 px y2 2 px x2 2 py x2 2 py
p 0 p 0 p 0 p 0
(1)、二次项系数都化成了_______ 1
(2)、四种形式的方程一次项的系数都含2p
(3)、四种抛物线都过____点 O;焦点与准线分别位于此点的两
侧,且离此点的距离均为____
p
2
二、四种形式标准方程及图像的区别
经反射聚集到焦点处。已知接收天线的口径为 4.8m,深度为0.5m,试建立适当的坐标系,求抛物 线的标准方程和焦点坐标。
小结
1.理解抛物线的定义, 2.掌握抛物线的标准方程的四种形式以及P的 几何意义.
3.注重数形结合、分类讨论思想的应用

抛物线知识点和题型分类讲解

抛物线知识点和题型分类讲解

抛物线知识点和题型分类讲解抛物线知识点和题型分类讲解抛物线的定义:抛物线是平面内满足以下三个条件的点的轨迹:1.在平面内;2.动点到定点F距离与到定直线l的距离相等;3.定点不在定直线上。

当定点F在定直线l上时,动点的轨迹是过定点F且与直线l垂直的直线。

抛物线的标准方程和几何性质:标准方程:1.y^2 = 2px (p>0)2.y^2 = -2px (p>0)3.x^2 = 2py (p>0)4.x^2 = -2py (p>0)p的几何意义:焦点F到准线l的距离。

图形:抛物线是关于对称轴对称的。

顶点:抛物线的顶点是对称轴与抛物线的交点。

对称轴:与抛物线垂直且通过顶点的直线。

焦点:抛物线的定点F。

离心率:离心率e = PF/d,其中PF为焦点到抛物线上一点P的距离,d为抛物线的准线到顶点的距离。

准线方程:与抛物线垂直且通过焦点F的直线。

范围:抛物线的定义所决定的范围。

开口方向:抛物线开口的方向由p的正负号决定。

焦半径:焦半径是从焦点到抛物线上一点P的距离。

自测:1.抛物线的顶点在原点,准线方程为x = -2,则抛物线的方程是y^2 = 8x。

2.已知d为抛物线y = 2px^2(p>0)的焦点到准线的距离,则pd等于4.3.抛物线的焦点为椭圆x^2/9 + y^2/4 = 1的左焦点,顶点为椭圆中心,则抛物线方程为y^2 = -45x。

4.点(3,1)是抛物线y^2 = 2px的一条弦的中心,且这条弦所在直线的斜率为2,则p = 1/2.1.解析:如图,设点P的坐标为(x,y),则点P到直线y=-1的距离为|y-(-1)|=|y+1|,点P到点(0,3)的距离为√[(x-0)²+(y-3)²],由题意得|y+1|+2=√[(x-0)²+(y-3)²],两边平方得y²+2y+1+4=x²+y²-6y+9,化简得x²=2y-6,即为点P的轨迹方程.2.解析:如图,设点P的坐标为(x,y),则有|PB|+|PF|=√[(x-3)²+(y-2)²]+√[(x-1)²+y²],由抛物线的定义可知点P 到焦点F的距离等于点P到直线x=-1的距离,设点P到直线x=-1的距离为d,则有d=|x+1|,又因为点P在抛物线上,所以有y²=4x,代入d=|x+1|,得y²=4|x+1|,即为点P 的轨迹方程.3.删除此段落,因为没有明显的问题或需要改写的地方.4.解析:如图,设点P的坐标为(x,y),则有y²=4x,点A的坐标为(1,1),抛物线的焦点为F(2,0),则点P到抛物线的准线x=-1的距离为|y|,点P到焦点F的距离为√[(x-2)²+y²],由题意得|y|+√[(x-2)²+y²]=|y-1|,解得x²=y,即为点P的轨迹方程.5.解析:如图,设点P的坐标为(x,y),则有x²=4y,点A的坐标为(1,1),抛物线的焦点为F(1,0),则点P到焦点F的距离为√[(x-1)²+y²],点P到点A的距离为√[(x-1)²+(y-1)²],由题意得√[(x-1)²+y²]+√[(x-1)²+(y-1)²]=√[(x-1)²+y²]+|y|,解得y=x²/4,即为点P的轨迹方程.1) 由题意可知,点M到焦点的距离为5,横坐标为3,因此焦点坐标为(4,0)。

初中数学二次函数应用题型分类——抛物线形物体问题8(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题8(附答案)
A.0.71sB.0.70sC.0.63sD.0.36s
4.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)间的关系为 ,由此可知铅球推出的距离是()
A.2mB.8mC.10mD.12
5.如图,小明在某次投篮中,球的运动路线是抛物线y=﹣0.2x2+3.5的一部分,若命中篮圈中心,则他与篮圈底的距离l是()
13.体育测试时,初三一名学生推铅球,已知铅球所经过的路线为抛物线 的一部分,该同学的成绩是________.
14.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣ x2+ x+ ,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.
15.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是 ,则小球从抛出到落地所用的时间是______ s.
(2)网球在斜坡的落点 的垂直高度.
参考答案
1.B
【解析】
【分析】
礼炮到最高点爆炸,那么所需时间为t= ,代入相应数据才能正确解答.
【详解】
解:当礼炮到达最高点时,即为抛物线的顶点,此时t= ,故选:B.
【点睛】
考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.
2.A
(1)小球飞行时间是多少时,小球最高?最大高度是多少?
(2)小球飞行时间t在什么范围时,飞行高度不低于15m?
26.以40m/s的速度将小球沿与地面成约45°角的方向击出,小球的飞行路线是一条抛物线,我们不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.
3.D

