对有理数的认识的小结
第一章 有理数(单元小结)-【大单元教学】2023-2024学年七年级数学上册同步备课系列(人教版)
【详解】(1)解:∵点B与点C所表示的数互为相反数,且B与C之 间有2个单位长度, ∴可得点B所表示的数为-1; 故答案为:-1 (2)∵点A与点D所表示的数互为相反数,且它们之间距离为5, ∴点D表示的数为+2.5; (3)∵点B与点F所表示的数互为相反数,且它们之间距离为6, ∴点F所表示的数为+3, ∵点E在点F左边1个单位,∴点E所表示的数是2, ∴点E所表示的数的相反数是-2.
14
3
非正整数:-10,0;
非负数:3
23,20%,2,3
2,0,3.14,
3
考点三 数轴的应用
【例3】有理数 a、b 在数轴上对应点如图所示,下列各式正确的是 ()
A.|a|>b B.a<-b C.a>b D.|a|<|b| 【详解】解:由数轴可知,|a|=a,|b|=b,0<a<b,故C错误; ∴|a|<|b|,故D正确; ∴|a|<b,故A错误; ∵b>0,∴-b<0,∴a>-b,B 错误; 故选:D.
四舍五入到某一位,就说这个数近似数精确到那一位. 2.由近似数判断精确度
考点一 正数与负数的意义
【例1】一袋面粉的包装袋上标有“净含量:25±0.2千克”字样, 下面不可能是这袋面粉的质量的是( ). A.24.8千克 B.24.9千克 C.25.2千克 D.25.5千克
【详解】解:∵面粉的包装袋上标有“净含量:25±0.2千克”字样, ∴一袋面粉的质量范围是24.8—25.2, ∵24.8千克、24.9千克、25.2千克在这个范围内,25.5千克不在此范 围内, ∴不可能是这袋面粉的质量的是25.5千克,故D符合题意. 故选:D.
第二单元有理数及其运算(归纳总结)
2.3×108
天体名称 木星 土星
天王星 海王星
围绕太阳公转的轨道 半长径/km 780 000 000
1 500 000 000
2 900 000 000
4 500 000 000
科学记数法 7.8×108 1.5×109 2.9×109 4.5×109
9. 计算1-2+3-4+5-6+… + 99-100.
23 4
(18) ( -60 )×( 3 5 ).
46
-95
8Байду номын сангаас请用科学记数法表示下表中的数据:
天体名称 水星
围绕太阳公转的轨道 半长径/km
58 000 000
科学记数法 5.8×107
金星
110 000 000
1.1×108
地球
150 000 000
1.5×108
火星
230 000 000
(3)所有有理数都可以用数轴上的点表示.
4.相反数 如果两个数只有符号不同,那么称
其中一个数为另一个数的相反数.
-4 -3 -2 -1 0 1 2 3 4
(1)数a的相反数是-a(a是任意一个有理数); (2)0的相反数是0; (3)若a、b互为相反数,则 a+b = 0.
5.倒数 如果两个有理数的乘积为1,那么称
2
3
4
负数集合
0, 2, 7, 3
整数集合
4. 比较下列每组数的大小:
(1) 1 , 0.009; (2) 8, 7;
100
78
(3)2 ,3 ; 35
(4) 2 1, 2.3. 3
6.在如图所示的圆圈内填上彼此都不相等的数,使 得每条线上的三个数之和为零。你有几种填法?
人教版七年级上数学《有理数》教学反思
《有理数》教学反思
对于《有理数》这一章的教学,我进行了以下反思:
首先,我认为本章的教学目标是让学生掌握有理数的概念、分类、运算等基础知识,以及有理数运算的法则和运算律。
这些知识是后续学习的基础,因此必须让学生牢固掌握。
在实际教学中,我通过讲解、探究、实例分析、练习等多种方式,让学生逐步理解并掌握这些知识。
其次,我注重学生的自主学习和合作探究。
我通过问题引导、实例分析、小组讨论等方式,让学生自主探究有理数的概念和运算方法。
同时,在小组合作中,学生可以互相交流、讨论、帮助,提高学习的效果和效率。
但是,在教学过程中,我也发现了一些问题。
例如,有些学生对有理数的概念理解不够深入,需要进一步加强引导和练习。
此外,还有一些学生在进行有理数的加减乘除等基本运算时存在困惑,需要进一步解释和指导。
最后,我认为本章的教学效果还是不错的,大部分学生都能够掌握有理数的概念和运算方法。
但是,还需要进一步加强练习和拓展延伸,使学生更好地掌握和应用所学知识。
同时,我也需要进一步思考如何更好地引导学生进行自主学习和合作探究,提高学生的学习能力和实践能力。
综上所述,我认为《有理数》这一章的教学还是成功的,但也有一些需要改进的地方。
在今后的教学中,我将继续注重学生的自主学习和合作探究,加强引导和解释,同时注重练习和拓展延伸,使学生更好地掌握和应用所学知识。
有理数复习与小结空中课堂
《有理数及其运算》全章复习与巩固【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态0C表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. (2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数, 例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36, 而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小; (3) 作差比较法. (4)作商比较法; (5)倒数比较法.要点四、科学记数法把一个大于10的数表示成10na ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】 (1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a =1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三: 【变式1】选择题 (1)已知四种说法:①|a|=a 时,a>0; |a|=-a 时, a<0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A .1 B .2 C .3 D .4 (2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①②B .③④C .②④D .①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C【变式2】在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为( ) A .2.7×105B . 2.7×106C . 2.7×107D . 2.7×108【答案】C .2.如果m ,n 互为相反数,那么|m+n ﹣2016|=________.【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n ﹣2016|. 【答案】 2016.【解析】解:∵m ,n 互为相反数, ∴m+n=0,∴|m+n ﹣2016|=|﹣2016|=2016; 故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷- ()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=- 【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等.举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123=(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4.定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .【答案】0. 【解析】 解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.【总结升华】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 举一反三:【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...) 244668810101222446101224 ++++=-+-++-=⨯⨯⨯⨯⨯类型三、数学思想在本章中的应用5.(1)数形结合思想:已知有理数a、b在数轴上对应点的位置如图所示,且|a|>|b|,求|a|-|a+b|-|b-a|的值.A.2b+a B.2b-a C.a D.b(2)分类讨论思想:已知a是任一有理数,试比较|a|与-2a的大小.(3)转化思想:1 (999)35⎛⎫-÷- ⎪⎝⎭.【答案与解析】解:(1)从数轴上a、b两点的位置可以看出a<0,b>0,且|a|>|b|,所以|a|-|a+b|-|b-a|=-a+a+b-b+a =a.