Biochem2_Proteins
生物化学综述
生物化学课程论文…………………………………………………………………………………………………题目: 蛋白质翻译后修饰综述学院:生命科学技术学院(生化与分子)成员:祝乐清(1433121003)任课老师:李弘剑二О一五年一月七日蛋白质翻译后修饰摘要:后基因组时代的到来意味着生命科学研究重心转向功能基因组学及功能蛋白质组学等新领域(蛋白质翻译后修饰是蛋白质组学的重要组成部分(蛋白质经翻译后修饰改变自身的空间构象、活性、稳定性及其与其他分子相互作用等方面的性能,从而参与调节机体多样化的生命活动。
多数蛋白质存在翻译后修饰,目前已知的蛋白质共价修饰方式多达200余种,主要包括磷酸化、亚硝基化、硝基化、泛素化和小泛素相关修饰物化(SUMO)等。
我们就蛋白质翻译后修饰类型和生物学功能做以下综述。
关键词:蛋白质翻译后修饰;磷酸化;糖基化;硝基化;亚硝基化;泛素化;SUMO 1磷酸化磷酸化是蛋白质翻译后修饰中最广泛的共价修饰方式,三磷酸腺苷/三磷酸鸟苷的γ位磷酸基团经磷酸化激酶催化转移到蛋白质特定位点上,而其反向过程去磷酸化由蛋白磷酸酶催化去除相应磷酸基团。
发生磷酸化的蛋白质按磷酸化残基不同分为4类:O-磷酸盐蛋白质”由羟氨基酸如丝氨酸、苏氨酸或酪氨酸残基磷酸化形成:N-磷酸盐蛋白质:由天冬氨酸或谷氨酸残基磷酸化形成:酰基磷酸盐蛋白质:由精氨酸、赖氨酸或组氨酸残基磷酸化形成:S-磷酸盐蛋白质:由半胱氨酸残基磷酸化形成。
其中,丝氨酸/苏氨酸磷酸化主要是通过改变蛋白质空间结构影响酶活性。
酪氨酸磷酸化除上述作用外,更重要的是为与其他蛋白质形成多蛋白复合体提供基团,而形成的多蛋白复合体可进一步促进蛋白质磷酸化。
在多细胞生物有丝分裂中,相比非磷酸化的组蛋白H380位点苏氨酸,组蛋白H2A和H4优先与其磷酸化形式反应,增加与邻近核小体结合。
从而促进染色质的紧密贴合。
表皮生长因子受体654位的苏氨酸经蛋白激酶C催化发生磷酸化,可抑制溶酶体对其自身的降解,此外,654位苏氨酸磷酸化可以保护表皮生长因子与表皮生长因子受体的结合.共济失调毛细血管扩张症突变基因磷酸化的小鼠CGG三聚体重复结合蛋白1的164位苏氨酸是端粒的保护信号,未被磷酸化的CGG三聚体重复结合蛋白1的164位苏氨酸的过表达引起端粒缩短和融合。
生物化学BIOCHEMISTRY
生物化学BIOCHEMISTRY绪论ProlegomenaWhat is BIOCHEMISTRY?CHEMISTRY:the branch of science which deals with the identification of the substances of which matter is composed, the investigation of their properties and the ways in which they interact, combine, and change, and the use of these processes to form new substancesBiochemistry: the branch of science concerned with the chemical and physic-chemical processes which occur within living organismsIncluding:The chemistry of the components in living organisms (static biochemistry)The principles for the chemical changes in living organisms (dynamic biochemistry)The chemistry of metabolism and cell functions (functional biochemistry)生物化学的主要分支:按化学的研究范畴划分:生物无机化学(bioinorganic chemistry),生物有机化学(bioorganic chemistry),生物物理化学(biophysical chemistry)按生物学的研究领域划分:动物生物化学(animal biochemistry),植物生物化学(plant biochemistry),微生物生物化学(microbe biochemistry)按研究对象划分:蛋白质化学(protein chemistry),核酸化学(nucleate chemistry)按与生产、生活关系划分:生理生化(physiological biochemistry),工业生化(industrial biochemistry),农业生化(agricultural biochemistry),医药生化(medicinal biochemistry)生物化学的使命:揭示生命现象的本质,促进生命科学发展;改善人类健康水平和生活质量;促进物种的改良和优化;带动工、农业的发展和变革分子生物学Molecular biology:什么是分子生物学:在分子水平上研究生物大分子的结构与功能,从而阐明生命现象本质的科学主要研究领域:蛋白质体系,蛋白质-核酸体系,蛋白质-脂质体系分子生物学的三个支柱学科:生物化学,遗传学,微生物学分子生物学的地位:由学科分支成长为主流前沿,殊途同归的集大成者,生物学科走向统一的前驱古代生物化学(在化学中萌芽):19世纪以前:A.L. Lavoisier, “呼吸作用的本质和燃烧是一样的”;C.W. Scheele, 多种生化物质的分离;J.von.Liebig, 新陈代谢(stoff wechsel);Hoppe Seyler, 1877年,提出“biochemie”近代生物化学(由静态走向动态):19世纪中叶——20世纪50年代,相关学科的蓬勃发展:1804,John Dalton 提出原子论;1859,Port Darwin 进化论;1865,Gregor Mendel 遗传定律;1869,D.L.Mendelyeev 元素周期律生物化学的发展:1848, Helmhoitz & Bernard,肝脏的生糖功能;1869,J.F. Michel 分离“核素”(核酸);1897,Bucher ,酵母榨出液可使蔗糖发酵生成乙醇;1902,D.A. Leeven,从核酸中分离胞嘧啶;1904,Knoop ,脂肪酸的 -氧化;1907,E.H. Fischer ,蛋白质的降解与合成;1912,F.G. Hopkins,确立维生素概念,形成剑桥生物化学学派;1921,F.G.班廷和C.H.贝斯特,分离纯胰岛素;1926,J.B. Sumner 分离脲酶,并证明其是蛋白质;1929,Lohmann & Fiske ,ATP的能量功能;1931,Warburg 制得呼吸酶并研究其生物氧化作用;1937,Krebs,三羧酸循环的假说;1950,L.C. Pauling,蛋白质构象(α-helix);1953,Watson & Crick DNA的双螺旋模型现代生物化学阶段(分子生物学时代):20世纪中叶——至今,技术的进步使生物学走向新的时代:1933,Ernst Ruska,电子显微镜,1935,G.C. 海韦希,同位素技术,1940‟s,遗传学开始向分子水平迈进,1930‟s~1940‟s,计算机和自动控制技术的巨大进步生物学各分支向分子水平进军并走向融合:A. L. Hodgkin, 神经兴奋和传导的离子学说;1953,F. Sanger,胰岛素序列测定;1954,S. Benzer,噬菌体基因精细结构分析;1954,M. Calvin,光合作用的CO2固定,Calvin循环;1956,E.W. 萨瑟兰,cAMP,第二信使;1956,F.H.C. Crick,中心法则;1962,M. W. Nirenberg,遗传密码的发现;1965,邹承鲁、刑其毅等,人工合成牛胰岛素;1970,H.O. Smith,限制性内切酶;1970,梁栋材等,精度0.25nm的胰岛素结构(1974,达0.18nm);1975,F. Sanger,建立DNA序列分析方法;1980,A. Keluger,DNA与组蛋白的结构基因工程和基因技术的兴起:P. Berg,DNA体外重组;1973,S.N. Cohen,外源基因在大肠杆菌的表达;1975,美国Asiomar 国际会议,制定第一个基因安全准则;1977,H.W. Boyer等,第一个基因工程产品——生长激素释放抑制激素(somatostatin);1983,λ噬菌体DNA全序列;1985,Mulis,聚合酶链式反应技术(PCR);1987,转基因植物:荧光素转入烟草;1990,Anderson & Cular 第一例基因治疗成功;1997,第一只成年动物体细胞克隆的绵羊——Dolly;2000,人类基因组计划(HGP)公布第一张草图生物化学的一些基本问题什么是生命:我们所处在的地球充满着无数的生物,从最简单的病毒、类病毒到菌藻树草,从鱼虫鸟兽到最复杂的人类,处处都可以发现它们的踪迹,觉察到生命的活动。
癌细胞高gsh水平二硫键-概述说明以及解释