初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)1.一同学推铅球,铅球高度y(m)关于时间x(s)的函数表达式为y=ax 2+bx(a≠0).若铅球在第7秒与第14秒时的高度相等,则在第m 秒时铅球最高,则m 的值为( ) A .7B .8C .10.5D .212.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .篮圈中心的坐标是()4,3.05B .此抛物线的解析式是21 3.55y x =-+ C .此抛物线的顶点坐标是()3.5,0 D .篮球出手时离地面的高度是2m3.如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m4.一学生推铅球,铅球行进的高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,则学生推铅球的距离为( ) A .35m B .3mC .10mD .12m飞行的高度()h m 与发球后球飞行的时间()t s 满足关系式22 1.5h t t =-++,则该运动员发球后1s 时,羽毛球飞行的高度为( ) A .1.5mB .2mC .2.5mD .3m6.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y =-112x 2+23x +53.则该运动员此次掷铅球的成绩是( ) A .6 mB .12 mC .8 mD .10 m7.从地面竖直向上先后抛出两个小球,小球的高度h (单位:)m 与小球运动时间t (单位:)s 之间的函数关系式为240(3)409h t =--+,若后抛出的小球经过2.5s 比先抛出的小球高103m ,则抛出两个小球的间隔时间是( )s A .1 B .1.5 C .2 D .2.58.一个运动员打高尔夫球,若球的飞行高度y (m )与水平距离x (m )之间的函数表达式为:y 150=-(x ﹣25)2+12,则高尔夫球在飞行过程中的最大高度为( )m . A .12B .25C .13D .149.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定10.如图,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y =﹣22531312x x ++,则此运动员把铅球推出多远( )11.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是______m .12.如图,是一学生掷铅球时,铅球行进高度()y cm 的函数图象,点B 为抛物线的最高点,则该同学的投掷成绩为________米.13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则他将铅球推出的距离是__________m .14.校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度()y m 与水平距离(m)x 之间的函数关系式为21251233y x x =-++,小明这次试掷的成绩是__________.15.从地面竖直向上抛出一小球,小球离地面的高度h (米)与小球运动时间t (秒)之间关系是h=30t ﹣5t 2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是______米. 16.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管的长为_____.17.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2510042y x x x =-+≤≤.水珠可以达到的最大高度是________(米).18.某运动员对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该运动员此次实心球训练的成绩为____米.19.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y =﹣5x 2+20x ,在飞行过程中,当小球的行高度为15m 时,则飞行时间是_____.20.如图,铅球运动员掷铅球的高度y (m )与水平距离x (m )之间的函数关系式是y=﹣112x 2+23x+53,则该运动员此次掷铅球的成绩是_____ m .21.一个斜抛物体的水平运动距离为x (m ),对应的高度记为h (m ),且满足h =ax 2+bx ﹣2a (其中a≠0).已知当x =0时,h =2;当x =10时,h =2. (1)求h 关于x 的函数表达式;(2)求斜抛物体的最大高度和达到最大高度时的水平距离.22.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是53m . (1)求羽毛球经过的路线对应的函数关系式; (2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为3124m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.23.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示. ()1求演员弹跳离地面的最大高度;()2已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.24.小明跳起投篮,球出手时离地面m ,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m 处达到最高度4m .已知篮筐中心距地面3m ,与球出手时的水平距离为8m ,建立如图所示的平面直角坐标系. (1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?25.在一次篮球比赛中,如图队员甲正在投篮.已知球出手时离地面209m ,与篮圈中心的水平距离为7 m ,球出手后水平距离为4 m 时达到最大高度4 m ,设篮球运行轨迹为抛物线,篮圈距地面3 m.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,对方队员乙在甲面前1 m 处跳起盖帽拦截,已知乙的最大摸高为3.1 m ,那么他能否获得成功?26.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓球与端点A的水平距离为x(米),距桌面的高度为y (米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)0 0.16 0.2 0.4 0.6 0.64 0.8 …x(米)0 0.4 0.5 1 1.5 1.6 2 …y(米)0.25 0.378 0.4 0.45 0.4 0.378 0.25 …(1)如果y是t的函数,①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;②当t为何值时,乒乓球达到最大高度?(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?27.在一场篮球比赛中,一名球员在关键时刻投出一球,已知球出手时离地面高2米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,已知篮球运行的轨迹为抛物线,篮圈中心距离地面3.19米.(1)以地面为x轴,篮球出手时垂直地面所在直线为y轴建立平面直角坐标系,求篮球运行的抛物线轨迹的解析式;(2)通过计算,判断这个球员能否投中?28.如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.()1在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)()2守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?29.初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?30.如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.(1)a=,c=;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?参考答案1.C 【解析】 【分析】由由第7秒和第14秒的高度相同,知道这两个点是关于抛物线的对称轴对称的,从而求出抛物线的对称轴,知道顶点的横坐标,得到答案. 【详解】解:由第7秒和第14秒的高度相同,知道抛物线的对称轴为7142122x +==, 所以顶点的横坐标为212,即函数取得最大值,铅球最高时的时间,所以10.5m =. 故选C . 【点睛】本题考查的是抛物线的性质,掌握抛物线上纵坐标相等的两个点是关于抛物线对称轴对称的是关键. 2.A 【解析】 【分析】设抛物线的表达式为y=ax 2+3.5,依题意可知图象经过的坐标,由此可得a 的值,可判断A ;根据函数图象可判断B 、C ;设这次跳投时,球出手处离地面hm ,因为求得21 3.55y x =-+,当x=-2,5时,即可判断D . 【详解】解:A 、∵抛物线的顶点坐标为(0,3.5), ∴可设抛物线的函数关系式为y=ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5, ∴a=15-, ∴21 3.55y x =-+,故本选项正确; B 、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误; C 、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误; D 、设这次跳投时,球出手处离地面hm ,因为(1)中求得y=-0.2x2+3.5,∴当x=-2.5时,h=-0.2×(-2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m,故本选项错误.故选:A.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.3.C【解析】【分析】直接利用h=15以及结合配方法求出二次函数最值分别分析得出答案.【详解】A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选C.此题主要考查了二次函数的应用,灵活运用所学知识是解题关键.4.C【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 令函数式21251233y x x =-++中,y =0, 即21251233x x -++=0, 解得1210,2x x ==- (舍去),即铅球推出的距离是10m.故选C.【点睛】考查二次函数的应用以及函数式中自变量与函数表达式的实际意义,需要结合题意. 5.C【解析】【分析】根据函数关系式,求出t=1时的h 的值即可.【详解】22 1.5h t t =-++∴t=1s 时,h=-1+2+1.5=2.5故选C.【点睛】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.6.D【解析】【分析】依题意,该二次函数与x 轴的交点的x 值为所求.即在抛物线解析式中.令y=0,求x 的正【详解】把y=0代入y=-112x 2+23x+53得: -112x 2+23x+=0, 解之得:x 1=10,x 2=-2.又x >0,解得x=10.故选D .7.B【解析】【分析】把t=2.5代入240(3)409h t =--+,求得3509h =,当35010320939h =-=时,解方程即可得出结论.【详解】解:把t=2.5代入240(3)409h t =--+,得3509h =, 当35010320939h =-=时,即240320(3)4099t --+=, 解得 t=4或t=-2(不合题意,舍去)∴抛出两个小球间隔的时间是4-2.5=1.5.故选B.【点睛】本题主要考查了二次函数的应用,正确理解题意是解题的关键.8.A【解析】【分析】直接根据二次函数的图象及性质即可得出答案.【详解】解:∵y 150=-(x ﹣25)2+12, 顶点坐标为(25,12), ∵150-<0, ∴当x =25时,y 有最大值,最大值为12.故选:A .【点睛】本题主要考查二次函数的最大值,掌握二次函数的图象和性质是解题的关键.9.C【解析】分析:(1)将点A (0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x =9和x =18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A (0,2)代入2(6) 2.6y a x =-+,得:36a +2.6=2, 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x =9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网, 当x =18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.10.B【解析】【分析】令y =﹣22531312x x ++=0,解得符合题意的x 值,则该值为此运动员把铅球推出的距离,据此可解.【详解】解:令y =﹣22531312x x ++=0 则:x 2﹣8x ﹣20=0∴(x+2)(x ﹣10)=0∴x 1=﹣2(舍),x 2=10由题意可知当x =10时,符合题意故选:B.【点睛】本题考查二次函数的实际应用,利用数形结合思想解题是本题的关键.11.10【解析】【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令0y =,求出x 的值,x 的正值即为所求.【详解】 在函数式21(4)312y x =--+中,令0y =,得 21(4)3012x --+=,解得110x =,22x =-(舍去), ∴铅球推出的距离是10m.【点睛】 本题是二次函数的实际应用题,需要注意的是21(4)312y x =--+中3代表的含义是铅球在起始位置距离地面的高度;当0y =时,x 的正值代表的是铅球最终离原点的距离.12.