(2)a可能是正数,0或负数,这就需要分类讨论:当a>0时,|a|=a>0,-2a<0,所以|a|>-2a;当a=0时,|a|=0,-2a=0,所以|a|=-2a;当a<0时,|a|=-a>0,-2a>0,又-a<-2a,所以|a|<-2a.综上所述:当a≥0时, |a|≥-2a;当a<0时,|a|<-2a.(3)1(999)(10001)(35)35⎛⎫-÷-=-+⨯-⎪⎝⎭(1000)(35)1(35)34965=-⨯-+⨯-=.【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( )A .1132 B .1360 C .1495 D .1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.【巩固练习】一、选择题1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D . 2. a b -与a 比较大小,必定为( ).A .a b a -<B .a b a ->C .a b a -≤D .这要取决于b 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±35.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x <<6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ).A .A 点B .B 点C .C 点D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题9.已知a 是有理数,有下列判断:①a 是正数;②-a 是负数;③a 与-a 必有一个是负数;④a 与-a 互为相反数,其中正确的有________个.10.绝对值小于4,而不小于2的所有整数有 .11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________.12.|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2020春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,ba,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示) (4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学? (5)经过以上计算,你有何感想和建议?【答案与解析】 一、选择题 1.【答案】C.【解析】∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C . 2.【答案】 D 【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =- 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确.8.【答案】C【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1【解析】不论a 是正数、0、负数,a 与-a 都互为相反数,∴④正确. 10.【答案】±3,±2.【解析】结合数轴和绝对值的意义,得绝对值小于4而不小于2的所有整数±3,±2. 11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3.13.【答案】>, >, >, < 【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可. 15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13)=24﹣22﹣10﹣13 =2﹣23 =﹣21;(2)(﹣1.5)+4+2.75+(﹣5)=﹣1.5﹣5.5+4.25+2.75=﹣7+7=0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)=﹣8﹣21﹣7.5+3.5=﹣30﹣4=﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2=﹣4.18.【解析】解:由3<10<15,得到车费为2[10+2(10﹣3)]=48(元),则共付车费48元.19.【解析】解:由1,a+b ,a 与0,b a ,b 相同, 由b a得:分母有0a ≠,所以0a b += 又由三数互不相等,所以1b =,b a a= 化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】解:(1)10÷500≈0.02(克)答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。
有理数的小结
有理数的小结有理数是指可以表示为两个整数的比值的数,包括正整数、负整数、零和分数。
有理数是数学中非常重要的一个概念,它们具有可数性和可比性的特点,可以在数轴上进行比较和运算。
首先,有理数包括整数和分数。
整数是指没有小数部分的数,包括正整数和负整数,例如-1、0、1等。
分数是指有小数部分的数,可以表示为两个整数的比值,例如1/2、3/4等。
有理数的定义很简单,但它们在实际生活中的应用非常广泛。
有理数可以用来表示实际物体的长度、重量、温度等,也可以用来表示实际问题中的比例、百分比等。
其次,有理数具有可数性和可比性的特点。
可数性是指有理数可以按照大小进行排序,可以在数轴上进行比较。
例如,-2比-1小,1/2比3/4小,在数轴上可以直观地看出它们的大小关系。
可比性是指有理数之间可以进行加减乘除等基本运算。
例如,-1+1=0,1/2-1/4=1/4,有理数的运算规律是非常明确的,可以通过分数的化简、通分等方法,得到精确的计算结果。
最后,有理数也具有一些特殊的性质。
例如,正整数的倒数仍然是有理数,例如1的倒数是1/1,2的倒数是1/2,它们仍然是有理数。
另外,有理数之间的运算可以保持不变,例如,两个有理数的和、差、积、商仍然是有理数。
这些特性使得有理数在数学中具有很强的实用性和操作性。
综上所述,有理数是可以表示为两个整数的比值的数,包括整数和分数。
它们具有可数性和可比性的特点,可以在数轴上进行比较和运算。
有理数在实际应用中非常广泛,可以用来表示实际物体的长度、重量、温度等,也可以用来表示实际问题中的比例、百分比等。
有理数的运算规律是非常明确的,可以通过分数的化简、通分等方法,得到精确的计算结果。
有理数在数学中具有很强的实用性和操作性,是数学学习中重要的基础概念。
有理数教学反思教学反思7篇
有理数教学反思教学反思7篇有理数教学反思教学反思篇1在本节课的教学过程中,将先复习旧知引入课题,这样能使学生积极主动地学习。
在探究有理数加法的过程中,先让学生独立观察,然后通过小组合作学习交流并讨论,从而发现有理数加法的性质,注重学生探究能力的培养,让学生支亲身体验的产生过程,充分发挥学生的主观能动性。
最后通过例题来巩固有理数的加法法则,让学生及时地掌握所学的新知,对于学生起到有效地巩固作用。
有理数加法是小学学过的加法去处的拓展,学生已经具有了正数、负数、数轴和绝对值等知识。
加法法则实际上给出了确定两个有理数的和的“符号”与“绝对值”的规则,它是通过分析两个有理数哩可能出现的各种不同情况,再归纳出同号相加、民号相加、一个有理数与0相加三种情况而得到的。
由于学生的思维发展水平和知识准备的限制,在分情况讨论、应分成哪几种情况、如何归纳不同情况等方面都需要教师的引导,甚至是直接讲解。
同号两数的加法法则比较易于理解,而异号两数相加时情况比较复杂,学习难度较大,需要教师加强引导。
另外,根据法则做加法,需要注意“按部就班”地计算,这是一个培养良好运算习惯的过程。
有理数教学反思教学反思篇2本节课从生活实际出发,根据乘法的意义,具体地阐述了乘方的概念,在教学过程中应用了“自主—合作—讨论—探究—交流”的教学方法,教师始终发挥学生的主体作用,起到一个“引导—帮助—点拨”的作用,较好地做到了由单纯的知识传递者转变为学生学习数学的组织者、引导者和合作者。
优点:为了体现课堂以学生为主,培养学生自主探究的能力和知识的熟练运用,在课前的教学设计中尽量围绕学生展开。
如:1、使每个学生参与课堂,采用集体讨论和交流的形式,将个人的经验或成果展示出来,弥补一个教师难以面向众多有差异的学生的不足。
在本课中,有很多活动都是采用小组合作的形式,组织学生展开分小组合作讨论活动,要求所有同学把自己的想法都在小组里交流。
这样尽可能地将每个人的收获变成学生集体的共同精神财富。
有理数单元小结1
6、比较两个有理数的大小
数轴上两个点表示的数,右边的总比左边的 大;
正数大于0,负数小于0,正数大于负数; 两个负数比较大小,绝对值大的反而小.