癌细胞高gsh水平二硫键-概述说明以及解释1.引言1.1 概述概述癌症作为一种致命性疾病,在当前社会中占据了重要地位。
研究人员不断努力寻找更有效的治疗方法,以提高患者的生存率和生活质量。
近年来,关于癌症发病机理的研究引起了广泛的关注。
其中,癌细胞内高谷胱甘肽(GSH)水平和二硫键的形成成为了研究的热点之一。
癌细胞具有异常活跃的代谢状态,使其对氧化应激具有一定的抵抗能力。
作为一种重要的抗氧化剂,GSH在癌细胞中的水平明显升高。
高水平的GSH不仅能够保护细胞免受外界的氧化性损害,还能够调节细胞内的氧化还原平衡。
因此,GSH被认为是癌细胞存活和增殖的重要因素。
在癌细胞中,二硫键的形成和断裂也具有重要的生物学意义。
二硫键是一种连接两个半胱氨酸残基的共价键,具有很强的稳定性和抗氧化能力。
正常细胞中的二硫键能够维持蛋白质的结构和功能,但在癌细胞中,二硫键的形成受到调控,并且更多地参与了癌细胞的增殖和转化过程。
就癌细胞高GSH水平和二硫键的关系而言,有研究表明高水平的GSH能够促进癌细胞中二硫键的形成。
这种形成在某种程度上增强了癌细胞的生存能力和异常增殖能力。
因此,研究人员对于癌细胞中高GSH水平和二硫键的形成机制进行深入研究,以期望找到新的治疗策略,提高癌症的治愈率。
本文将从以下几个方面进行阐述:首先,介绍高GSH水平和癌细胞增殖之间的关系;其次,分析二硫键在癌细胞中的形成与断裂的影响;最后,探讨高GSH水平和二硫键的未来研究方向。
通过对这些内容的深入研究,我们有望揭示癌症发病机理的新线索,为癌症的治疗提供新的思路和方法。
1.2文章结构文章结构部分应包括作者对于整篇文章的整体安排和组织的说明。
以下是一个可能的示例:1.2 文章结构本文分为引言、正文和结论三个部分,以清晰有条理的方式呈现关于癌细胞高GSH水平二硫键的研究内容。
在引言部分,将对本文的研究背景和意义进行概述,介绍癌细胞以及GSH水平与二硫键之间的关系。
植物抗冻蛋白的生物化学研究进展_刘莹
第20卷 第4期2005年8月内蒙古民族大学学报(自然科学版)Journal of Inner Mongolia University for NationalitiesVol.20 No.4Aug.2005植物抗冻蛋白的生物化学研究进展Ξ刘 莹(辽宁工程技术大学基础部生物化学教学中心,辽宁阜新 123000)摘 要:抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪60年代发现以来,研究对象先后从极区鱼类、昆虫转移到植物材料上.抗冻蛋白包括抗冻糖蛋白、抗冻蛋白Ⅰ、抗冻蛋白Ⅱ、抗冻蛋白Ⅲ、抗冻蛋白Ⅳ.简要介绍了植物抗冻蛋白的生化特征、抗冻机制及其应用研究,并对抗冻蛋白的基因工程作了系统综述.关键词:抗冻蛋白;生化特征;抗冻机制;基因工程中图分类号:Q53 文献标识码:A 文章编号:1671-0185(2005)04-0421-04Advance on Biochemical Chauracteristics of Antifreeze ProteinsL IU Y ing(Biological Technology&Engineering GroupBasic ScienceDepartment,Liaoning Technical University,Fuxin123000,China)Abstract:Antifreeze proteins(AFPs)were a kind of protein or glycoprotein which inhibited thegrowth of ice crystals.In last3decades,it had been discovered in polafish,overwintering insects,and then in plants.It included AF GP,AEPⅠ,AFPⅡ,AEPⅢand AFPⅣ.In this paper,biochem2ical characteristics,antifreeze mechanism,applications of antifreeze proteins as well as genetic engi2neering were reviewed.K ey w ords:Antifreeze proteins;Biochemical characteristics;Antifreeze mechanism;G enetic engi2neering 抗冻蛋白(Antifreeze proteins,AFPs)最早是1969年Devries在极区海鱼淋巴中被发现,是一类抑制冰晶生长的蛋白质,能以非依数性形式降低水溶液的冰点而对其熔点影响甚微,从而导致水溶液的熔点和冰点之间出现差值.这种差值称为热滞活性,因而AFPs亦称为热滞蛋白〔1〕.从二十世纪60年代抗冻蛋白被发现以来,引起许多实验室的研究兴趣,研究对象先后从极区鱼类扩展到昆虫,最后又扩展到植物甚至微生物.这些研究使我们对抗冻蛋白的结构、功能和作用机理有了较为深入的了解.1 植物抗冻蛋白的生化研究植物抗冻蛋白的研究比较晚,被研究的植物材料多达三十余种,真正被分离纯化的并不太多.1992年,加拿大Griffith等〔2〕第一次明确提出获得植物内源AFPs.他们从经低温锻炼的能够忍受细胞外结冰的叶片质外体中得到并部分纯化该蛋白.有7个多肽组分表现出明显的抗冻活性,5种较大分子量的多肽(16,25,32,34,36Ku)活性较高,它们富含天冬酰氨/天冬氨酸,谷氨酸/谷氨酰氨,丝氨酸,苏氨酸等.Ξ收稿日期:2005-04-23作者简介:刘莹(1970-),男,辽宁阜新人,讲师,在读硕士研究生,主要从事植物生理学及生物化学方面的研究.224 内 蒙 古 民 族 大 学 学 报 2005年Hon〔3〕等证明冬黑麦AFPs具有抗冻、抗病双重功能,经氨基酸分析发现其中有3种AFPs(16,25,32Ku)的N-端序列与3种抗菌蛋白(内切β-1,3葡聚糖酶,内切几丁质酶,甜蛋白类似蛋白)具有同源性.1994年从欧白英的冬季枝条中分离得到分子量为67的抗冻糖蛋白,富含甘氨酸.用β-半乳糖酶处理该蛋白后其抗冻活性消失,表明半乳糖是该蛋白的关键组成部分〔4〕.1996年从强抗冻植物沙冬青叶片中分离出热稳定的抗冻糖蛋白,分子量为40Ku〔5〕.这种抗冻糖蛋白N端的20个氨基酸的序列可能与植物凝集素具有同源性.1998年英国Y ork大学的Dawnworrall等发表了胡萝卜抗冻蛋白及其基因的研究论文,标志着第一个植物抗冻蛋白基因的发现.胡萝卜的抗冻蛋白由富含亮氨酸的重复序列组成,序列编码与多聚半乳糖酸酶抑制蛋白有很高的同源性〔6〕.其分子量为36Ku,等电点为5.0,体外热滞值为0.35℃,去掉糖链也不影响其抑制重结晶的活性.1999年从桃树(Prunus persica)的树皮中提取到一种脱水蛋白PCA60〔7〕.这是第一次发现具有脱水素蛋白特性的抗冻蛋白.其富含赖氨酸、甘氨酸,分子量为50ku,具有较强修饰冰晶的能力.2000年科学家在低温诱导的黑麦草中发现具有热稳定性的抗冻蛋白〔8〕.这种蛋白由118个氨基酸组成,分子量为11.77Ku.其活性约为大洋条鳕AFPⅢ的200倍,其热滞值远远低于鱼类和昆虫.该蛋白在100℃时仍能保持稳定,由于它有很好的重结晶抑制效应,所以该植物能忍受组织内冰晶的形成而使机体免受损害.2001年,在冰缘植物珠芽蓼叶片中提取质外体蛋白发现AFPs,分子量为15.2~72.3 Ku,均为抗冻糖蛋白〔9〕.植物抗冻蛋白的多样化必然会发现一些不同于已知抗冻方式的抗冻蛋白,在进化方面,植物抗冻蛋白即使种源相近,在抗冻蛋白的表达上也不尽相同.植物的抗冻蛋白的这种特性也许会为生物技术的应用提供一个广阔的前景.此外,Sun等从生长在加拿大北极地区的植物的根际中分离得到一种根瘤菌(Pseudomonas putida GR12-2).该细菌能在冬春季5℃条件下增殖,还能渡过-20℃和-50℃的冰冻温度而存活下来.在5℃生长温度下,会合成和分泌一种具有抗冻活性的蛋白质.Sun的工作给人们一种希望,用细菌来生产细菌本身抗冻蛋白,其不存在表达障碍问题.2 抗冻蛋白的特性及其抗冻机制2.1 抗冻蛋白的功能特性〔10〕(1)抗冻蛋白只影响结冰过程,几乎不影响熔化,非依数性地降低溶液的冰点,使冰点低于熔点.这种冰点低于熔点的差异称为热滞效应.(2)抗冻蛋白浓度对冰晶形态有修饰作用.在纯水中,冰通常以平行于晶格基面(a轴)的方式生长,而在垂直基面(c轴)很少生长,因此冰晶格呈扁圆状.低浓度的抗冻蛋白优先抑制冰沿a轴生长,因此冰晶格的六边柱边面变得明显.而在高浓度抗冻蛋白下,冰晶格主要沿c轴生长,形成六边双棱锥及针形晶体.(3)抗冻蛋白显著抑制冰晶生长速率,极低浓度就能抑制重结晶.抗冻蛋白在生物体内的表达受温度和季节变化的影响而改变,即抗冻蛋白及其mRNA的量,可以从夏季到冬季成倍地增加,最高可以达到1000倍.此外它的活性还会受外界物质的影响而发生改变.1991年发现2种昆虫的抗冻蛋白的生物活性可因添加其特异兔多克隆抗体而大大增强.1998年发现越冬昆虫Dendroides canadensis幼虫的抗冻蛋白可因添加低分子量溶质而增强热滞活性.