(4+【解析】【分析】根据函数的顶点B 的坐标设解析式为y =a (x −4)2+3,把(0,2)代入得出2=a (0−4)2+3,求出a ,得出函数的解析式是21(4)316y x =--+,把y =0代入解析式,求出方程的解即可. 【详解】∵函数的图象的最高点是B ,B 的坐标是(4,3),∴设函数的解析式是y =a (x −4)2+3,∵图象过(0,2)点,∴代入得:2=a (0−4)2+3, 解得:116a =-, ∴函数的解析式是21(4)316y x =--+, 把y =0代入解析式得:210(4)316x =--+,解得:1244x x =+=-∴(4A +,故答案为(4+【点睛】考查二次函数在实际问题中的应用,掌握待定系数法求二次函数解析式是解题的关键.. 13.10【解析】【分析】令y=0时求出x 的值,保留正值,即为该男生将铅球推出的距离.【详解】解:当y=0时,2125=01233x x -++, 解方程得,x 1=10,x 2=-2(负值舍去),∴该男生把铅球推出的水平距离是10 m .故答案为:10.【点睛】本题考查了二次函数在实际问题中的应用,可以用配方法写成顶点式求得;同时本题还考查了二次函数与一元二次方程的关系及解一元二次方程,本题属于中档题.14.10米【解析】【分析】根据题意,将y=0代入解析式中,求出x 的值即可.【详解】解:将y=0代入21251233y x x =-++中,得 212501233x x -++= 解得:1210,2x x ==-(不符合实际,舍去)∴小明这次试掷的成绩是10米故答案为:10米.【点睛】此题考查的是二次函数的应用,掌握x 和y 的实际意义和一元二次方程的解法是解决此题的关键.15.50【解析】【分析】根据题目中的函数解析式可以求得h 的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h =30t−5t 2=−5(t−3)2+45(0≤t≤6),∴当t =3时,h 取得最大值,此时h =45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=50(米), 故答案为:50.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.16.2.25m .【解析】【分析】设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x ≤3),将(3,0)代入求得a 值,则x=0时得y 值即为水管的长.【详解】解:由于在距池中心的水平距离为1m 时达到最高,高度为3m ,则设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x ≤3),代入(3,0)求得:a =34-, 将a 值代入得到抛物线的解析式为:y =34-(x ﹣1)2+3(0≤x ≤3), 令x =0,则y =94=2.25. 则水管长为2.25m .故答案为:2.25m .【点睛】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.17.10【解析】【分析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【详解】 解:()()222555104210222y x x x x x =-+=--=--+,当x=2时,y 有最大值10, 故答案为:10.【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.18.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】当y=0时,212501233x x -++= 解得,x=-2(舍去),x=10.故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.19.1s 或3s【解析】【分析】根据题意可以得到15=﹣5x 2+20x ,然后求出x 的值,即可解答本题.【详解】∵y=﹣5x 2+20x ,∴当y=15时,15=﹣5x 2+20x ,得x 1=1,x 2=3,故答案为1s 或3s .【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.20.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】 解:在21251233y x x =-++中,当y=0时, 212501233x x -++= 整理得:x 2-8x-20=0,(x-10)(x+2)=0,解得x 1=10,x 2=-2(舍去),即该运动员此次掷铅球的成绩是10m .故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.21.(1)h =﹣x 2+10x+2;(2)斜抛物体的最大高度为27,达到最大高度时的水平距离为5.【解析】【分析】(1)将当x =0时,h =2;当x =10时,h =2,代入解析式,可求解;(2)由h =−x 2+10x +2=−(x−5)2+27,即可求解.【详解】(1)∵当x =0时,h =2;当x =10时,h =2.∴222100102a a b a =-⎧⎨=+-⎩解得:110a b =-⎧⎨=⎩ ∴h 关于x 的函数表达式为:h =﹣x 2+10x+2;(2)∵h =﹣x 2+10x+2=﹣(x ﹣5)2+27,∴斜抛物体的最大高度为27,达到最大高度时的水平距离为5.【点睛】本题考查了二次函数的应用,求出二次函数的解析式是本题的关键.22.(1)215(4)243y x =--+;(2)此球能过网,见解析;(3)2m 【解析】【分析】(1)依题意,函数图象的顶点坐标为(4,53),则可设函数的解析式为:25(4)3y a x =-+,再由点(0,1)在抛物线上,代入求得a 即可(2)将x =5代入所求的函数解析式,求得y 即可判断;(3)将y =3124代入函数解析式求得x ,即可求出乙与球网的水平距离. 【详解】解(1)依题意,函数图象的顶点坐标为54,3⎛⎫ ⎪⎝⎭, 故设函数的解析式为:25(4)3y a x =-+,∵点(0,1)在抛物线上,∴代入得251(04)3a =-+, 解得124a =-, 则羽毛球经过的路线对应的函数关系式为:215(4)243y x =--+; (2)由(1)知羽毛球经过的路线对应的函数关系式为215(4)243y x =--+, 则当5x =时,21513(54) 1.6252438y =-⨯-+==, ∵1.625 1.55>,∴此球能过网;(3)由(1)知羽毛球经过的路线对应的函数关系式为215(4)243y x =--+, 当3124y =时,有23115(4)24243x =--+, 解得11x =(舍去),27x =,∴此时乙与球网的水平距离为:752m -=.【点睛】本题考查了二次函数在实际生活中的应用,利用待定系数法求出羽毛球经过的路线对应的函数关系式是解题的关键.23.(1) 194;(2)能成功;理由见解析. 【解析】【分析】(1)将抛物线解析式整理成顶点式,可得最大值,即为最大高度;(2)将x=4代入抛物线解析式,计算函数值是否等于3.4进行判断.【详解】 (1)y=-35x 2+3x+1=-35252x ⎛⎫- ⎪⎝⎭+194 ∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.【点睛】此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.24.(1)y=;(2)不能正中篮筐中心;3米.【解析】试题分析:(1)根据顶点坐标(4,4),设抛物线的解析式为:y=,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心.试题解析:(1)设抛物线为y=,将(0,)代入,得=,解得a=,∴所求的解析式为y=;(2)令x=8,得y==≠3,∴抛物线不过点(8,3),故不能正中篮筐中心;∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移个单位长度,故小明需向上多跳m再投篮(即球出手时距离地面3米)方可使球正中篮筐中心.考点:二次函数的应用.25.(1)能准确投中(2)能获得成功【解析】【分析】(1)根据条件先确定抛物线的解析式,然后令x=7,求出y的值,与3m比较即可作出判断;(2)将x=1代入抛物线的解析式,求出y的值与3.1比较大小即可.【详解】解:(1)由题意可得抛物线的顶点为(4,4),出手点为(0,209),设2()y a x h k=-+,则h=4,k=4,然后把点(0,209)代入解析式得19a=-,所以()21449y x=--+,当x=7时,y=3,所以此球能准确投中.(2)当x=1时,y=3<3.1,他能获得成功.考点:二次函数的应用26.(1)①见解析;②t=0.4(秒),乒乓球达到最大高度;(2)52 m.【解析】【分析】(1)①根据描出了上表中y与t各对对应值为坐标的点,画出该函数的图象即可;②利用网格中数据直接得出乒乓球达到最大高度时的时间;(2)首先求出函数解析式,进而求出乒乓球落在桌面时,与端点A的水平距离.【详解】解:(1)①如图所示,②由表格中数据可得,t=0.4(秒),乒乓球达到最大高度;(2)由表格中数据,可设y=a(x﹣1)2+0.45,将(0,0.25)代入,可得:a=﹣15,则y=﹣15(x﹣1)2+0.45,当y=0时,0=﹣15(x﹣1)2+0.45,解得:x1=52,x2=﹣12(舍去),即乒乓球与端点A 的水平距离是52m .【点睛】考点:二次函数的应用.27.(1)21(4)48y x =-+;(2)不能投中 【解析】【分析】(1)根据题意可得抛物线的顶点,设函数的顶点式,再将(0,2)代入,求得二次项系数,从而可得抛物线的解析式;(2)判断当x =7时,函数值是否等于3.19即可.【详解】(1)依题意得抛物线顶点为(4,4),则设抛物线的解析式为y =a (x ﹣4)2+4依题意得抛物线经过点(0,2)∴a (0﹣4)2+4=2解得18a =- ∴抛物线的解析式为21(4)48y x =-+ (2)当x =7时,21(4)48y x =-+=23 3.198≠ ∴这个球员不能投中.【点睛】本题考查了二次函数解析式的求法以及实际应用,关键是求得函数的解析式,借助二次函数解决实际问题.28.(1)能射中球门;(2)他至少后退0.4m,才能阻止球员甲的射门.【解析】【分析】(1)、根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;(2)、求出当x=2时,抛物线的函数值,与2.52米进行比较即可判断,再利用y=2.52求出x的值即可得出答案.【详解】(1)、抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x-4)2+3,把(10,0)代入得36a+3=0,解得a=-112,则抛物线是y=-112(x-4)2+3,当x=0时,y=-112×16+3=3-43=53<2.44米,故能射中球门;(2)当x=2时,y=-112(2-4)2+3=83>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=-112(x-4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2-1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.【点睛】本题主要考查了待定系数法求二次函数的解析式,以及二次函数的应用,属于中等难度的题型.根据题意得出函数的顶点坐标,求得函数解析式是解题的关键.29.(1)y=−19(x−4)2+4;能够投中;(2)能够盖帽拦截成功.【解析】【分析】(1)根据题意可知:抛物线经过(0,209),顶点坐标是(4,4),然后设出抛物线的顶点式,将(0,209)代入,即可求出抛物线的解析式,然后判断篮圈的坐标是否满足解析式即可;(2)当1x 时,求出此时的函数值,再与3.1m比较大小即可判断. 【详解】解:由题意可知,抛物线经过(0,209),顶点坐标是(4,4).设抛物线的解析式是()244y a x =-+, 将(0,209)代入,得()2200449a =-+ 解得19a =-, 所以抛物线的解析式是()21449y x =--+; 篮圈的坐标是(7,3),代入解析式得()2174439y =--+=, ∴这个点在抛物线上,∴能够投中 答:能够投中.(2)当1x =时,()2114439y =--+=<3.1, 所以能够盖帽拦截成功.答:能够盖帽拦截成功.【点睛】此题考查的是二次函数的应用,掌握二次函数的顶点式和利用二次函数解析式解决实际问题是解决此题的关键.30.(1)2516-,12;(2)当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ;(3)能.【解析】【分析】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a ,c 的值;(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;(3)把x =28代入x =10t 得t =2.8,把t =2.8代入解析式求出y 的值和2.44m 比较大小即可得到结论.【详解】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴20.53.50.850.8c a c =⎧⎨=+⨯+⎩, 解得:251612a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:y =﹣2516t 2+5t +12, 故答案为:﹣2516,12; (2)∵y =﹣2516t 2+5t +12, ∴y =﹣2516(t ﹣85)2+92, ∴当t =85时,y 最大=4.5, ∴当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ; (3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =﹣2516×2.82+5×2.8+12=2.25<2.44, ∴他能将球直接射入球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.。