7、有理数的加法
同号两数相加,取相同的符号,并把绝对值 相加.
异号两数相加,绝对值相等时和为0;绝对 值不等时,取绝对值较大的加数的符号,并 用较大的绝对值减去较小的绝对值.
14、科学记数法
一般地,一个大于10的数总可以表示为 a 10n
的形式,其中 1 a 10
(n等于原数的整数位数减1)
15、提高运算速度和准确性的方法
灵活运用运算法则、运算律.要灵活运用运 算法则和运算律,首先必须加强对法则和运 算律本身的理解和掌握,要特别注意符号的 确定;
积累运算技巧,提高运算速度; 做到严谨细致,运算后要仔细检查,避免有
11、有理数的乘方
求n个相同因数a的积的运算叫做乘方. 正数的任何次幂都是正数; 负数的奇数次幂是负数,负数的偶数次幂是
正数. 0的任何非零次幂都是0.
12、运算律
加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分配律
13、有理数的混合运算
先算乘方,再算乘除,最后算加减; 如果有括号,先做括号内的运算. 同级运算,从左到右进行;
4、相反数
如果两个数只有符号不同,那么我们称其中 一个数为另一个数的相反数.
0的相反数为0 . 在数轴上,表示互为相反数的两个点,位于
原点的两侧,并且与原点的距离相等.
5、绝对值
在数轴上,一个数所对应的点与原点的距离 叫做该数的绝对值.
正数的绝对值是它本身; 0 的绝对值是0; 负数的绝对值是它的相反数.
一、知识梳理:
1、有理数的概念
第一章有理数 小结 课件(共25张PPT) 人教版数学七年级上册
知识回顾
问题 3:尝试用一个图表示有理数的分类.
正有理数
有理数
0
负有理数
问题 4:数轴与普通的直线有什么不同?怎样在数轴上表示有理数? 怎样利用数轴解释一个数的相反数和绝对值?
规定了原点、正方向和单位长度的直线.
-4 -3 -2 -1 0 1 2 3 4
问题 4:数轴与普通的直线有什么不同?怎样在数轴上表示有理数? 怎样利用数轴解释一个数的相反数和绝对值?
学以致用
课堂练习
1. 填空题: (1)如果温度上升 3 ºC 记作+3 ºC,那么下降 2 ºC 记作 __-__2__ ºC; (2)如果收入用正数表示,支出用负数表示,那么-56 元表示 支__出__ ____5_6_元_____. 分析:本题考查了用正数和负数表示具有相反意义的量,指定方向 为正,与指定方向相反的方向即为负.
只有符号不同的两个数互为相反数.0 的相反数是 0.
例如:-4 的相反数是 4;-(-4)=4.
4
4
-4 -3 -2 -1 0 1 2 3 4
数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值.记作∣a∣.
例如:∣-4∣=4.
这里的数 a 可以是 正数、负数和 0.
4 -4 -3 -2 -1 0 1 2 3 4
有理数
数 与 点 的 对 应
数轴
数形结合
相反数 绝对值
研究有理数的重要工具
4
4
-4 -3 -2 -1 0 1 2 3 4
4
-4 -3 -2 -1 0 1 2 3 4
直观描述
问题 5:如何比较有理数的大小?数轴能发挥怎样的作用? 在水平的数轴上表示有理数,数学中规定:它们从左到右的顺序, 就是从小到大的顺序,即左边的数小于右边的数.
有理数的小结与复习
第一章 有理数 小结与复习一、教学目标:1、理解正负数的意义,掌握有理数的概念和分类;2、借助数轴来理解相反数绝对值,有理数比较大小等知识,解决相关问题。
二、重点难点:重点:求数轴、绝对值、相反数等;难点:与绝对值有关的化简问题。
三、板书设计:第一章 有理数复习课(1) 例3一、正数和负数二、有理数1、有理数的分类2、数轴 例43、相反数4、绝对值5、比较大小四、知识梳理:(速答,快速复习,增强学生对有理数的理解,加深并巩固第一章的内容。
)1.正数和负数(1)定义:大于0的数叫做_____.“+”在正数前面加上符号“-”(负)的数叫做_____.(2)0既不是_____,也不是_____(0还可以表示正数和负数的分界)(3).可以用正、负数表示具有_____ 的量2、有理数(1).有理数的概念:_____和_____统称有理数(2).有理数的分类(a)按定义分类 (b)按符号分类_______________⎧⎧⎫⎪⎪⎬⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩_ _ _ _ _ _ _ _ _有理数 _ _ _ _ __ _ _ _ _ _ _ _ _ _ __________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩_ _ _ _ _ _ _ _有理数零_ _ _ _ _ _ _ _ (c ).无限不循坏小数不可化成分数,所以不是有理数,比如_____。
3.数轴(1)定义:可以用一条直线上的点表示数,这条直线叫做_____.(2)数轴的三要素:_____、______、______。
4.相反数(1)定义:只有_____不同的两个数叫做互为相反数(2)规律:正数的相反数是_____,负数的相反数是_____,0的相反数是_____。
(3)若a 、b 互为相反数,则a+b=_____。
(1)数轴上表示数a 的点到原点的距离叫做数a 的_____,记作|a|.(2)一个正数的绝对值是它本身;一个负数的绝对值是它的_____,0的绝对值是0。
初一数学第一章有理数知识点总结
初一数学第一章有理数知识点总结初一数学第一章有理数知识点阐释学优教育加法法则朋友式相处快乐式研习『知识梳理』②绝对值不相等的异号数相加,取绝对值较大的加数符号,并③一个数同0相加,仍得这个数.①同号两数相加,取相同的符号,并把绝对值相加.用较大的绝对值减去较大型的绝对值.算有理数内积运步骤①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.①两个加数相加,交换加数的位置,和不变.abba(加法交换律)②三个数相加,先把前才两个数相加,或者先把后两个位数相加,和不变.(ab)ca(bc)(加法结合律)①分数与十进制均有时,应先化为统一为形式.②带分数可整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数并肩可以先结合在一起.运算律运算技巧减法法则:减去一个数,等于加这个数的相反数.aba(b)运有算理数减法理数的有理数的运算迭代运算步骤①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照减法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③快捷利用浮点数律及技巧简便计算,求出结果.注意:根据值域减法法则,减去一个数等于加上它数则的相反数,因此加减混合算法可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,所写省略加号和的形式.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.①两个数相乘,交换因数的位置,积相等.abba(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数为相乘,积相等.abca(bc)(乘法结合律)乘③一个数同两个数的和相乘,等同把无异这个数分别同这两个数相乘,再把法运积相加.a(bc)abac(乘法分配律)算律①几个不等于0的数相乘,积的符号由负平方根的个数决定,当负因数的乘个数是合数偶数时,积为正数;负因数的个数是奇数之时,积为负数.法②几个数相乘,如果有一个特征值为0,则积为0.法则③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有的小数及分数,一般先将小数转化成分数,或凑整计算;充分运用乘法有理数分配律及推其逆用,也可简化计算.在或进行有理数运算时,先确定符号,再计算绝对广值,有括号的评林括号里的数.有理数的乘法第1页共6页学优教育朋友式相处快乐式学习有理数除法运算有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.aba,(b0)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先指明商的符号,然后再求出商的绝对值.理数的有理数的迭代有理数的乘方求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在an中,a叫做底数,n叫做指数,读作a的n次幂。
第二章有理数的运算章末小结(共25张PPT)
解:(2)原式=9×+4+ = +4+ = .