其中效应最强的溶质为柠檬酸,它可提高热滞活性近6倍.其次是琥珀酸、苹果酸、天冬氨酸、谷氨酸和硫酸铵,它们提高热滞活性约4倍.2.2 抗冻蛋白的抗冻机制在动植物中发现的AFPs结构各异,没有共同的演化规律,结构不同AFPs不一定具有相同的功能.因此认为不同的AFPs的抗冻机理也不尽相同.有关鱼类抗冻蛋白抗冻机制的研究已有较多的报道,但昆虫和植物抗冻蛋白机理的研究几乎未见报道.对鱼类抗冻蛋白作用机制的研究曾提出多种假说,如结合水学说、空间屏障及吸附抑制机制等.就目前研究来看,吸附抑制学说比较合理.吸附抑制学说最早由Ray2 mond和de vires提出.它们认为抗冻蛋白吸附在冰晶表面,通过K elin效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低.Griffith〔10〕等通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.3 抗冻蛋白基因工程的研究进展1998年10月,第一个植物抗冻蛋白—胡萝卜抗冻蛋白及其基因的发现,为抗寒基因工程注入了新的活力.在此之前,通过抗冻蛋白基因改变动植物抗冻活性的研究都局限于鱼类抗冻蛋白基因.1987年,Davies 等将抗冻蛋白基因整合在Ti 质粒上,用叶圆片法转化郁金香、烟草、油菜等,获得了一定的抗冻能力.1989年Cutler 等用真空透析法将冬比目鱼抗冻蛋白基因导入马铃薯、拟南芥和欧洲油菜,使植物自然结冰温度降低1.8℃,证实了转抗冻蛋白基因可提高植物的抗寒性.1990年,G eorges 等将合成的冬蝶鱼抗冻蛋白基因并构建了含35S 启动子、抗冻蛋白基因和Cat (编码氯霉素酰基转移酶CA T )基因的载体P GC51,将该质粒通过电击导入玉米原生质体,通过CA T 分析以及用抗冻蛋白和CA T 的抗血清作的蛋白印迹检测到了融合肽的产生.1991年Hightower 等将极区鱼的Cafa3AFPs 基因转化并获得转基因烟草和番茄,在转基因植物叶片中,Cafa3AFPs 有高水平的mRNA ,但在组织中未检测到重结晶作用的活性.然而他们在含有编码一种融合蛋白(去掉两头的葡萄球菌蛋白A +抗冻蛋白)的嵌合基因的番茄组织中,检测到了mRNA 和融合蛋白.而且在含有融合蛋白的组织中检测到了重结晶抑制作用.据报道这种番茄果实可经受冷冻不坏,已申请大田试验.1997年Wallis 等〔11〕人工合成PHA -AFP -段基因.该基因被转入马铃薯后,用免疫杂交方法检测到了表达产物AFPs.同年,我国的黄永芬等〔12〕将美洲拟蝶抗冻基因整合在Ti 质粒上,然后用花粉管道和子房注射方法导入番茄中,获得了杂交带.试验表明:在春季平均气温低于正常年份4.4℃条件下,转基因植株生长优势优于对照组.1998年赵晓祥等〔13〕同样利用美洲拟蝶抗冻基因转入番茄中.试验表明:番茄植株经低温锻炼,过氧化氢酶、过氧化物酶、超氧化物歧化酶都明显高于对照,表明转基因植株在生理生化水平上获得了有益的变异,且抗寒性增强.Holmberg 等〔14〕采用引物重叠延伸法,将云杉蚜虫抗冻蛋白基因组成CaMV35S -sbwAFP -胭脂碱合成酶融合基因,采用T -DNA 双元载体导入烟草中,R T -PCR 检测到了sbwAFP 的转录.在转基因烟草中,质外体sbwAFP 的表达抑制了冰重结晶、提高了热滞效应.1998年,胡萝卜抗冻蛋白基因的发现翻开了抗冻蛋白研究的新篇章.将胡萝卜抗冻蛋白基因的cDNA 连接在表达载体的双CaMV35S 启动子之后导入烟草,让其组成性表达.用蛋白质免疫杂交法检测到了抗冻蛋白的存在,并且这些含有抗冻蛋白基因的烟草提取物可以抑制冰晶的生长.2001年,尹明安等〔15〕根据胡萝卜的抗冻蛋白基因,构建成植物表达pBAF ,为农杆菌介导转化番茄、甜椒等作物奠定了试验基础.4 抗冻蛋白的应用前景植物抗冻蛋白的应用随着深入研究将在以下几方面得到发展:(1)在农业上,抗冻蛋白的基因导入目标作物上,使之表达,可以增强作物在田间的抗寒能力,而且会改善作物在收获后的贮藏加工特性.(2)在冷冻食品业上,抗冻蛋白可抑制重晶化,保护食品的柔软质地.(3)在医学上,抗冻蛋白可用于人和动物的卵、精子、胚胎等器官的超低温保存,改善其冷冻质量.(4)在工业上,抗冻蛋白可作为一种高级防冻剂而加以应用.仅仅通过从生物体内提取抗冻蛋白是不能满足人们的诸多要求的.人们可以通过生物技术的方法,用某种生物反应器来定向生产抗冻蛋白.随着科学研究的不断发展,抗冻蛋白会为工业、农业、医学等领域提供更广阔的应用前景.参 考 文 献〔1〕De Vires A L.Antifreeze glycopeptides and peptides :interaction with ice and water 〔J 〕.Methods Enzymol ,1986,127:293-303.〔2〕Griffith M ,Ala P ,Y ang D S C ,et al.Antifreeze protein produced endogenously in winter rye leaves 〔J 〕.Plant Physiology ,1992,100:593-596.〔3〕Hon W C ,G iffith M ,Mlynarz A ,et al.Antifreeze proteins in winter rye are similar to pathogenesis -related proteins 〔J 〕.324第4期 刘 莹:植物抗冻蛋白的生物化学研究进展 424 内 蒙 古 民 族 大 学 学 报 2005年Plant Physiol,1995,109(3):879-889.〔4〕Duman J G.Purification and characterization of a thermal hysteresis protein from a plant,the bittersweet nightshade(S ol2 num dulcamara)〔J〕.Biochim BiophysActa,1994,1206(1):129-135.〔5〕魏令波,江 勇,费云标,等.沙冬青叶片热稳定抗冻蛋白特性分析〔J〕.植物学报,1999,41(8):837-841.〔6〕WorralD,EliasL.AcarrotLeucine-rich-repeat protein that inhibit sicerecry stallization〔J〕.Science,1998,202:115-117.〔7〕Michael W,Robert W,Ron B,et al.Purification in munolocation cryoprotective and antifreeze activity of PCA60:A dehydr in from peach(Prunus persica)〔J〕.Physiologia Plantarum,1999,105:600-608.〔8〕Sidebottom C,Worrall D.Heat-stable antifreeze protein from grass〔J〕.Nature,2000,406:256-263.〔9〕祭美菊,安黎哲,等.天山寒区冰缘植物珠芽蓼叶片抗冻蛋白的发现〔J〕.冰川冻土,2001,23(4):342-345.〔10〕卢存福.植物抗冻蛋白研究进展〔J〕.生物化学与生物物理进展,1998,25(3):210-216.〔11〕Wallis F G,Wang H,Guerra D J.Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freez2 ing temperatures〔J〕.Plant Molecular Biology,1997,35(3):323-330.〔12〕黄永芬,等.美洲拟蝶抗冻蛋白基因导入番茄的研究〔J〕.生物化学杂志,1997,13(4):418-422.〔13〕赵晓祥,等.转美洲拟蝶抗冻蛋白基因(afp)番茄过氧化物酶、过氧化氢酶、超氧歧化酶活性测定〔J〕.哈尔滨师范大学自然科学学报,1998,14(4):188-193.〔责任编辑 齐 广〕征 稿 简 则 《内蒙古民族大学学报》(自然科学版)是由内蒙古民族大学主办的自然科学综合性学术期刊(双月刊,国内外公开发行),主要设有物理、数学、化学与化工、计算机应用、生物工程、生态环境、农学、草业科学、畜牧兽医、水产养殖、农牧业工《中程、蒙医蒙药研究、基础医学、临床医学、预防医学等栏目,是《中国学术期刊综合评价数据库》来源期刊,《中国期刊网》、国学术期刊(光盘版)》全文收录期刊,《中国数学文摘》、《中国物理文摘》源刊.欢迎广大教师及科技工作者踊跃投稿.来稿要求及主要注意事项如下:11来稿文责自负,要求稿件具有创新性,论点明确,逻辑性强,文字简炼,数据可靠,图表清晰,全文一般不超过6000字,题目不超过20字,凡以国家和省(部)级科学基金资助的研究课题为内容的论文,应在首页注脚用“基金项目”标识,并注明课题代码编号.21来稿应有题名、摘要、关键词,并有相应的英文对照.摘要应写成报道性摘要,以200~300字为宜,摘要中不宜用图表、化学结构式和非公知公认的符号或术语,关键词一般每篇文章标注3~8个.31文稿要求有作者中英文署名,用中英文标明工作单位全称及单位所在城市和邮政编码,并请附第一作者简历(姓名,出生年月,性别,民族,籍贯,学历,职称,主要研究方向).作者的署名排序在投稿时确定,之后不得另行更动.41文稿要字迹端正,字体规范,标点清楚,稿中外文字母、符号必须分清大、小写,正、斜体,上、下角标、数码和符号,其位置高低应区别明显;容易混淆的外文字母、符号、黑体、花体,请在第1次出现时用铅笔注明其文种和含义,量和单位须符合国家标准和国际标准.51文稿插图请用计算机绘制,有相应的中英文图名并具有自明性,凡照片要用清晰的黑白照片,并有良好的清晰度和对比度.图和照片的常规尺寸以宽不超过15cm为宜.61本刊要求作者软盘投稿,并附打印稿一份。