初中数学二次函数应用题型分类——抛物线形物体问题7(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题7(附答案)
23.有座抛物线形拱桥(如图),正常水位时桥下河面宽 ,河面距拱顶 ,为了保证过往船只顺利航行,桥下水面的宽度不得小于 .
(1)求出如图所示坐标系中的抛物线的解析式;
(2)求水面在正常水位基础上上涨多少米时,就会影响过往船只航行?
24.如图所示的是水面一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下水面宽度为20米,拱顶距离正常水面4米,建立平面直角坐标系如图所示,求抛物线的解析式.
17.悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁.其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道.图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引.他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB=CD,两个索塔均与桥面垂直.主桥AC的长为600 m,引桥CE的长为124 m.缆索最低处的吊杆MN长为3 m,桥面上与点M相距100 m处的吊杆PQ长为13 m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.
29.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线最高点D到墙面OB的水平距离为6m时,隧道最高点D距离地面10m.
(1)求该抛物线的函数关系式;
(2)一辆货运汽车载一长方体集装箱后宽为4m,高为6m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

抛物线题型分类

抛物线题型分类

抛物线题型一抛物线的定义及其应用【典型例题】1. 设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足,如果直线AF的斜率为-3,那么|PF|=( )A.43B.8C.83D.162. 已知点P是抛物线y2=4x 上的动点,点P在y 轴上的射影是M,点A 的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是________.3. 已知点P(2,y)在抛物线y2=4x 上,则P 点到抛物线焦点F的距离为( )A.2 B.3 C. 3 D. 2【提分秘籍】1.定点F不能在定直线l上,因为若定点F在定直线l上,则动点的轨迹为过点F且垂直于l 的直线而非抛物线.2.抛物线的定义实质上给出了一个重要的内容:可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简.3. 利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线;(2)距离问题:涉及抛物线上的点到焦点的距离、到准线的距离问题时,注意利用两者之间的转化在解题中的应用.提醒:注意一定要验证定点是否在定直线上.题型二抛物线的标准方程与几何性质【典型例题】1. 已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A、B两点,|AB|=12,P 为C的准线上一点,则△ABP 的面积为( )A.18 B.24 C.36 D.482. 已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是( )A.y2=±22x B.y2=±2xC.y2=±4x D.y2=±42x3. 如图,过抛物线y2=2px(p>0)的焦点F 的直线交抛物线于点A,B,交其准线l于点C,若|BC| =2|BF|,且|AF|=3,则此抛物线的方程为( )A .y 2 =9xB .y 2 =6xC .y 2 =3xD .y 2 =3 x4. 过抛物线y 2 =4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF|=3,则△AOB 的面积为( )A.22 B. 2 C. 223 D .2 2【提分秘籍】1.抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px(p>0)焦点F 的弦,若A(x 1,y 1 ),B(x 2 ,y 2 ),则(1)x 1x 242p = ,y 1y 2 =-p 2 . (2)弦长|AB|=x 1 +x 2 +p =α2sin 2p (α为弦AB 的倾斜角). (3) pFB FA 2||1||1=+(4)以弦AB 为直径的圆与准线相切.2.求抛物线的标准方程的方法及注意事项(1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以,只需一个条件确定p 值即可;(2)注意事项:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.题型三 直线与抛物线的位置关系【典型例题】1. 如图,在直角坐标系xOy 中,点P (1,21) 到抛物线C :y 2 =2px(p>0)的准线的距离为45,点M(t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值.2. 在平面直角坐标系xOy 中,直线l 与抛物线y 2 =4x 相交于不同的A 、B 两点.(1)如果直线l 过抛物线的焦点,求 OA · OB 的值;(2)如果OA · OB =-4,证明直线l 必过一定点,并求出该定点.【提分秘籍】设直线方程Ax +By +C =0与抛物线方程y =2px(p>0)联立,消去x 得到关于y 的方程my 2 +ny +l =0.(1)位置关系与其判别式Δ的关系:方程特征 交点个数 位置关系直线与抛物线 m=0 1 直线与抛物线的对称轴平行或重合,两者相交m ≠0, ∆>02 相交 m ≠0, ∆=0 1 相切 m ≠0, ∆<0 0 相离(2)相交问题的求解通法:涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系,采用“设而不求”“整体代入”等解法.注意:涉及弦的中点、斜率时,一般用“点差法”求解.【跟踪练习】1.曲线y =x e 5 +2在点(0,3)处的切线方程为________.2.已知点A(-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的交点为F ,则直线BF 的斜率为( )A. 21B. 32C. 43D. 343.已知抛物线C :y 2 =8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线 PF 与C 的一个交点.若FP =4FQ ,则|QF|=( )A.27 B .3C. 25 D .24.已知两条抛物线E 1 :y 2=2p 1 x(p 1>0)和E 2:y 2=2p 2 x(p 2>0),过原点O 的两条直线l 1 和l 2 ,l 1 与E 1 ,E 2分别交于A 1 ,A 2 两点,l 2 与E 1 ,E 2 分别交于B 1 ,B 2 两点.(1)证明:A 1B 2 ∥A 1 B 2 ;(2)过O 作直线l(异于l 1 ,l 2)与E 1,E 2 分别交于C 1 ,C 2 两点,记△A 1 B 1 C 1 与△A 2 B 2 C 2 的面积分别为S 1 与S 2 ,求21S S 的值.5.在平面直角坐标系xOy 中,点M 到点F(1,0)的距离比它到y 轴的距离多 1. 记点M 的轨迹为C.(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P(-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.6.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b(a <b),原点O 为AD 的中点,抛物线y 2 =2px(p >0)经过C ,F 两点,则ab =________.7.已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|= 45|PQ|. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M , B ,N 四点在同一圆上,求l 的方程.8.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 433 B. 839 C. 3263 D. 499.已知抛物线C :y 2 =2px(p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|FA|=|FD|.当点A 的横坐标为3时,△ADF 为正三角形.(1)求C 的方程.(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E.①证明直线AE 过定点,并求出定点坐标.②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.10.如图所示,曲线C 由上半椭圆C 1:12222=+bx a y (a>b>0,y≥0)和部分抛物线C 2:y =-x 2+1(y≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为23 . (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q(均异于点A ,B),若AP ⊥AQ ,求直线l 的方程.11.抛物线y 2=4x 的焦点到双曲线1322=-y x 的渐近线的距离是( ) A. 21 B. 23 C .1 D. 3 312.若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为 ________.13.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线13322=-y x 相交于A ,B 两点,若△ABF 为等边三角形,则p =________.14. 设抛物线的顶点在坐标原点,准线方程为x =-2,则抛物线的方程是 ( )A .y 2=-8xB .y 2=-4xC .y 2=8xD .y 2 =4x15.过点(0,1)作直线,使它与抛物线y 2 =4x 仅有一个公共点,这样的直线有( )A .1条B .2条C .3条D .4条16.若抛物线y 2 =2px(p>0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为( )A .2B .18C .2或18D .4或1617.已知点P 为抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (27,4),则|PA|+|PM|的最小值是( ) A.27 B .4 C.29 D .5 18.若点P 到定点F(4,0)的距离比它到直线x +5=0 的距离小1,则点P 的轨迹方程是( )A .y 2 =-16xB .y 2 =-32xC .y 2 =16xD .y 2 =16x 或y =0(x<0)19.已知直线l :4x -3y +6=0和直线l :x =-1,抛物线y 2=4x 上一动点P 到直线l 和直线l 的距离之和的最小值是( )A.553 B .2 C. 511 D .320.已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若FA =-4FB ,则直线AB 的斜率为( )A .± 32 B .± 23 C .± 43 D .± 3421.已知过点P(4,0)的直线与抛物线y 2=4x 相交于A(x 1,y 1 )、B(x 2 ,y 2 )两点,则y 12+y 22 的最小值是________.22.如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽____________m.23. 直线l:y=x+b与抛物线C:x2=4y 相切于点A.(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C的准线相切的圆的方程.24. 抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1 ,y 1),B(x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA与PB 的斜率存在且倾斜角互补时,求y1 +y2的值及直线AB的斜率.25. 设P(x1,y1 ),Q(x2,y2 )是抛物线y2=2px(p>0)上相异两点,Q,P 到y 轴的距离的积为4且OP·OQ=0,PQ 交x轴于E.(1)求该抛物线的标准方程;(2)过Q的直线与抛物线的另一交点为R,与x轴的交点为T,且Q为线段RT 的中点,试求弦PR长度的最小值.。

初中数学二次函数应用题型分类——抛物线形物体问题3(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题3(附答案)
7.潼南中学有一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子 OA , O 恰
在水面中心,安置在柱子顶端 A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛
物线路径落下,且在过 OA 的任一平面上,抛物线形状如图 1 所示.图 2 建立直角
坐标系,水流喷出的高度 y(米)与水平距离 x(米)之间的关系是 y x2 3x 4 .请
19.如图,小区中央公园要修建一个圆形的喷水池,在水池中央垂直于地面安装一个柱 子 OA,O 恰好在水面的中心,OA=1.25 米.由柱子顶端 A 处的喷头向外喷水,水流 在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计水流在离 OA 距离为 1 米处达到距水面的最大高度 2.25 米,如图建立坐标系.
15.要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使 喷出的抛物线形水柱在与池中心的水平距离为 1m 处达到最高,高度为 3m,水柱落地 处离池中心 3m,水管应多长?
16.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子 OA,O 恰 好在水面中心,安装在柱子顶端 A 处的喷头向外喷水,水流在各个方向上沿形状相同 的抛物线路径落下,且在过 OA 的任一平面上,抛物线的形状如图(1)和(2)所示, 建立直角坐标系,水流喷出的高度 y(米)与水平距离育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置 OA,A 处为喷头向外喷
水,水流在各个方向上沿形状相同的抛物线路径落下 ( 如图1). 如果曲线 APB 表示的是 落点 B 离点 O 最远的一条水流 ( 如图 2) ,水流喷出的高度 y( 米 ) 与水平距离 x( 米 ) 之 间的关系式是 y x2 4x 9 (x 0) ,那么圆形水池的半径至少为______米时,才

高中数学抛物线题型归类

高中数学抛物线题型归类

高中数学抛物线题型归类高中数学抛物线题型归类一、基础知识1、抛物线的定义:平面上,到一个定点(F)和一条定直线(l)的距离相等的点的集合。

2、抛物线的标准方程:右开口抛物线的标准方程为 y^2 = 2px,左开口抛物线的标准方程为 y^2 = -2px,上下开口抛物线的标准方程为 y^2 = 2p(x + k) 和 y^2 = 2p(x - k)。

3、抛物线的性质:抛物线是平滑的曲线,它关于轴、轴和原点对称,它的焦点在直线上,它的准线与直线的交点在对称轴上。

二、常见题型1、抛物线的定义题例1. 已知抛物线的方程为y^2 = 4x,F是抛物线的焦点,准线与对称轴的交点为M,过M作直线l交抛物线于A、B 两点,求证:AF、MF、BF成等比数列。

解:设A、B的横坐标分别为x1、x2,根据抛物线的定义,得|AF| = x1 + 1,|MF| = -1,|BF| = x2 + 1,因为x1 + x2 = 4,所以(x1 + 1)^2 = (x2 + 1)(4 - x2),即x1^2 + 2x1 - 3x2 - 4 = 0,由此得到(x1 + 3)(x1 - 4) = -3(x2 + 1),即x1x2 = -12,所以|AF||BF| = |MF|^2,即AF、MF、BF成等比数列。

2、抛物线的标准方程题例2. 已知抛物线的焦点在y轴上,且经过点A(0, 6)和B(6,0),求此抛物线的标准方程。

解:设此抛物线的标准方程为 x^2 = 2py(p > 0),因为抛物线经过点A(0, 6),所以6 = 2p,解得p = 3,因此此抛物线的标准方程为 x^2 = 6y。