7.计算:
(3) {1+[()3] ×(-2)4 } ( );
解:(3)原式=[1+() ×16] ( )= (1+1) ()= = = .
科学记数法. 把一个大于10的数表示成 a×10n 的形式(其中a 大于或等于1且小于10,n是正整数),这种记法是科学记数法. 用科学记数法表示一个n位整数(n ≥2),其中10的指数是n-1.
(4)(-66)×4-(-2.5)÷(-0.1)=-264-25=-289.
乘方 一般地,n个相同的乘数a相乘,记作 an,读作“a的n次方”.求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂.
根据有理数的乘法法则可以得出:1.负数的奇次幂是负数,负数的偶次幂是正数;2.正数的任何次幂都是正数;3.0的任何正整数次幂都是0.
有理数减法法则: 减去一个数,等于加这个数的相反数. 有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.0除以任何一个不等于0的数,都得0.
数轴上表示两点间的距离数轴上两点A,B的距离| AB | 与这两点所对应的数a,b的关系为:| AB | = | a-b |.
3. 分别求出数轴上两点间的距离:(1)表示 2的点与表示-7的点;(2)表示-3的点与表示-1的点.
解:(1)2-(-7)=2+7=9;(2)-1-(-3)=-1+3=2.
第二章有理数的运算章节小结
第二章有理数的运算章节小结知识点:1、有理数运算中的一些概念:①互为倒数:a(a≠0)的倒数为1(互为倒数之积等于1)a(正数的倒数仍是正数,负数的倒数仍是负数)②准确数与看似数:与实际完全符合的数称为准确数;与实际接近的数由四舍五入得到的数或大约估计数.(测量所得的结果都是近似数)③科学记数法:把一个数写成a与10的n次幂的乘积的形式,叫做科学记数法;简记为,a×10n把整数M写成a×10n形式的一般步骤是:(1)准确数出整数M的位数m;(2)写出整数数位只有一位的数a;(3)写出“×10n”,其中n=m-1.2、有理数运算法则:①加法:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数之和等于0一个数同0相加,仍得这个数。
②减法:减去一个数,等于加上这个数的相反数。
③乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
几个不为0的数相乘,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
④除法:除以一个数等于乘以这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不为0的数,都得0。
0不能作为除数⑤乘方:求几个相同因数的积的运算,叫做乘方。
乘方运算可以化为乘法运算进行: 正数的任何次幂都是正数。
负数的奇数次幂是负数,偶数次幂是正数。
0的任何次幂都是0。
3、有理数运算律①加法交换律:a+b=b+a ②加法结合律:(a+b)+c=a+(b+c) ③乘法交换律:ab=ba ④乘法结合律:(ab)c=a(bc) ⑤分配律:a(b+c)=ab+ac4、有理数混合运算:先算乘方,再算乘除,最后算加减。
如果有括号就先算括号里面的。
注意:同级运算要由左到右进行。
5、准确使用计算器及运用计算器探索规律及估算 基础知识应用一、选择题1. 下列叙述正确的是( )(A ) 有理数中有最大的数. (B ) 零是整数中最小的数.(C ) 有理数中有绝对值最小的数.(D ) 若一个数的平方与立方结果相等,则这个数是0. 2. 下列近似数中,含有3个有效数字的是( ) (A )5 430. (B )5.430×106. (C )0.543 0. (D )5.43万.3. 下列关于有理数-10的表述正确的是( ) (A )-(-10)<0. (B) -10>-101. (C )-102<0. (D) -(-10)2>0.4. 已知两数相乘大与0,两数相加小于0,则这两数的符号为( )(A) 同正. (B )同负. (C )一正一负. (D )无法确定. 5. 若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( ) (A )10. (B )-10. (C )6. (D )-6. 6. 算式(61-21-31)×24的值为( ) (A )-16. (B )16. (C )24. (D )-24.7. 已知不为零的a,b 两数互为相反数,则下列各数不是互为相反数的是( ) (A )5 a 与5 b . (B)a 3与b 3. (C)a 1与b1. (D)a 2与b2.8、下列说法正确的是( )A.3500用科学记数法表示为35×102B.-1473用科学记数法表示为-1.4×1000C.近似数2.395精确到百分位是2、40D.近似数3.50的有效数字是3、5两个 9、下列结论中,错误的是( )A.平方得1的有理数有两个,它们互为相反数B.没有平方得-1的有理数C.没有立方得-1的有理数D.立方得1的有理数只有一个 10、按下面的按键顺序在某型号计算器上按键:显示结果为( )(A )56.25. (B )5.625. (C )0.562 5. (D )0.056 25. 二、填空题 11. -32的倒数是 ;-32的相反数是 , -32的绝对值是 ;-32的平方是 . 12. 比较下列各组数的大小: (1)4365;(2)-87 -98; (3) -22 (-2)2; (4)(-3)3 -33. 13.(1)近似数2.5万精确到 位;有效数字分别是 ;(2)1纳米等于十亿分之一米,用科学记数法表示25米= 纳米. (3)0.03497精确到百分位是 __ ,此时有 个有效数字;3.47×103 精确到百位是 __。
初中数学_有理数教学设计学情分析教材分析课后反思
《有理数》教学设计1、教学目标:(1)知道正负数的概念,能够用正负数表示具有相反意义的量。
(1)掌握有理数的概念,会对有理数按一定的标准进行分类,培养分类能力。
(3)经历有理数的分类过程,树立对数分类讨论的观点。
重点:正确理解有理数的概念。
难点:正确理解分类的标准,会按照一定的标准进行分类。
2、教学意图:由于本节课例习题有限,所以补充例习题较多。
通过例题的教学,强化学生对有理数相关概念的理解,使学生进一步感受各类数集的相互联系与区别,提高对数集的认识。
通过习题1,纠正学生易出现的错误认识,深化概念的理解。
特别是对0的认识、整数集与正数集的区别、正数与负数同有理数的关联在本题中重点体现。
课堂练习与课后习题的设置主要是针对例题的巩固与补充。
习题(2—6)目的是考查学生对数集的认识程度,同时也是对学生认知能力进一步提升。
3、认知难点与突破方法:本节课的难点在于正确理解有理数的相关概念和分类标准,并按照标准分类。
教学中引导学生掌握相关概念是关键,让学生明确“整数”和“分数”的概念与小学里所学的“正数”和“分数”的概念不同之处。