生物化学绪论
生化教研室教学网页: 202.197.91.116
参考书目
《生物化学》 主编 沈同 王镜岩 《生物化学》 郑集主编 《生物化学原理》伦宁格,国际通用的最佳生化教材 (影印版)Principles of Biochemistry 哈珀生物化学( Harper's Biochemistry, 英文影 印版,第 25 版),科学出版社 生命的化学(杂志) J. Biology Chemistry (杂志) 联系地点:新教学楼四楼440室
蛋白质、细胞及细胞核化学研究
• Albrecht Kossel Germany (1853-1927) The Nobel Prize in Physiology or Medicine 1910in recognition of the
contributions to our knowledge of cell chemistry made through his work on proteins, including the nucleic substances 首先分离 出腺嘌呤、 胸腺嘧啶、和组氨 酸。
1953 Nobel Laureate in Medicine for his discovery of the Citric Acid (Krebs) Cycle.
Hans Adolf Krebs (1900-1981), Germanborn British biochemist
三、分子生物学阶段
第二节
当代生物化学研究的主要内容
一、生物分子的结构与功能
生物体的化学组成
元素组成:
组成生物体的主要元素包括 C、H、O、N 4种元素,约占 生物体总质量的96%。 P、S、Ca等也是组成生命体 的基本元素,约占3.35%。 微量元素包括I、Mo、Se、 Si、Mn和Zn等
生物化学:Chapter 1-2 Foundations_of_Biochemistry
Sept. 11, 2012
Chapters 1-2
The realm of Biochemistry
Professor Zengyi Chang
(昌增益 教授)
changzy@ Room 204, New Life Science Building
Tel. 6275-8822
two books into Chinese!
The eight classic papers (to be read by all students)
Topic 1 the prebiotic Origin of Life
Stanley L. Miller.(1953) “A Production of Amino Acids Under Possible Primitive Earth Conditions”, Science, 117:528-9.
Books on the history of Biochemistry:
1. 昌增益(译者)《蛋白质、酶和基因:化学与生物 学的交互作用》,清华大学出版社,2005年1月。
Fruton, J. S. (1999). Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. New Heaven and London: Yale University Press.
What is life?
Life: A process or condition but a definition not yet achieved.
Possessing the following basic features:
– Homeostasis;
蛋白质的生物合成
密码子与反密码子除通过碱基互补结合外, 还具有摆动性,即密码子的第3位碱基与反 密码子的第1位碱基配对不严格,称为摆动 配对。
密码子、反密码子配对的摆动现象
tRNA反密码子 第1位碱基
I
U G AC
mRNA密码子 第3位碱基
U, C, A A, G U, C U G
密码子的第3位碱基发生突变时,并不影响tRNA带入 正确的氨基酸。
踏实肯干,努力奋斗。2020年12月18 日上午1 2时58 分20.12. 1820.1 2.18
追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2 020年1 2月18 日星期 五上午1 2时58 分18秒0 0:58:18 20.12.1 8
严格把控质量关,让生产更加有保障 。2020 年12月 上午12 时58分2 0.12.18 00:58D ecember 18, 2020
码子,称为三联体。 4种碱基一共可以组成64个密码子。 AUG代表甲硫氨酸,在5’ -端时代表启动信
号,称为起始密码子。 UAA、UAG和UGA:称为终止密码子。 代表氨基酸的密码子只有61个。
载脂蛋白B-100的一段mRNA的 密码子序列
(三)遗传密码的特点
1.通用性(universal): 蛋白质生物合成的整套密码,从原核生
多核糖体循环
蛋白质的生物合成耗能
AA活化消耗2ATP,肽链延长进 位和转位各消耗1GTP,所以,蛋 白质的生物合成启动以后,每形成 1个肽键,需要消耗4ATP。
合成一条n个肽键组成的多肽链 所需能量为4×n+1 ATP
蛋白质合成过程小结
以mRNA的5’ 3’方向阅读遗传密码
肽链合成方向N
18SrRNA
Bcl2家族蛋白在维生素E琥珀酸酯诱导人胃癌细胞凋亡中的作用
萱羞堂塑;QQ!生笠!!鲞笠!塑31BcI_2家族蛋白在维生素E琥珀酸酯诱导人胃癌细胞凋亡中的作用张晓华,苑林宏,单毓娟,张岭,吴坤(哈尔滨医科大学公共卫生学院营养与食品卫生学教研室,哈尔滨150081)l摘要I目的:研究Bcl一2家族蛋白在维生素E琥珀酸酯(RRR一Ⅸ一tocopherylsuccinate,∞一TOS;vitaminEsuccinate,VES)诱导人胃癌sGC一7901细胞凋亡线粒体途径中的作用。
方法:采用噻唑蓝(MTT)法测定VES对SGC一7901细胞的半数抑制浓度(IC;。
值);吖啶橙/溴化乙啶(AO/EB)染色观察细胞凋亡;MitoTrackerRedCMXRos染色观察线粒体膜电位(AWm)的改变;WesternBlot法检测不同剂量VEs对人胃癌sGC一7901细胞Bid、Bax、Bcl一2蛋白表达和细胞色素C(cytochromeC,C)蛋白表达与定位的影响。
结果:VES对SGC.7901细胞的IC50值为101.45pg/ml;VES可引起CytSGC一7901细胞发生凋亡和线粒体膜电位下降;并引起CytC蛋白在细胞内重新定位、Bid蛋白剪切活化、Bax蛋白表达增加和Bcl一2蛋白表达减少。
结论:VES可抑制SGC一7901细胞的生长,并通过线粒体途径诱导凋亡,其机制可能是通过剪切活化Bid蛋白、上调Bax/Bcl一2相对水平来实现的。