3、抛物线的几何性质题例3. 已知抛物线y^2 = ax(a > 0)上有两个不同的点A和B,它们的横坐标分别为x1、x2,且满足条件x1^2 + x2^2 = a^2 + 6a - 8。

求证:直线AB的斜率为-4a。

解:因为A和B是抛物线上的两个不同的点,所以可以设它们的坐标分别为(x1, y1)和(x2, y2)。

抛物线分类题型(含答案)

抛物线分类题型(含答案)

1练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式: 2、 下列函数:① y =()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221mm y m m x --=+是关于x 的二次函数5、当____m =时,函数()2564mm y m x-+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质21、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm y mx--=的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y随x 的增大而增tttt3大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小练习六 c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5 5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积6 为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是 (第5题)(第6题) (第7题) (第10题) 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。

抛物线 知识点+例题 分类全面

抛物线 知识点+例题 分类全面

教学内容1.定义:平面内到一定点F 和一条定直线l (F 不在l 上)距离相等的点的轨迹,点F 叫做焦点,直线l 叫做准线.2.标准方程:px y 22=,px y 22-=,py x 22=,py x 22-=(0>p )这四种方程都叫做抛物线的标准方程.[例1]顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的方程为__________________.x y -=2或y x 82-=[巩固1] 顶点在原点,经过圆C :022222=+-+y x y x 的圆心且准线与x 轴垂直的抛物线方程为_____________.x y 22=[巩固2]如图所示,等边三角形OAB 的边长为38,且其三个顶点均在抛物线C :)0(22>=p py x 上,则抛物线C的方程为__________.y x 42=[例2] 已知动圆过定点F (2,0),且与直线x=-2相切,则动圆圆心C 的轨迹方程是___________.x y 82=[巩固] 若点P 到点F (4,0)的距离比它到直线x+5=0的距离少1,则动点P 的轨迹方程是____________.x y 162=标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形知识模块1抛物线的标准方程 知识模块2抛物线的简单几何性质 精典例题透析题型一:抛物线的定义及应用[例]已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时点P 的坐标.解 将x =3代入抛物线方程y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d ,当P A ⊥l 时,|P A |+d 最小,最小值为72,即|P A |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2).[巩固] (2014·课标全国Ⅰ)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |等于_________.答案 3解析 ∵FP →=4FQ →,∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34. 如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34,∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C.题型二:抛物线的标准方程和几何性质[例]抛物线的顶点在原点,对称轴为y 轴,它与圆x 2+y 2=9相交,公共弦MN 的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.解 由题意,得抛物线方程为x 2=2ay (a ≠0). 设公共弦MN 交y 轴于A ,N 在y 轴右侧, 则|MA |=|AN |,而|AN |= 5.∵|ON |=3,∴|OA |=32-(5)2=2,∴N (5,±2). ∵N 点在抛物线上,∴5=2a ·(±2),即2a =±52,故抛物线的方程为x 2=52y 或x 2=-52y .抛物线x 2=52y 的焦点坐标为⎝⎛⎭⎫0,58,准线方程为y =-58. 知识模块3经典题型抛物线x 2=-52y 的焦点坐标为⎝⎛⎭⎫0,-58,准线方程为y =58. [巩固]如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |; (2)若|AF |2=|AM |·|AN |,求圆C 的半径. 解 (1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2), 所以点C 到准线l 的距离d =2,又|CO |=5, 所以|MN |=2|CO |2-d 2=25-4=2.(2)设C (y 204,y 0),则圆C 的方程为(x -y 204)2+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0,设M (-1,y 1),N (-1,y 2),则⎩⎨⎧Δ=4y 20-4(1+y 202)=2y 20-4>0,y 1y 2=y202+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4, 所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为(32,6)或(32,-6),从而|CO |2=334,|CO |=332,即圆C 的半径为332.题型三:抛物线焦点弦的性质[例]设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O .思维点拨 证明k OC =k OA .证明 方法一 设AB :x =my +p2,代入y 2=2px ,得y 2-2pmy -p 2=0. 由根与系数的关系,得y A y B =-p 2,即y B =-p 2y A.∵BC ∥x 轴,且C 在准线x =-p 2上,∴C (-p2,y B ).则k OC =y B -p 2=2p y A =y Ax A =k OA .∴直线AC 经过原点O .方法二 如图,记准线l 与x 轴的交点为E ,过A 作AD ⊥l ,垂足为D .则AD ∥EF ∥BC .连接AC 交EF 于点N ,则|EN ||AD |=|CN ||AC |=|BF ||AB |,|NF ||BC |=|AF ||AB |. ∵|AF |=|AD |,|BF |=|BC |, ∴|EN |=|AD |·|BF ||AB |=|AF |·|BC ||AB |=|NF |, 即N 是EF 的中点,从而点N 与点O 重合, 故直线AC 经过原点O .[巩固]已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M 、N 两点,且|MN |=8.(1)求抛物线C 的方程;(2)设直线l 是抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM →·PN →的最小值. 解 (1)由题意可知F ⎝⎛⎭⎫p 2,0, 则该直线方程为:y =x -p 2,代入y 2=2px (p >0), 得:x 2-3px +p 24=0. 设M (x 1,y 1),N (x 2,y 2),则有x 1+x 2=3p . ∵|MN |=8,∴x 1+x 2+p =8, 即3p +p =8,解得p =2. ∴抛物线的方程为y 2=4x .(2)设l 方程为y =x +b ,代入y 2=4x , 得x 2+(2b -4)x +b 2=0,∵l 为抛物线C 的切线,∴Δ=(2b -4)2-4b 2=0, 解得b =1,∴l 方程为y =x +1. 由(1)可知:x 1+x 2=6,x 1x 2=1.由P (m ,m +1),则PM →=(x 1-m ,y 1-(m +1)), PN →=(x 2-m ,y 2-(m +1)),∴PM →·PN →=(x 1-m )(x 2-m )+[y 1-(m +1)][y 2-(m +1)] =x 1x 2-m (x 1+x 2)+m 2+y 1y 2-(m +1)(y 1+y 2)+(m +1)2. ∵x 1+x 2=6,x 1x 2=1,(y 1y 2)2=16x 1x 2=16,y 1y 2=-4,y 21-y 22=4(x 1-x 2),∴y 1+y 2=4x 1-x 2y 1-y 2=4,∴PM →·PN →=1-6m +m 2-4-4(m +1)+(m +1)2 =2(m 2-4m -3)=2[(m -2)2-7]≥-14.当且仅当m =2,即点P 的坐标为(2,3)时,PM →·PN →的最小值为-14. 题型四:直线与抛物线的综合性问题解析 ∵y 2=2px 的焦点坐标为(p2,0),∴过焦点且斜率为1的直线方程为y =x -p2,即x =y +p2,将其代入y 2=2px ,得y 2=2py +p 2,即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1.4.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于______.解析 ①若焦点弦AB ⊥x 轴, 则x 1=x 2=p 2,所以x 1x 2=p 24;②若焦点弦AB 不垂直于x 轴,可设AB :y =k (x -p2),联立y 2=2px 得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24.故y 1y 2=-p 2.故y 1y 2x 1x 2=-4.5.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为_________.答案 y 2=3x解析 如图,分别过A 、B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知:|AF |=|AA 1|,|BF |=|BB 1|,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴∠BCB 1=30°,∴∠AFx =60°,连接A 1F ,则△AA 1F 为等边三角形,过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于K ,则|KF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x ,故选C.6.(2013·江西)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A 、B 两点,若△ABF 为等边三角形,则p =________.答案 6解析 由题意知B ⎝⎛⎭⎫p 3,-p 2,代入方程x 23-y 23=1得p =6.7.若抛物线y 2=4x 上一点P 到其焦点F 的距离为3,延长PF 交抛物线于Q ,若O 为坐标原点,则S △OPQ =______.答案322解析 如图所示,由题意知,抛物线的焦点F 的坐标为(1,0),又|PF |=3,由抛物线定义知:点P 到准线x =-1的距离为3,∴点P 的横坐标为2.将x =2代入y 2=4x 得y 2=8,由图知点P 的纵坐标y =22, ∴P (2,22),∴直线PF 的方程为y =22(x -1).联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解之得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =2 2.由图知Q ⎝⎛⎭⎫12,-2,∴S △OPQ =12|OF |·|y P -y Q |=12×1×|22+2|=322. 8.已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p =________.答案 2解析 如图,由AB 的斜率为3, 知∠α=60°,又AM →=M B →, ∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P , 则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM .∴M 为焦点,即p2=1,∴p =2.9.如图,已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.解 设直线OA 的方程为y =kx ,k ≠0, 则直线OB 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,y 2=2px ,得x =0或x =2p k 2.∴A 点坐标为⎝⎛⎭⎫2p k 2,2p k ,同理得B 点坐标为(2pk 2,-2pk ), 由|OA |=1,|OB |=8,可得⎩⎪⎨⎪⎧4p 2k 2+1k 4=1, ①4p 2k 2(k 2+1)=64, ②②÷①解方程组得k 6=64,即k 2=4.则p 2=16k 2(k 2+1)=45. 又p >0,则p =255,故所求抛物线方程为y 2=455x . 10.抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.解 (1)依题意知F (1,0),设直线AB 的方程为x =my +1.将直线AB 的方程与抛物线的方程联立,消去x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4.①因为AF →=2FB →,所以y 1=-2y 2.②联立①和②,消去y 1,y 2,得m =±24. 所以直线AB 的斜率是±2 2.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB .因为2S △AOB =2×12·|OF |·|y 1-y 2| =(y 1+y 2)2-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4.11.(2014·课标全国Ⅰ)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,x 0等于______. 解析 由抛物线的定义,可得|AF |=x 0+14, ∵|AF |=54x 0,∴x 0+14=54x 0,∴x 0=1. 12.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,则点A 的坐标为__________.解析 如图所示,由题意,可得|OF |=1,由抛物线的定义,得|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S △AMF S △AOF能力提升训练=12×|AF |×|AM |×sin ∠MAF 12×|OF |×|AF |×sin (π-∠MAF )=3, ∴|AF |=|AM |=3,设A ⎝⎛⎭⎫y 204,y 0, ∴y 204+1=3,∴y 204=2,y 0=±22, ∴点A 的坐标是(2,±22).13.(2013·课标全国Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为________.答案 2 3解析 由y 2=42x 知:焦点F (2,0),准线x =- 2.设P 点坐标为(x 0,y 0),则x 0+2=42,∴x 0=32,∴y 20=42×32=24, ∴|y 0|=26,∴S △POF =12×2×26=2 3.14.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k=________.答案 2解析 抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2).则x 1+x 2=4+8k2,x 1x 2=4. 所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16. 因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0, 将上面各个量代入,化简得k 2-4k +4=0,所以k =2.15.(2014·安徽)如图,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2.(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值. (1)证明 设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),由⎩⎪⎨⎪⎧ y =k 1x ,y 2=2p 1x ,得A 1⎝⎛⎭⎫2p 1k 21,2p 1k 1,。