通过“找区别”明确概念,通过“找联系”确定分类标准,并对有理数进行归类。
进而,逆向写出分类表。
让学生通过感性认知逐步向理性升华,符合学生的认知规律,易于学生接受。
最后通过例、习题的训练强化巩固对概念及相互关系的理解掌握。
一、复习旧知、出示目标1、把下列各数填入相应的大括号内:+6,,3。
8,0,-4,-6。
2,-3。
8,正数集合负数集合2、都找到家了吗?0,既不是正数,也不是负数。
3、这是小学学过的,我们今天更进一步学习!看本节课的学习目标。
二、新课引入1、出示图片:(1)让不同学生分别说出图片上的数都是些什么数,即让学生说出各类数的名称。
教师进一步引导学生归纳出种不同类型的数:正整数、零、负整数、正分数、负分数。
(2)日常生活中,还有很多像零上、零下这样用正负数表示具有相反意义的量,再看着几个题。
第二章 有理数的运算 小结(第1课时) 教学设计-2024-2025学年人教版数学七年级上册
教学设计课程基本信息学科数学年级七年级学期秋季课题第二章小结(第1课时)教科书书名:义务教育教科书数学七年级上册出版社:人民教育出版社教学目标1.进一步加深对有理数运算法则的理解;2.能够熟练掌握有理数加法与减法、乘法与除法运算法则,并正确运算,加强运算能力.教学重难点教学重点:归纳有理数运算法则的共性与特点.教学难点:理解有理数运算与非负数运算的一致性.教学过程教学环节主要师生活动知识回顾在第一章,我们在把数的范围从非负有理数(正有理数、0统称为非负有理数)扩大到有理数,本章我们研究将小学的运算扩充到有理数的运算,从而将非负有理数系扩充成有理数系(域).师生活动:共同回顾.设计意图:整体感受扩充到有理数的运算,体会运算的一致性.知识回顾问题1 有理数运算包含哪些基本的运算?师生活动:回顾有理数的加法、减法、乘法、除法、乘方法则.问题2 我们是怎么研究的?我们举了很多例子,通过具体、特殊到一般进行研究.对于这些法则,我们现在看法则之间的关系可能有一些共性,也有一些各自的特点.比如加法和乘法,在研究的时候,我们发现从方法上它们是有类似的地方.同学想到了,都是通过对参与运算的数的类型进行分类来探究的.加法法则:1.同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.2.绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等乘数的绝对值的积.任何数与0相乘,都得0.对于减法和除法,二者的研究的思路也是类似的,减法可以转化为加法.除法可以转化为乘法,都是通过转化为我们已会的运算来进行.除法除了可以转化为乘法运算之外,我们还可以从先定符号再定绝对值的角度看除法和乘法的关系.除法法则的另一种说法:两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.0除以任何一个不等于0的数,都得0.通过回顾加减乘除法法则,我们发现与负数有关的运算,需要借助绝对值,转化为正数之间的运算.数轴可以帮助我们直观理解有理数的加法、减法运算.比如:随着非负有理数系扩充成有理数系(域),通过规定负数的减法运算,任意两个有理数总能进行减法运算,结果仍然是有理数,与已有的运算保持一致,比如:--=121.同样从数系扩充的角度来看,通过规定乘法负负得正,保证了有理数的乘法运算与已有的非负有理数的乘法运算保持一致.比如:122-×-=()().在乘法的基础上,我们认识了乘方.乘方:求n 个相同乘数的积的运算.负数的奇次幂是负数,负数的偶次幂是正数.显然,正数的任何次幂都是正数,0的任何正整数次幂都是0.设计意图:进一步理解有理数的运算法则.在研究有理数的运算时,一般要考虑两个方面:一是数的符号;二是数的绝对值.实际上,与负数有关的运算,我们都借助绝对值,将它们转化为正数之间的运算.例题精讲 例1 计算:(1)-15+25;(2)-5+(-23);(3)15-25;(4)-5-(-23).例2 计算:(1)(-5)×(-9);(2)(-23)×9; (3)5÷(-25);(4)(-25)÷(-32). 例3 计算:(1)6+15⎛⎫- ⎪⎝⎭-2-(-1.5); (2)-( 6.5)×(-2)÷13⎛⎫- ⎪⎝⎭÷-(5). 解:(1)6+(-15)-2-(-1.5) =6-0.2-2+1.5=5.8-2+1.5=3.8+1.5=5.3;加减混合运算可以统一为加法运算.(2)(-6.5)×(-2)÷(-13)÷(-5) =(-6.5)×(-2)×(-3)×(-15) =6.5×2×3×15 =395. 先将除法转化为乘法,然后确定积的符号,最后求出结果.设计意图:通过例题讲解进一步明确有理数加法、减法、乘法、除法运算法则.学以致用 1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,约为1.496亿千米.试用科学记数法表示1个天文单位是( )千米.(A )1496×105(B )14.96×106 (C )1.496×108 (D )0.1496×108现实生活中,我们会遇到一些比较大的数,读、写这样大的数有一定的困难.这时我们通常采用科学记数法来表示数.一般地,10的n次幂等于10…0(在1的后面有n个0),所以就可以利用10的乘方表示一些大数.把一个大于10的数表示成a×10n的形式(其中a大于或等于1,且a小于10,n为正整数),使用的是科学记数法.思考:等号左边整数的位数与右边10的指数有什么关系?用科学记数法表示一个n位整数(n大于或等于2),其中10的指数是n-1.设计意图:通过实例回顾科学记数法.2.结合具体的数的运算,归纳有关特例,然后比较下列数的大小:(1)小于1的正数a,a的平方,a的立方;(2)大于-1的负数b,b的平方,b的立方.师生活动:具体举例,计算后比较大小.设计意图:通过具体计算,得出结论,锻炼合情推理能力,培养抽象意识.拓展提升通过有理数的除法运算,归纳有理数就是形如pq(p,q是整数,q≠0)的数.有理数的四则运算法则可以表示为如下形式:(1)m p mq npn q nq±±=;(2)m p mpn q nq⨯=;(3)m p mqn q np=÷(p≠0).其中,m,n,p,q均为整数,n,q均不为0.设计意图:在有理数系(域),从有理数为分数形式的角度认识有理数的四则运算,加强对有理数运算的理解,为学有余力的学生提供抽象能力的发展空间.课堂小结1.本节课主要复习回顾了哪些内容?有理数的加法、减法、乘法、除法、乘方运算.在有理数系(域)中,有理数的和、差、积、商(除数不为0)仍然是有理数.2.在研究有理数的运算时,运用到了哪些数学思想方法?由特殊到一般、分类讨论、转化.3.在研究有理数的运算时,一般考虑哪两方面?一是数的符号;二是数的绝对值.4.随着非负有理数系扩充成有理数系(域),这种数系的扩充,给数的运算带来了怎样的新变化呢?在不同的运算中有不同的感受.比如,乘法运算中,规定了负负得正,保证了有理数的乘法运算与已有的非负有理数的乘法运算保持一致.课后任务教科书第61页,复习题2第1,4,6题.。
解析有理数中蕴涵的数学思想