【营养学报,2007,29(1):31—34]关键词:维生素E琥珀酸酯;胃癌;Bid;8ax;Bcl-2;CytC中图分类号:R735.2文献标识码:A文章编号:0512—7955(2007)0卜003卜04THEROLEOFBCL-2FAMlLYPROTElNlNVITAMlNESUCCINATElNDUCEDAPOPTOSISOFHUMANGASTRlCCANCERCELLLINESZHANGXiao-hua,YUANLin—hong,SHANYu-juan,ZHANGLing,WUKun(DepartmentofNutritionandFoodHygiene,PublicHealthSchoolofHarbinMedicalUniversity,Harbin150081,ChinaJ[Abstract]0bjective:TostudyrolesofmitochondriaandBcl..2familyproteinsinvitaminEsuccinate..inducedapoptosisofhumangastriccarcinomaSGC一7901cells.M[ethod:Theinhibitoryconcentration50%(IC50)ofVESinSGC一7901cellapoptosiswasobservedbyMTT.Fluorescentstainingwasusedtodetectapoptosisandthechangesofmitochondrialtransmembranepotential(Aqjm)ofthecells.TheWesternblotafterthecellsexpressionsofBid.Bax.Bcl.2andcytochromeCproteinsweremeasuredbyweretreatedwithVESatdosesof5,10,2099/m1respectively.TheredistributionofcytochromeCbetweenthemitochondrialandthecytosolicfractionswasobservedbyWesternblotafterthecellsweretreatedwith2099/mlVESfor24h.Results:TheIC50ofVESinSGC.7901cellswas101.45gg/m1.VEScausedlossofmitochondrialtransmembranepotential(A。
以突触囊泡蛋白2A(SV2A)为靶点的抗癫痫药物研究进展
以突触囊泡蛋白2A(SV2A)为靶点的抗癫痫药物研究进展张宁;张宗磊;陈明;毋立华;蔡文卿
【期刊名称】《沈阳药科大学学报》
【年(卷),期】2024(41)4
【摘要】抗癫痫药物是癫痫患者的首选治疗癫痫手段。
全球癫痫发病率的不断提高,给国家、个人和家庭生活等带来较大经济负担。
随着越来越多的癫痫患者得到规范化治疗,使得抗癫痫药物临床需求越来越大。
突触囊泡蛋白2A(synaptic vesicle protein 2A,SV2A)通过调节神经递质的释放,来维持脑内兴奋性神经递质和抑制性神经递质的平衡。
随着SV2A确证为新的抗癫痫靶点,左乙拉西坦和布瓦西坦的上市,抗癫痫靶点和抗癫痫新药进一步丰富。
本文围绕抗癫痫药物靶点SV2A 以及以SV2A为靶点的上市及在研药物做概述,并对其构效关系进行总结。
【总页数】11页(P526-536)
【作者】张宁;张宗磊;陈明;毋立华;蔡文卿
【作者单位】山东省药学科学院山东省生物药物重点实验室;山东省食品药品审评查验中心
【正文语种】中文
【中图分类】R914
【相关文献】
1.硫氧还蛋白互作蛋白及其相关靶点药物的研究进展
2.突触囊泡蛋白2A参与神经系统疾病机制的研究进展
3.抗癫痫药物相关分子作用靶点的研究进展
4.突触囊泡
蛋白2A:抗癫痫药物的新靶点5.突触囊泡蛋白2A在癫痫相关认知功能障碍中的作用机制研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
蛋白二硫键鉴定和定量分析
蛋白二硫键鉴定和定量分析BTP-蛋白二硫键鉴定和定量分析蛋白质鉴定和结构功能分析是现代生物学研究中的必要环节,而质谱已成为这一环节的支撑技术。
很多定位到细胞表面或分泌到胞外的蛋白质都有二硫键,例如免疫系统(immune system)产生的抗体、各类生长因子(growth factors)、内分泌系统产生的肽激素如胰岛素(insulin),以及这些生长因子或激素的受体。
因为二硫键的正确形成对于这些蛋白质的稳定性和活性至关重要,而且很多蛋白质品以及生物制剂(Biopharmaceutical)的靶蛋白都有这些属性,所以二硫键配对状态的精确解析对于它们的结构功能研究和相关品的研发、质控有重要价值。
百泰派克公司采用Thermo Fisher的Q ExactiveHF质谱平台,Orbitrap Fusion质谱平台,Orbitrap Fusion Lumos质谱平台结合Nano-LC,推出蛋白二硫键分析解决方案,您只需要将您的实验目的告诉我们并将您的样品寄给我们,我们会负责项目后续所有事宜,提供蛋白二硫键位点的相关信息。
百泰派克公司基于发表在Nature Methods上的文章:mapping native disul de bonds at a proteome scale,结合自己的实验经验建立了针对于单个蛋白和组学水平上的蛋白二硫键分析解决方案,包括克服蛋白质二硫键体外交换、保持其天然结构的样品制备方法,二硫键交联肽段的有效质谱分析方法,以及配套的二硫键鉴定软件pLink-SS。
二硫键鉴定研究路线BTP-蛋白二硫键鉴定和定量分析研究案例该项目是某高校老师二硫键鉴定,得到的部分结果如下图所示:二硫键鉴定研究案例BTP-蛋白二硫键鉴定和定量分析样品要求1. 如果您提供的是组织样品,请您干冰将组织样品寄给我们;植物组织样本最少200mg,血液样品至少1ml(血浆注意用EDTA防凝),血清0.2-0.5ml,尿液2ml,动物组织样品至少1g,细胞样品为1X107个细胞,酵母、微生物等干重200mg。
mad2蛋白名词解释
mad2蛋白名词解释
MAD2蛋白,全称为Mitotic Arrest Deficient 2,是一种参与细胞有丝分裂过程的蛋白质。
有丝分裂是细胞周期的一个重要阶段,用于细胞分裂和遗传物质的传递。
MAD2蛋白在有丝分裂的调控中发
挥着重要的作用。
MAD2蛋白主要参与了有丝分裂的检查点控制。
在有丝分裂过程中,细胞需要确保染色体正确地分离到两个新的细胞中,以避免染
色体数目异常或结构异常的细胞产生。
MAD2蛋白通过与其他蛋白质
相互作用,参与了染色体的连接和分离过程,以确保有丝分裂的准
确进行。
此外,MAD2蛋白在细胞凋亡(细胞自我毁灭)过程中也扮演着
重要的角色。
它可以通过调控凋亡相关蛋白的活性,影响细胞生长
和存活。
在细胞生物学和肿瘤学研究中,MAD2蛋白也被广泛研究。
一些
研究表明,MAD2蛋白的异常表达可能与肿瘤的发生和发展有关,因
此该蛋白也被认为是潜在的肿瘤治疗靶点。
总的来说,MAD2蛋白作为一个重要的有丝分裂调控蛋白,参与了细胞有丝分裂的检查点控制和细胞凋亡过程,对于维持细胞的正常功能和遗传物质的稳定传递具有重要意义。
白蛋白与药物相互作用文献2
Species-dependency in chiral-drug recognition of serum albumin studied by chromatographic methodsI.Fitos *,J.Visy,M.SimonyiDepartment of Molecular Pharmacology,Institute of Chemistry,Chemical Research Center,Hungarian Academy of Sciences,H-1525,P .O.Box 17,Budapest,HungaryAbstractStereoselective binding of benzodiazepine and coumarin drugs to serum albumin from human and six mammalian species were studied by chiral chromatographic techniques.The applied methods were affinity chromatography on the albumins immobilized on Sepharose 4B,high-performance liquid chromatography (HPLC)separation on columns based on human serum albumin (HSA)and bovine serum albumin (BSA),and chiral HPLC analysis of ultrafiltrates of solutions containing the racemic drug and the native protein.Substantial differences in preferred configurations and conformations were detected among the species.The binding stereoselectivity of the 2,3-benzodiazepine drug,tofisopam,in human,is opposite to that in all other species.In the binding of 1,4-benzodiazepines,dog albumin is very similar to HSA.Highly preferred binding of (S )-phenprocoumon was found with dog albumin.D 2002Elsevier Science B.V .All rights reserved.Keywords:Immobilized protein;Stereoselective