曲线的分类

曲线的分类

曲线的分类
曲线的分类有以下几种:
1. 直线:两个端点之间的曲线,是最简单的曲线型态。

2. 抛物线:二次曲线,以“a”字形展开,其中一端点为顶点。

3. 双曲线:二次曲线,以“∞”字形展开。

4. 椭圆:二次曲线,形状类似于圆形,但是两个轴不相等。

5. 圆:特殊的椭圆,两个轴相等。

6. 螺旋线:具有不规则螺旋形状的曲线,常见于自然界中的一些形态,如贝壳、鸡蛋等。

7. 正弦曲线:一种周期性曲线,用于描述波动、振荡等现象。

8. 指数曲线:一种以指数为基数的曲线,用于描述增长或衰减过程。

以上是曲线的主要分类,每种曲线具有不同的特点和应用领域。

抛物线的解析式的三种形式应用例析

抛物线的解析式的三种形式应用例析

抛物线的解析式的三种形式解题例析松江区立达中学庄士忠卢栋才 201600抛物线的解析式有三种形式:①一般式:(a≠0);②顶点式:,(h,k)是顶点坐标;③交点式:(a≠0),其中x1,x2是方程的两个实根。

在具体解答中,需要根据题目的条件,直接或间接选择相应的形式以简化计算,一般利用待定系数法进行。

利用待定系数法确定二次函数的解析式的步骤可以总结为五个字:设、列、求、定。

例1、已知二次函数图像顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式。

(试用两种不同的方法)分析:根据所给条件中有顶点坐标的特点,可以选用顶点式。

解法一:设二次函数的解析式为:因为二次函数图像过点(1,0)所以所以所以函数解析式为。

分析:根据所给条件中顶点坐标可知,抛物线的对称轴为x=-2,利用抛物线的对称性,可求得点(1,0)关于对称轴x=-2的对称点(-5,0),可选用交点式。

解法二:设二次函数的解析式为:,因为二次函数图像过点(-2,3)所以所以函数解析式为。

点评:当题目条件中有顶点坐标时,选用顶点式;当条件中有两个与x轴的交点时,一般选用交点式。

但我们注意到,解法二是在知道抛物线与x轴的一个交点后,利用对称轴可从顶点坐标中得到,再利用抛物线的对称性获得另外一个与x轴的交点坐标,再利用交点式获得结果。

两种方法各有千秋,仔细体会必定会有所收获。

当然此题也可使用一般式,但不如这两种方法简单。

例2、已知二次函数,当x=-1时有最小值-4,且图像在x轴上截得线段长为4,求函数解析式。

分析:当题目条件中点的条件不足三个时,要充分利用二次函数的对称性转化条件。

在本题中由于所给条件能得到一个顶点坐标(-1,-4),另外一个条件是图像在x轴上截得的线段长,条件似乎不是特别充分。

仔细分析,有“当x=-1时有最小值-4”就知道对称轴,再有“图像在x轴上截得线段长为4”,利用对称性可得图像与x轴的交点坐标为(-3,0),(1,0),从而可利用交点式解决问题。

初中数学二次函数应用题型分类——抛物线形物体问题1(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题1(附答案)
14.如图,一抛物线型拱桥,当拱顶到水面的距离为2m时,水面宽度为4m;那么当水位下降1m后,水面的宽度为_________m.
15.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.因为上游水库泄洪,水面宽度变为6m,则水面上涨的高度为_____m.
方法一如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为x轴,建立平面直角坐标系xOy;
方法二如图2,以抛物线顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系xOy,
27.如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y= 表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为 m.
A.8B.9C.10D.11
5.河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y=- x2,当水面离桥拱的高度DO是4m时,这时水面宽度AB为()
A.-20mB.10m
C.20mD.-10m
6.如图所示的是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2m,则水面宽度增加()
初中数学二次函数应用题型分类——抛物线形物体问题1(附答案)
1.如图,图中是抛物线形拱桥,当拱顶离水面2m时水面宽4m.水面下降1m,水面宽度为()
A.2 mB.2 mC. mD. m
2.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度 米,顶点 距水面 米(即 米),小孔顶点 距水面 米(即 米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,则此时大孔的水面宽度 长为()
A.9.2mB.9.1mC.9.0mD.8.9m

抛物线-高中数学总复习课件

抛物线-高中数学总复习课件

目录
高中总复习·数学
2

(1) y 1 y 2=- p 2, x 1 x 2= ;
4
2
(2)焦点弦长:| AB |= x 1+ x 2+ p = 2 ;
si
(3)通径:过焦点且垂直于对称轴的弦,长为2 p ;


1
(4)焦半径:| AF |=
,| BF |=


1−cos
1+cos
||
解析:由题意可知通径 MN =2 p ,所以圆

3
2
的半径是 p ,在Rt△ COF 中,( ) +( )2
2
2
= p 2, p >0,解得 p = 3 ,所以抛物线方程为
y 2=2 3 x ,故选B.
目录
高中总复习·数学
(2)(2021·新高考Ⅰ卷14题)已知 O 为坐标原点,抛物线 C : y 2=2
1. 判断正误.(正确的画“√”,错误的画“×”)
(1)平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹是
抛物线.

× )
(2)方程 y =4 x 2表示焦点在 x 轴上的抛物线,焦点坐标是(1,
0).
(3)抛物线既是中心对称图形,又是轴对称图形.

× )

× )
(4)若直线与抛物线只有一个交点,则直线与抛物线相切.
目录
高中总复习·数学
抛物线的标准方程与几何性质
【例3】
(1)已知 F 为抛物线 C : y 2=2 px ( p >0)的焦点,过 F
作垂直于 x 轴的直线交抛物线于 M , N 两点,以 MN 为直径的圆交 y 轴
于 C , D 两点,且| CD |=3,则抛物线方程为(