解析《有理数》中蕴涵的数学思想同学们可能已经知道,我们所学习的数学知识好比是一棵大树的枝叶,而数学思想和数学思想方法就好比是这棵大树的树干.树干为枝叶的良好生长提高了丰富、充足的养分,同样数学思想和方法是数学知识的灵魂和纽带,它可以把若干的数学知识串联起来.因此,在平时的数学学习过程中,我们不仅要牢固掌握基础的数学知识,而且还要明晰其中蕴涵的数学思想和方法.这样,可以使得我们对数学知识有更加系统、深刻的了解和认识,同时也能做到对数学知识的高瞻远瞩、综观全局.下面就和同学们一起对《有理数》一章中的数学思想进行回顾、总结.一、分类讨论的思想我们在研究解决有关问题的时候,常常根据问题的特点和具体要求,按照一定的标准,把这个问题分为若干种互不重复的情形,然后加以处理的一种数学思想就称为分类讨论的思想.分类讨论的思想在本章中体现得比较多,也比较充分.比如,对有理数的分类,我们可以有不同的分类标准,常见的有:(1)按照正负性分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负数正分数正整数正数有理数0;(2)按照整数、分数分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0.在给出绝对值的意义时,也是分类说明的:正数的绝对值等于其本身;负数的绝对值等于它的相反数;0的绝对值是0.同样,在给出有理数的加法法则时,也是通过分类的形式确定的:同号两数相加,符号不变,并把绝对值相加;异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;两个数中有一个为0,和等于另一个加数.运用分类讨论的思想研究问题是非常有效的,它可以使得解决的对象更加清晰明了,把问题变大为小,变笼统为具体,最根本的是达到了容易解决问题的目的.当然,我们也要清楚,分类时必须遵循标准统一,不能重复也不能遗漏的原则.【例1】若a是有理数,|a|-a能不能是负数?为什么?思路分析:a是有理数.它可能是正有理数、负有理数或0,故需分a>0,a=0,a<0三种情况讨论。
有理数的小结与复习
要素确定,三者缺一不可。 3、把一个绝对值大于 10的数用科学记数法表示成
a ? 10n 的形式时,一定要注意 1≤︱a︱<10 4、有理数的减法可以转化为加法,有理数的除法可
以转化为乘法,的理数的乘方实质是求几个相同 因数的乘积。
湖北鸿鹄志文化传媒有限公司——助您成功
义务教育教科书(湘教版 ) 七年级数学上册
第1章小结 与复习
湖北鸿鹄志文化传媒有限公司——助您成功
一、回顾: 1、有理数可以如何分类? 2、怎样画一条数轴?怎样用数轴上的点来表
示一个有理数? 3、如何求一个数的相反数?如何求一个数的
绝对值? 4、怎样比较有理数的大小? 5、怎样进行有理数的加、减、乘、除乘方运
? 练习: 1、绝对值最小的正数是( ),绝对值最小的
负数是( )。 2、互为相反数的两数之和为( ),互为倒数
的两数之积为( )。 3、相反数与它本身相等的数是( ),倒数与
它本身相等的数是( )
湖北鸿鹄志文化传媒有限公司——助您成功
? 二、计算 (1)(-2)×(-3)÷(-6) (2)(-7)×(-1/4)÷(-1/4) (3)(-3.5)÷1/2×10/7 (4)(-4)÷1/4÷1/8
湖北鸿鹄志文化传媒有限公司——助您成功
三、用科学记数法表示下列各数: (1)702000000000 (2)-85000000
湖北鸿鹄志文化传媒有限公司——助您成功
小结: 本节课你复习了哪些知识?
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
算? 6、有理数的运算满足哪些运算律?
湖北鸿鹄志文化传媒有限公司——助您成功
有理数知识总结及经典例题
有理数一、学习目标:理解正负数的意义,掌握有理数的概念和分类;理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的运算;通过熟练运用法则进行计算的同时,能根据各种运算定律进行简便运算;通过本章的学习,还要学会借助数轴来理解绝对值,有理数比较大小等相关知识。
二、重点难点:有理数的相关概念,如:绝对值、相反数、有效数字、科学记数法等,有理数的运算;有理数运算法则尤其是加法法则的理解;有理数运算的准确性和如何选择简便方法进行简便运算。
三、学习策略:先通过知识要点的小结与典型例题练习,然后进行检测,找出漏洞,再进行针对性练习,从而达到内容系统化和应用的灵活性。
四、知识框架:五、知识梳理1、知识点一:有理数的概念(一)有理数:(1)整数与分数统称__________________按定义分类: _______________⎧⎧⎫⎪⎪⎬⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩_ _ _ _ _ _ _ _ _有理数 _ _ _ _ __ _ _ _ _ _ _ _ _ _ 按符号分类:__________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩_ _ _ _ _ _ _ _有理数零_ _ _ _ _ _ _ _注:①正数和零统称为_______________;②负数和零统称为_______________③正整数和零统称为_______________;④负整数和零统称为_______________.(2)认识正数与负数:,2008等大于_______________的数,叫做_______________.①正数:像1,,175,-2008等在正数前面加上“-”(读作负)号的数,叫__________注意:_________②负数:像-1,,-175都大于零,___________都小于零.“0”即不是_________,也不是__________.(3)用正数、负数表示相反意义的量:如果用正数表示某种意义的量,那么负数表示其___________意义的量,如果负数表示某种意义的量,则正数表示其___________意义的量.如:若-5米表示向东走5米,则+3米表示向____________走3米;若+6米表示上升6米,则-2米表示____________;+7C表示零上7C,-7C则表示____________ .(4)有理数“0”的作用:(二)数轴(1)概念:规定了______________ 、______________和______________的直线注:①______________、______________、______________称为数轴的三要素,三者缺一不可.②单位长度和长度单位是两个不同的概念,前者指所取度量单位的,后者指所取度量单位的,即是一条人为规定的代表“1’的线段,这条线段,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.