binding;Affinity chromatography;Chiral separation1.IntroductionStereoselective binding of chiral molecules to serum proteins may be an initial step in enantioselective drug action [1].Following the administration of a racemate,protein binding modifies the equimolar ratio of the enantiomers in the pharmacologically active ‘‘free’’(not protein-bound)phase.An experimental approach to this phenomenon is to separate the free ligand and subject it to chiral analysis.The combination of ultrafiltration with circular dichroism or chiral chromatographic analysis could be used successfully to0165-022X/02/$-see front matter D 2002Elsevier Science B.V .All rights reserved.PII:S 0165-022X (02)00131-8*Corresponding author.Fax:+36-1-325-7554.E-mail address:fitosi@chemres.hu (I.Fitos)./locate/jbbmJ.Biochem.Biophys.Methods 54(2002)71–84study binding stereoselectivity of benzodiazepines to human serum albumin (HSA)[2]and to reveal the inverse stereoselectivity for the binding of acenocoumarol to HSA and to a 1-acid glycoprotein (AGP)components of human plasma [3,4].The enormous development in sensitive chiral high-performance liquid chromatography (HPLC)and capillary electrophoretic analytical techniques offers a broad field of application.Affinity chromatography on properly immobilized serum proteins is also a very efficient method for studying drug-binding stereoselectivity.Serum contains several components,among which albumin is the most abundant and the most extensively studied protein [5].Binding is a reversible association between ligand (L)and protein (P),characterized by the equilibrium constant (K )and the number of binding sites (n ).The association constant (K )for the binding of drugs to HSA exhibit values of 103–106M À1.P þn L W PL nð1ÞIn case of stereoselective binding,the enantiomeric equilibrium constants (K R and K S )are different and,usually,their ratio is considered to be a measure of stereoselectivity.In fact,the binding process can be complex,and the ratio of the overall A nK parameters of enantiomers describes the quantitative differences more relevantly.In the chromatographic technique involving a series of consecutive equilibria between free and bound ligand,even small differences in the binding of enantiomers can bring about resolution of racemates on immobilized protein.Resolved enantiomers are needed only for assignment of the gercrantz et al.[6,7]worked out the method of applying serum albumin,immobilized on CNBr-activated Sepharose 4B gel,for quantitative binding studies.In ‘‘zonal’’chromato-graphic experiments,when the ligand was applied in small amounts (the saturation of the binding sites on the protein is negligible)and a buffer was used for elution,the validity of the following relationship was proved:V e ÀV o ¼V g c p A nKð2Þwhere V e is the elution volume of the ligand studied,V o is the elution volume of ligands having no special interaction with the protein,V g is the volume of the gel,and c p is the concentration of the protein in the gel.According to Eq.(2),binding stereoselectivity can be obtained as the ratio of the V e –V o values of the enantiomers.Binding interaction studies were performed applying the second ligand dissolved in the eluent.Allenmark et al.[8]immobilized bovine serum albumin (BSA)on silica and success-fully used it as a HPLC column for chiral analysis.Domenici et al.