抛物线知识点和题型分类讲解

抛物线知识点和题型分类讲解

抛物线知识点和题型分类讲解[归纳·知识整合]1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 距离与到定直线l 的距离相等; (3)定点不在定直线上.[探究] 1.当定点F 在定直线l 上时,动点的轨迹是什么图形?提示:当定点F 在定直线l 上时,动点的轨迹是过定点F 且与直线l 垂直的直线. 2.抛物线y 2=2px (p >0)上任意一点M (x 0,y 0)到焦点F 的距离与点M 的横坐标x 0有何关系?若抛物线方程为x 2=2py (p >0),结果如何?提示:由抛物线定义得|MF |=x 0+p 2;若抛物线方程为x 2=2py (y >0),则|MF |=y 0+p2.2.抛物线的标准方程和几何性质 标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p2 离心率 e =1准线方程 x =-p2x =p 2 y =-p2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向 向右 向左 向上 向下 焦半径(其中P (x 0,y 0)|PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p2[自测·牛刀小试]1.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( )A .y 2=-8xB .y 2=-4xC .y 2=8xD .y 2=4x解析:选C 由抛物线准线方程为x =-2知p =4,且开口向右,故抛物线方程为y 2=8x .2.已知d 为抛物线y =2px 2(p >0)的焦点到准线的距离,则pd 等于( ) A.12p 2 B .p 2 C.12D.14解析:选D 抛物线方程可化为x 2=12p y ,所以d =14p ,则pd =14.3.抛物线的焦点为椭圆x 29+y 24=1的左焦点,顶点为椭圆中心,则抛物线方程为________.解析:由c 2=9-4=5得F (-5,0), 则抛物线方程为y 2=-45x . 答案:y 2=-45x4.若点(3,1)是抛物线y 2=2px 的一条弦的中心,且这条弦所在直线的斜率为2,则p =________.解析:设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2py 1+y 2=2,∵y 1+y 1=2,∴p =2. 答案:25.若抛物线x 2=ay 过点A ⎝⎛⎭⎫1,14,则点A 到此抛物线的焦点的距离为________. 解析:由题意可知,点A 在抛物线x 2=ay 上,所以1=14a ,解得a =4,得x 2=4y .由抛物线的定义可知点A 到焦点的距离等于点A 到准线的距离,所以点A 到抛物线的焦点的距离为y A +a 4=14+1=54.答案:54[例1] 设P 是抛物线y 2=4x 上的一个动点.(1)求点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值;(2)若B(3,2),求|PB|+|PF|的最小值.[自主解答](1)如图,易知抛物线的焦点为F(1,0),准线是x=-1.由抛物线的定义知:点P到直线x=-1的距离等于点P到焦点F的距离.于是,问题转化为:在曲线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小.显然,连接AF交曲线于P点,则所求的最小值为|AF|,即为 5.(2)如图,自点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.若将本例(2)中的B点坐标改为(3,4),求|PB|+|PF|的最小值.解:由题意可知点(3,4)在抛物线的外部.∵|PB|+|PF|的最小值即为B,F两点间的距离.∴|PB|+|PF|≥|BF|=42+22=16+4=2 5.———————————————————抛物线定义中的“转化”法利用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.“看到准线想到焦点,看到焦点想到准线”,这是解决抛物线焦点弦有关问题的有效途径.1.(1)若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点P的轨迹方程是________.(2)过抛物线y2=4x的焦点作直线l交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于________.解析:(1)由题意可知点P到直线y=-3的距离等于它到点(0,3)的距离,故点P的轨迹是以点(0,3)为焦点,以y =-3为准线的抛物线,且p =6,所以其标准方程为x 2=12y .(2)抛物线的准线方程为x =-1,则AB 中点到准线的距离为3-(-1)=4.由抛物线的定义得|AB |=8.答案:(1)x 2=12y (2)8抛物线的标准方程与性质[例2] (1)抛物线y 2=24ax (a >0)上有一点M ,它的横坐标是3,它到焦点的距离是5,则抛物线的方程为( )A .y 2=8xB .y 2=12xC .y 2=16xD .y 2=20x(2)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.[自主解答] (1)由题意知,3+6a =5,a =13,则抛物线方程为y 2=8x .(2)抛物线的焦点F 的坐标为⎝⎛⎭⎫p 2,0,线段F A 的中点B 的坐标为⎝⎛⎭⎫p4,1,代入抛物线方程得1=2p ×p4,解得p =2,故点B 的坐标为⎝⎛⎭⎫24,1,故点B 到该抛物线准线的距离为24+22=324. [答案] (1)A (2)324——————————————————— 求抛物线的标准方程的方法及注意事项(1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以,只需一个条件确定p 值即可;(2)注意事项:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.2.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48解析:选C 设抛物线方程为y 2=2px ,则焦点坐标为⎝⎛⎭⎫p 2,0,将x =p2代入y 2=2px 可得y 2=p 2,|AB |=12,即2p =12,得p =6.点P 在准线上,到AB 的距离为p =6,所以△P AB的面积为12×6×12=36.直线与抛物线的位置关系[例3] 已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 1)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC =OA +λOB ,求λ的值. [自主解答] (1)直线AB 的方程是y =22⎝⎛⎭⎫x -p2,与y 2=2px 联立, 从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC =(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1, 解得λ=0或λ=2.——————————————————— 求解直线与抛物线位置关系问题的方法在解决直线与抛物线位置关系的问题时,其方法类似于直线与椭圆的位置关系.在解决此类问题时,除考虑代数法外,还应借助平面几何的知识,利用数形结合的思想求解.3.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|F A |=2|FB |,求k 的值.解:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1+x 2=8k 2-4,x 1x 2=4.又由抛物线的定义可知|F A |=x 1+2,|FB |=x 2+2,所以x 1+2=2(x 2+2),即x 1=2(x 2+1),代入x 1x 2=4 得2(x 2+1)x 2=4,解得x 2=1(x 2=-2舍去),将x 2=1,x 1=4代入x 1+x 1=8k 2-4得k 2=89,由已知k >0,所以k =223.4个结论——直线与抛物线相交的四个结论已知抛物线y 2=2px (p >0),过其焦点的直线交抛物线于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),则有以下结论:(1)|AB |=x 1+x 2+p 或|AB |=2psin 2α(α为AB 所在直线的倾斜角);(2)x 1x 2=p 24;(3)y 1y 2=-p 2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p . 3个注意点——抛物线问题的三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p 的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.创新交汇——圆锥曲线中的实际应用题1.随着新课程改革的深入,一些以圆锥曲线在生活和生产中实际应用为背景的应用问题已经进入教材,并且越来越受重视,在一些考试中越来越多的体现.2.解决此类问题,要把实际问题抽象为数学问题,建立数学模型,抓住问题实质,利用数形结合,根据这些圆锥曲线的几何性质解决问题.[典例] (2012·陕西高考)下图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽____________米.[解析] 以拱顶为坐标原点建立平面直角坐标系,设抛物线的方程为x 2=-2py (p >0),由题意知抛物线过点(2,-2),代入方程得p =1,则抛物线的方程为x 2=-2y ,当水面下降1米时,为y =-3,代入抛物线方程得x =±6,所以此时水面宽为26米.[答案] 2 6 [名师点评]1.本题有以下创新点(1)命题形式的创新:以实际应用题的形式考查圆锥曲线的性质.(2)命题内容的创新:本题不是直接考查抛物线的性质,而是巧设背景,以实际应用问题为载体来考查抛物线.考查学生的应用意识.2.解决本题的关键点解题的关键是建立坐标系求出抛物线的方程.3.在解决以圆锥曲线为背景的创新交汇问题时,应注意以下两点(1)注意解实际应用问题的四个解题步骤,同时对有关圆锥曲线的基本知识必须要熟练掌握,以便能及时提取运用.(2)注意观察实际生活中一些形状与圆锥曲线的形状接近的事物,如截面为抛物线形的拱桥、探照灯,截面为双曲线形的烟筒,斜截圆柱得椭圆形状的截面等.[变式训练]海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图所示.现假设:①失事船的移动路径可视为抛物线y =1249x 2;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当t =0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小;(2)问救援船的时速至少是多少海里才能追上失事船?解:(1)t =0.5时,P 的横坐标x P =7t =72,代入抛物线方程y =1249x 2,得P的纵坐标y P =3.由|AP |=9492,得救援船速度的大小为949海里/时. (2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为(7t,12t 2). 由v t =(7t )2+(12t 2+12)2, 整理得v 2=144⎝⎛⎭⎫t 2+1t 2+337. 因为t 2+1t 2≥2,当且仅当t =1时等号成立.所以v 2≥144×2+337=252,即v ≥25.因此,救援船的时速至少是25海里才能追上失事船. 针对训练:一、选择题(本大题共6小题,每小题5分,共30分) 1.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( ) A.52 B.32 C .-12D .-32解析:选D 把抛物线方程化为x 2=-2⎝⎛⎭⎫12-a y ,则p =12-a ,故抛物线的准线方程是y =p 2=12-a 2,则12-a2=1,解得a =-32. 2.已知抛物线y 2=4x ,若过焦点F 且垂直于对称轴的直线与抛物线交于A ,B 两点,O 是坐标原点,则△OAB 的面积是( )A .1B .2C .4D .6解析:选B 焦点坐标是(1,0),A (1,2),B (1,-2),|AB |=4,故△OAB 的面积S =12|AB ||OF |=12×4×1=2. 3.直线y =x +1截抛物线y 2=2px 所得弦长为26,此抛物线方程为( ) A .y 2=2xB .y 2=6xC .y 2=-2x 或y 2=6xD .以上都不对解析:选C 由⎩⎪⎨⎪⎧y =x +1,y 2=2px ,得x 2+(2-2p )x +1=0.x 1+x 2=2p -2,x 1x 2=1.则26=1+12·(x 1+x 2)2-4x 1x 2= 2·(2p -2)2-4. 解得p =-1或p =3,故抛物线方程为y 2=-2x 或y 2=6x .4.已知点M (1,0),直线l :x =-1,点B 是l 上的动点,过点B 垂直于y 轴的直线与线段BM 的垂直平分线交于点P ,则点P 的轨迹是( )A .抛物线B .椭圆C .双曲线的一支D .直线解析:选A 由点P 在BM 的垂直平分线上,故|PB |=|PM |.又PB ⊥l ,因而点P 到直线l 的距离等于点P 到点M 的距离,所以点P 的轨迹是抛物线.5.(2013·湛江模拟)以坐标轴为对称轴,原点为顶点且过圆x 2+y 2-2x +6y +9=0圆心的抛物线方程是( )A .y =3x 2或y =-3x 2B .y =3x 2C .y 2=-9x 或y =3x 2D .y =-3x 2或y 2=9x解析:选D 圆的标准方程为(x -1)2+(y +3)2=1,故圆心坐标为(1,-3),设抛物线方程为y 2=2p 1x 或x 2=-2p 2y ,则(-3)2=2p 1或1=6p 2,得2p 1=9或2p 2=13,故抛物线方程为y 2=9x 或x 2=-13y ,则y 2=9x 或y =-3x 2.6.(2013·衡水模拟)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B 由题可知抛物线焦点坐标为⎝⎛⎭⎫a 4,0,于是过焦点且斜率为2的直线的方程为y =2⎝⎛⎭⎫x -a 4,令x =0,可得A 点坐标为⎝⎛⎭⎫0,-a 2,所以S △OAF =12·|a |4·|a |2=4. 得a =±8故抛物线方程为y =±8x .二、填空题(本大题共3小题,每小题5分,共15分)7.以抛物线x 2=-4y 的顶点为圆心,焦点到准线的距离为半径的圆的方程是______________.解析:抛物线的顶点在原点,焦点到准线的距离为2,所以所求圆的方程为x 2+y 2=4. 答案:x 2+y 2=48.(2013·厦门模拟)已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点________.解析:因为动圆的圆心在抛物线y 2=4x 上,且x =-1是抛物线y 2=4x 的准线,所以由抛物线的定义知,动圆一定过抛物线的焦点(1,0).答案:(1,0)9.(2012·安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.解析:如图,设A (x 0,y 0)(y 0<0),易知抛物线y 2=4x 的焦点为F (1,0),抛物线的准线方程为x =-1,故由抛物线的定义得|AF |=x 0-(-1)=3,解得x 0=2,所以y 0=-2 2.故点A (2,-22).则直线AB 的斜率为k =-22-02-1=-2 2,直线AB 的方程为y =-22x +22,联立⎩⎨⎧y =-22x +22,y 2=4x ,消去y 得2x 2-5x +2=0,由x 1x 2=1,得A ,B 两点横坐标之积为1,所以点B 的横坐标为12.再由抛物线的定义得|BF |=12-(-1)=32.答案:32三、解答题(本大题共3小题,每小题12分,共36分)10.已知圆C 过定点F ⎝⎛⎭⎫-14,0,且与直线x =14相切,圆心C 的轨迹为E ,曲线E 与直线l :y =k (x +1)(k ∈R )相交于A ,B 两点.(1)求曲线E 的方程;(2)当△OAB 的面积等于10时,求k 的值.解:(1)由题意,点C 到定点F ⎝⎛⎭⎫-14,0和直线x =14的距离相等, 故点C 的轨迹E 的方程为y 2=-x .(2)由方程组⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1)消去x 后,整理得ky 2+y -k =0. 设A (x 1,y 1),B (x 2,y 2),由韦达定理有y 1+y 2=-1k ,y 1y 2=-1.设直线l 与x 轴交于点N ,则N (-1,0). ∵S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON ||y 2|,=12|ON ||y 1-y 2|=12·1·(y 1+y 2)2-4y 1y 2 =12⎝⎛⎭⎫1k 2+4. ∵S △OAB =10,所以12⎝⎛⎭⎫1k 2+4=10, 解得k =±16.11.若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的上顶点.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,又过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =c a =4-b 22=32得,b 2=1.则椭圆的上顶点为(0,1),即抛物线的焦点为(0,1),所以p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x . ∴切线l 1,l 2的斜率分别为12x 1,12x 2, 当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4, 由⎩⎪⎨⎪⎧y =k (x +1),x 2=4y ,得x 2-4kx -4k =0, 则Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0.又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为y =x +1.12.(2013·珠海模拟)在平面直角坐标系xOy 中,设点F ⎝⎛⎭⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹方程C ;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解:(1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线.∵|PQ |是点Q 到直线l 的距离.点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |.故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0).(2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=(x 0-1)2+y 20,则|TS |=2r 2-d 2=2y 20-2x 0+1,因为点M 在曲线C 上,所以x 0=y 202, 所以|TS |=2y 20-y 20+1=2,是定值.巩固提高1.抛物线y =x 2上一点到直线2x -y -4=0的距离最短的点的坐标是( )A.⎝⎛⎭⎫12,14B .(1,1) C.⎝⎛⎭⎫32,94 D .(2,4)解析:选B 法一:设抛物线上任一点为(x ,y ),则由点到直线的距离得d =|2x -y -4|5=|2x -x 2-4|5=|(x -1)2+3|5=(x -1)2+35≥35. 当x =1时,取得最小值,此时点的坐标为(1,1).法二:设2x -y +m =0与y =x 2相切,则x 2-2x -m =0.Δ=4+4m =0,得m =-1,此时x =1,故点的坐标为(1,1).法三:(导数法)y =x 2的导数为y ′=2x ,设所求点为P (x 0,y 0),则2x 0=2,得x 0=1,故P (1,1).2.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,|AF |=2,则|BF |=________.解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2,x 1=1,直线AF 的方程是x =1,此时弦AB 为抛物线的通径,故|BF |=|AF |=2.答案:23.如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点为A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.解:(1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y ,得x 2-4x -4b =0.(*) ∵直线l 与抛物线相切,∴Δ=(-4)2-4×(-4b )=0.∴b =-1.(2)由(1)知b =-1,方程(*)为x 2-4x +4=0.解得x =2,代入x 2=4y 中得,y =1,∴A (2,1).∵圆A 与抛物线准线y =-1相切,∴r =|1-(-1)|=2.∴圆A 的方程为(x -2)2+(y -1)2=4.。