(2)数轴的画法及常见错误分析①画一条水平的______________;②在这条直线上适当位置取一实心点作为______________:③确定向右的方向为______________,用______________表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的要一致.⑤数轴画法的常见错误举例:错例原因不统一没有(3)有理数与数轴的关系一切有理数都可以用数轴上的表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数,正数都大于,负数都小于,正数大于一切负数.注意:数轴上的点不都是有理数,如π.(三)相反数(1)相反数:只有的两个数互称为相反数.特别地,0的相反数是;若a与b互为相反数,则___+= ,反之亦然 .a b(2)相反数的性质:①代数意义:只有的两个数叫做互为相反数,特别地,O的相反数是0.相反数必须出现,不能单独存在.例如+5和互为相反数,或者说+5是的相反数,-5是的相反数,而单独的一个数不能说是.另外,定义中的“只有”指除以外,两个数,注意应与“只要符号不同”区分开.例如+3与-3互为相反数,而+3与-2虽然不同,但它们不是相反数.②几何意义:一对相反数在数轴上应分别位于两侧,并且到原点的________相等.这两点是关于_____ 对称的.③求任意一个数的相反数,只要在这个数的前面添上“”号即可.一般地,数a的相反数是;这里以a表示任意一个数,可以为、、负数,也可以是任意一个代数式.注意-a不一定是.注意:当a>0时,-a 0(正数的相反数是数);当a=0时,-a O(0的相反数是 );当a<0时,-a O (负数的相反数是 ).④互为相反数的两个数的和为,即若a与b互为,则a+b=0,反之,若a+b=O,则a与b互为.⑤多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部;一个正数前面有个“-”号,也可以把“-”号全部去掉;一个正数前面有 个“-”号,则化简后只保留一个“-”号,即“ 负 正”(其中“奇偶”是指正数前面的“ ”号的个数的 ,“负正”是指化简的最后结果的 .(四)绝对值(1)绝对值的代数意义及几何意义① 绝对值的代数意义:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 .② 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的 与_______的距离.数a 的绝对值记作 .注意:①取绝对值也是一种 ,这个 符号是“ ”,求一个数的绝对值,就是根据性质 绝对值符号.②绝对值具有 性,取绝对值的结果总是 .③任何一个有理数都是由 部分组成: 和它的 ,如:-5,符号是 ,绝对值是 .(2)字母a 的绝对值的分类___,()___,(0)___,(0)a o a a a >⎧⎪==⎨⎪<⎩ 或___,(0)___,(0)a a a ≥⎧=⎨<⎩ 或___,(0)___,(0)a a a >⎧=⎨≤⎩ (3)利用绝对值比较两个负有理数的大小规则:两个负数,绝对值大的反而 .步骤:①计算两个负数的 .②比较这两个 的大小.③写出正确的判断结果.④如果若干个非负数的和为0,那么这若干个非负数都必为 . 例如:若0,____,____,______a b c a b c ++====则2、知识点二:有理数运算(一)有理数比较大小(1)数轴上的数,右边的数总 左边的数.(2)正数大于0,负数小于0,正数大于负数;(3)两个负数,绝对值大的反而 ;(4)两数比较大小,可按符号情况分类:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩同正:__________大的数大两数同号同负:__________大的反而小比较大小两数异号(一正一负):______大于_______正数与0:_______大于0其中有时负数与0:_______小于0(二)有理数的加减法(1)有理数加法法则①同号两数相加,取相同的 ,并把绝对值 .②绝对值不相等的异号两数相加,取 的加数的符号,并用较大的 减去较小的 .③一个数同0相加,仍得 .(2)有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的 ;②求和的绝对值,即确定是两个加数的绝对值的 .(3)有理数加法的运算律①两个加数相加,交换加数的位置, 不变.即a+b=b+a(加法 律)②三个数相加,先把前两个数相加,或者先把后两个数相加, 不变.即 (a+b)+c=a+(b+c)(加法 律)(4)有理数加法的运算技巧①分数与小数均有时,应先化为 形式.②带分数可分为 与 两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合 得④若有可以凑整的数,即相加得整数时,可先结合 .⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥ 相同的数可以先结合在一起.(5)有理数减法法则减去一个数,等于 ,即a-b=a+( )(6)有理数减法的运算步骤①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.(7)有理数加减混合运算的步骤①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上,因此加减混合运算可以依据上述法则转变为只有的运算,即变为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式,例如:(+3)+()+(-9)+(+5)+(-11)=+5-11,它的含义是正3,负,负9,正5,负11的和。
有理数的小结
有理数那点事儿:一次简单易懂的小结哎呀,说到有理数啊,这可是咱们数学世界里的一大类数字朋友。
它们不像无理数那么神秘莫测,也不像自然数那样简单直白,但有理数却有着自己独特的魅力和规则。
今天,咱们就来简单聊聊有理数那点事儿,给它们来个接地气的小结吧!首先啊,咱们得知道啥是有理数。
简单来说,有理数就是可以写成两个整数相除的数的集合。
这里要注意哦,分母可不能是0,不然数学界可就要乱套了。
所以,像整数、分数这样的数,都是有理数的大家庭成员。
有理数有个特别好玩的地方,就是它们可以在数轴上找到对应的位置。
想象一下那条直直的数轴,上面密密麻麻地排满了有理数。
正数在右边,负数在左边,0在中间当裁判。
每个有理数都有一个专属的小格子,它们按照大小顺序乖乖地站好队。
接下来啊,咱们得聊聊有理数的四则运算。
加减乘除这些基本操作,对有理数来说都不在话下。
不过啊,运算的时候得小心点儿,特别是涉及到负数的时候。
比如,减去一个数就相当于加上这个数的相反数;而除以一个负数呢,结果就会变号。
这些规则啊,得牢牢记住才行。
还有啊,有理数之间还可以比较大小。
这个就比较简单了,就像咱们平时比身高、比体重一样。
先看符号:正数总是大于0大于负数;再看绝对值:绝对值大的数在数轴上离原点更远所以更大。
这样一比较啊,有理数之间的大小关系就一目了然了。