[9]developed a HSA–HPLC stationary phase for drug-binding studies.Rat and rabbit serum albumin-based HPLC columns were also investigated [10].AGP,a minor plasma component,playing a decisive role in the binding of many drugs,was immobilized on silica by Hermansson [11],and Chiral-AGP became a versatile commercial HPLC column in chiral-drug analysis.The protein-based HPLC columns have been applied extensively [12–14].In this study,we addressed the species-dependent binding stereoselectivity of serum albumins.These proteins have very similar structures,with 70–80%identities in the amino acid sequences [5].Even the three-dimensional structures determined for human and horse albumins,including the two main ligand binding regions,were found to beI.Fitos et al./J.Biochem.Biophys.Methods 54(2002)71–8472I.Fitos et al./J.Biochem.Biophys.Methods54(2002)71–8473almost identical[15,16].Experimental results,however,indicated species-dependent binding[17,18]and stereoselectivity[7,19].We made a comparative study on the chiral-separation properties of seven species.The stereoselective binding of different benzodiazepine-type anxiolytic and coumarin-type anticoagulants on HSA has previously revealed special conformational preferences[3,20–24].The applied method was affinity chromatography on albumins,immobilized on Sepharose.Some chiral separations were performed by HPLC on silica-bound HSA and BSA stationary phases.The most remarkable stereoselectivities were checked with native albumins:the enantiomeric composition of the free ligand was determined in the ultrafiltrates of protein solutions containing the racemic ligand.2.Materials and methods2.1.LigandsBenzodiazepine and coumarin compounds(racemates and enantiomers)were obtained as described previously[3,20–24].Human,dog,horse,pig,rabbit,and rat serum albumins (Cohn V fractions)were purchased from Sigma(St.Louis,MO),BSA was from Serva (Heidelberg,Germany).2.2.Affinity chromatographyAlbumins in1%concentration(1.5Â10À4M)were immobilized on CNBr-activated Sepharose4B gel(Pharmacia,Uppsala,Sweden)by the standard procedure[6]and filled into two columns(V o,ca.6and12ml).The eluent was physiological Ringer buffer(pH7.4) with0.01%sodium azide,the flow rate was about1ml/min.Ligand samples(10A l of0.5 mg/ml ethanol stock solutions)were applied manually.Elution volumes were determined by UV detection.Retention of ligands characteristic of the binding affinity are given by retention factors(k),binding stereoselectivities by separation factors(a):k¼ðV eÀV oÞ=V o;a¼k S=k RElution orders were established by resolved enantiomers or by circular dichroism spectra.Parameters were determined from two to three chromatographic runs.In case of radioactive ligands,fractions were collected and subjected to liquid-scintillation counting. Experiments were carried out at room temperature,columns were stored refrigerated.2.3.HPLC analysisInstrument:Jasco PU-890pump,Rheodyne7125injector(20-A l loop),Jasco UV-975 detector.On-line CD detection was performed with a Jasco J-715Spectropolarimeter.Stationary phases:The HSA column(Chiral Protein-2,150Â4mm)was purchased from Socie´te´Francßaise Chromato Colonne(S.F.C.C.).The BSA column(150Â4mm),prepared by immobilization of bovine albumin with cross-linking to silica(DSC–APS,10A m,100A˚)was kindly donated by Prof.Stig Allenmark (Gothenburg,Sweden).Chiral-AGP (100Â4mm)and Chiral-HSA (50Â4mm)columns were obtained from ChromTech (Ha ¨gersten,Sweden).Mobile phase:0.01or 0.1M phosphate buffer (pH 7.0)with 2-propanol or acetonitrile additives.Flow rate was 0.9ml/min.2.4.UltrafiltrationUltrafiltrations were carried out in an Amicon MPS-1system,using YMT-30mem-branes,at room temperature.Analysis of starting ligand solution and of the ultrafiltrate was performed by HPLC.3.Results and discussion3.1.Separation of tofisopam stereoisomersTofisopam,a 2,3-benzodiazepine with a chiral center at position C-5,has a special conformational feature (Fig.1).In crystals,the ethyl group is in equatorial positionwithFig.1.Conformational interconversion of Tofisopam enantiomers.I.Fitos et al./J.Biochem.Biophys.Methods 54(2002)71–8474I.Fitos et al./J.Biochem.Biophys.Methods54(2002)71–8475 Table1Chromatographic parameters for the separation of Tofisopam stereoisomers(Fig.1)on the albumins of different species immobilized on Sepharose gelSpecies(R)-Tofisopam(S)-Tofisopam a(major) k minor(À)k major(+)k