二次曲线分类

二次曲线分类

二次曲线分类
二次曲线是指一种圆锥曲线的统称,它包含了三种基础类型:抛物线、椭圆和双曲线。

1.抛物线:当二次曲线的系数满足某些条件时,它就会变成抛物线。

这种曲线只有一条对称轴和一个顶点,其方程可以表示为y=ax^2+bx+c的形式,其中c是抛物线的顶点坐标。

2.椭圆:当二次曲线的系数满足另一种条件时,它就会变成椭圆。

这种曲线具有两个焦点和一条长轴和一条短轴,其方程可以表示为x^2/a^2+y^2/b^2=1的形式,其中a和b分别是椭圆的长半轴和短半轴。

3.双曲线:如果二次曲线的系数继续满足某些条件,它就会变成双曲线。

这种曲线在平面上的投影是一个点或者一条直线或者两条相交直线,它们被称为退化二次曲线。

此外,圆是椭圆的特例,当a=b=0时,二次曲线成为圆,其方程可以表示为x^2+y^2=r^2的形式,其中r是圆的半径。

最新全等抛物线题型归纳(经典完整)

最新全等抛物线题型归纳(经典完整)

最新全等抛物线题型归纳(经典完整)本文档将对最新的全等抛物线题型进行归纳和总结,包括经典的完整解法。

以下是详细内容:1. 基本概念基本概念在开始归纳题型之前,我们先来回顾一下全等抛物线的基本概念。

全等抛物线是指拥有相同焦点、相同准线和相同形状的两条抛物线。

2. 题型分类题型分类在全等抛物线的题目中,我们可以根据具体的要求和条件进行分类,包括但不限于以下几种:- 求抛物线的方程:已知焦点、准线等信息,需要推导出抛物线的方程。

- 求抛物线的焦点和准线:已知抛物线的方程,需要确定焦点和准线的具体坐标。

- 求抛物线的顶点和对称轴:已知抛物线的方程,需要计算出顶点和对称轴的坐标。

- 求抛物线的焦半径:已知抛物线的方程,需要计算出焦半径的长度。

- 求抛物线的切线和法线:已知抛物线的方程,需要确定抛物线上一点处的切线和法线方程。

3. 经典解法经典解法下面是几种经典的解题方法,可根据具体题目要求选择合适的解法:- 利用准线和焦点求解:通过准线和焦点的坐标关系,可以得出抛物线的方程。

- 利用抛物线的顶点和对称轴求解:通过顶点和对称轴的坐标关系,可以得出抛物线的方程。

- 利用焦半径和焦点求解:通过焦半径和焦点的长度关系,可以得出抛物线的方程。

- 利用导数求解切线和法线:通过对抛物线方程求导数,并代入特定点的坐标,可以得到切线和法线的方程。

4. 注意事项注意事项在解题过程中,需要注意以下几点:- 理解题目要求和条件,确保正确选择解题方法。

- 熟练掌握抛物线的基本概念和公式,避免计算错误。

- 画图辅助解题,有助于理清思路和可视化计算过程。

- 注意验证结果,确保解答符合题目要求。

以上是关于最新全等抛物线题型归纳的内容,包括基本概念、题型分类、经典解法和注意事项等。

希望对你的学习和解题有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生活中的抛物线
1、如图1,一位运动员在距篮下4米处跳起投篮,球运行的路线为抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。

已知篮圈中心到地面的距离为3.05米。

(1)建立如图所示的直角坐标系,求抛物线的解析式;
(2)该运动员身高1.8米,在这次跳投中,球在
头顶上方0.25米处出手,问:球出手时,他跳离
地面的高度是多少?
2、一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;(2)求支柱的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.
3、如图,某公路隧道横截面为抛物线,其最大高度6米,底部宽度OM为12米,现以O点为原点,OM所在的直线为x轴建立直角坐标系.
(1)求这条抛物线的解析式(不必写x的取值范围);
(2)若要搭建一个矩形支架AD-DC-CB(由三段组成)使C、
D在抛物线上,A、B在地面OM上,则这个支架总长L的
最大值是多少米?
如图,有一抛物线形拱桥,已知水位在AB位置时,水面的宽为46米;水位上升4米,就达到警戒线CD,这时的水面宽为43米. 若洪水到来时,水位以每小时0.5米速度上升,求水过警戒线后几小时淹到拱桥顶端M处.。

相关文档
最新文档