最后啊咱们还得知道有理数和无理数的区别。
简单来说呢无理数就是那些不能写成两个整数相除的数的集合比如π啊、e啊这些神秘莫测的家伙。
它们和有理数就像是数学世界里的两个不同种族虽然生活在同一个空间里但各有各的规则和玩法。
好了说了这么多关于有理数的那点事儿大家是不是觉得它们其实也挺有趣的呢?虽然它们不像童话故事里的角色那样会说话会动但它们却以自己独特的方式存在于我们的数学世界里默默地陪伴着我们成长和学习。
所以下次遇到有理数的时候不妨多跟它们打个招呼吧!说不定它们会给你带来更多的惊喜和发现哦!。
§2 小结与复习(1)有理数的概念
练习 C:
1、相反数等于它本身的数是 ;
第 2 页 共 3 页
lj 淮安市吴集镇初级中学 七年级数学 教案
教 学 环 节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要 (启发、精讲、活动等) 。 。
再次 优化
2、 若 a+b=0, 则a与b
; 若
a =1, 则a与b b
教学重 难 点 教 具 与课件
教学重点:有理数的有关概念及求法。 教学难点:有理数的有关概念及求法。
复习:有理数的概念 1、正负数 板 书 设 计 2、有理数、无理数 3、数轴 4、绝对值 教 学 环 节 学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要 (启发、精讲、活动等)
有理数:有限小数或无限循环小数。
第 1 页 共 3 页
lj 淮安市吴集镇初级中学 七年级数学 教案
教 学 环 节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要 (启发、精讲、活动等)
再次 优化
练习 A:
1、-3.872 ( ) A.是负数, 不是分数; B.不是分数, 是有理数; C.是分数,不是有理数; D.是分数,也是负数。 2、将下列各数填在相应的集合中
3、 写出大于-4 且小于 3 的所有整数 4、求相反数: 0.26,- ,-3,-a
2 5
五、绝对值: 1、定义, 小。
2、性质,
3、两个负数比较大
练习 D:
1、 --3 是( A.整数 B. 负数 ) C. 正数或 0 ) C. -1 D. 负数或 0
2、绝对值最小的是( A. 0 B. 1 3、 若 a -3
有理数的基本概念公开课小结
有理数的基本概念公开课已经结束了,在公开课上,主要展示了新概念的学习方法。
这一讲概念很多,首先是负数意义的引入,然后对数进行了新的分类,学习了有理数的概念。
在学习的过程中,我们用图形把数的分类表现出来,把抽象的数用形象的图形展示,帮助我们理解不同数的类别之间的联系和差别。
有理数的分类注意小数,它可以分为两类,一部分属于分数(分数属于有理数),一部分属于无理数。
数轴的知识点有两个:一是数轴的三要素;二是数轴与数的对应关系。
除了知识点,数轴的常考题型还有两种:比较数的大小和简单动点。
然后我们先学习了绝对值的几何意义,和相反数的概念。
后来发现绝对值和相反数的代数意义互相解释,相互关联。
所以我们要先通过几何意义来理解这两个概念,然后通过代数意义来处理这两个概念实际应用。
最后我们学习了倒数的概念,注意相反数和倒数代数意义的表达式的使用。
总结这次公开课,学习新概念的方法就是把抽象的东西形象具体化,把知识点和考点联系起来,同过概念发现考点,通过习题巩固对知识点的理解。
最后我们在题型积累处留下了空白,希望学生在学习和总结知识的同时,也不忘对题型和解题技巧的积累,把易错题和经典题都记下来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①只有符号不同的两个数,叫做互为相反数,0的相反数是0
②a的相反数-a
4、绝对值
①一般地,数轴上表示数a的点与原点距离,表示成|a|。
a(a≥0)
②|a|=
-a(a≤0)
师生问好
学生思考
学生观察
回答问题
学生观察
学生回答
教
学
过
程
⌒含
时
间
分
配
教学内容及教师活动
学生活动
5、倒数
①乘积是1的两个数叫作互为倒数。
2、- a表示的数是()
A、负数B、正数
C、正数或负数D、a的相反数
3、化简下列各式的符号。
(1)+(-3)
(2)-(-2.3)
(3)-【-(-1)】
(4)-{-【+(+6)】}
4、比较下列各对数的大小。
(1)0.02和-200
(2)- 和-
(3)- 和-
(4)-(-2.5)和︱- ︱
小结:
有理数的两种分类
;
理解有理数的五个基本概念。
五、布置作业
试卷
学生讨论
共同练习
学生总结
6、有理数中,最小的正整数是_________,最大的负整数是___________
学生观察
学生回答
学生观察
学生回答
学生讨论
共同完成
学生认真观察
独立思考,
师生共同完成
20分
教
学
过
程
含
时
间
分
配
1分
教学内容及教师活动
学生活动
四、巩固练习
1、- 3 的相反数、绝对值、倒数分是___________________________;
结、归纳所学的知识。增进学生学习数学的一种体验。
教学重点
有理数的基本概念及分类
主要
教法
教学难点
数轴、相反数、绝对值之间关系
教具
多媒体
学习
指导
类比----观察----引导-----讲解
板
书
设
计
有理数的基本概念:
1、概念:
2、分类
例题分析
练习小结
教
学
后
记
1分
3分
教
学
过
程
含时Βιβλιοθήκη 间20分分配
教学内容及教师活动
理科教案总第_______课时
课题
对有理数的认识小结
课型
新授课
授课时间
_月_日(星期__)
第___课时(共____课时)
教
学
目
标
知识与技能:掌握有理数的两种分类
;理解有理数的五个基本概念。
过程与方法:通过复习概念,培养学生的应用知识的能力;通过例题的计算,培养学生的运算能力。
情感态度与价值观:培养学生养成良好的学习习惯,善于总
学生活动
一、组织教学
二、引入新课
有理数的基本概念:
1概念:
有理数、数轴、相反数、绝对值、倒数。
2分类
(1):整数和分数
(2):正有理数、负有理数和零
三、讲授新课
1、正数与负数
①表示大小
②在实际中表示意义相反的量
③带“-”号的数并不都是负数
2、数轴
原点
①三要素正方向
单位长度
②如何画数轴
③数轴上的点与有理数
2、最小的整数是()
A、- 1B、0C、1D、不存在
3、向东走10米记作+10米,则向西走8米记作___________
4、在- ,π,0,0.333……,3.14,- 10中,有理数有()个
A、1B、2C、4D、5
5、正整数集合与负整数集合合并在一起构成()
A、整数集合B、有理数集合
C、自然数集合D、以上都不对
②a的倒数是 (a≠0)
③a与b互为倒数ab=1
6、相反数是它本身的数是0
①倒数是它本身的数是±1
②绝对值是它本身的数是非负数
例:1、下列语句正确的的()个
(1)带“-”号的数是负数(2)如果a为正数,则- a一定是负数
(3)不存在既不是正数又不是负数的数(4)00C表示没有温度
A、0B、1C、2D、3