minor(+)k major(À)Human0.600.600.29 1.89 3.15(S>R) Dog0.360.820.450.45 1.82(R>S) Bovine0.380.960.460.46 2.09(R>S) Horse0.64 1.090.640.64 1.70(R>S) Pig0.540.540.540.54 1.00(R=S) Rabbit0.96 3.830.500.92 4.16(R>S) Rat 1.18 4.27 1.09 1.09 3.92(R>S) respect to the diazepine ring.There is NMR and CD evidence[25]that in solution a conformational equilibrium is attained:about20–25%of the molecules adopt the conformation with axial ethyl group.Thus,each enantiomer has major and minor conformers with optical rotations of opposite sign.The chromatograms of tofisopam on a HSA Sepharose column gave two non-equivalent peaks for the(S)-enantiomer,which could be assigned to the conformers,indicating the preferred binding of the major conformer[23].This phenomenon was used to follow the kinetics of the interconver-sion,indicating a half-life of3h.The binding of(R)-tofisopam to HSA did not show conformational selectivity,with a binding affinity about half of that of the major conformer of the(S)-enantiomer.Binding of tofisopam enantiomers was also studied on albumin-Sepharose columns for six other species.Results in Table1indicate stereoselectivities opposite to HSA.The binding of the(R)-enantiomer shows conformational selectivity,the retention of its major conformer is about twice(dog,bovine,horse)or even four times(rabbit,rat)stronger than that of the(S)-enantiomer.The binding on pig albumin was weak and not stereoselective. The chromatographic separations of tofisopam stereoisomers on human,bovine and rabbit albumin–Sepharose columns are shown in Fig.2.It can be observed that some of the chromatographic peaks of the racemate refer to mixtures of stereoisomers.The chromatograms of(R)-and(S)-tofisopam,recorded for HSA–HPLC and BSA–HPLC columns also reflects opposite stereoselectivities,when2-propanol or acetonitrile mobile phase modifiers are used(Fig.3).It is to be noted that the separation of tofisopam on the Chiral-AGP HPLC column is drastically influenced by the organic modifier of the mobile phase[26],probably due to a modifier-induced conformational change of the flexible AGP.The structure of immobilized albumins seems to be more resistant;the chromatographic retentions are in accordance with the binding affinity of the native protein.3.2.Separation of3-substituted1,4-benzodiazepinesThe structure of the3-acyloxy1,4-benzodiazepine-2-ones is shown in Table2.It is known that the enantiomers exist in different conformations,where the R3subtituent isquasi-equatorial with respect to the boat-shaped diazepine ring [27].Systematic binding studies with HSA proved the preferential binding of the (S )-enantiomers having the ‘‘M’’conformation [2,12,28].The binding stereoselectivity is highly dependent on the substitu-tion [12,20–22].Molecules having hydroxy substituent in the chiral center are subject tofastFig.2.Chromatograms of rac -Tofisopam and its enantiomers on albumin –Sepharose columns (V o ,ca.12ml)of three species.Eluent,Ringer buffer (pH 7.4);detection,UV at 310nm.I.Fitos et al./J.Biochem.Biophys.Methods 54(2002)71–8476racemization in solution;in the case of oxazepam,the half-time is about 3min at 37j C and pH 7.5[29];thus,binding of the enantiomers cannot be studied with conventional methods.However,chromatographic resolution of oxazepam on immobilized albumins,revealed its stereoselective binding [12,20,30].On-line CD detection of oxazepam,resolved on a BSA–HPLC column (Fig.4),proved the preferred binding of the (S )-enantiomer (positive CD-signal at 260nm).Chromatographic parameters for a series of 3-acyloxy 1,4-benzodiaze-pine-2-one compounds,obtained on albumin–Sepharose columns of seven species,are summarized in Table 3.The following statements can be made:(a)The degree of stereoselectivity (a )shows considerable species-dependency,but always the (S)-enan-Fig.3.Chromatograms of (R )-and (S )-Tofisopam on HSA–HPLC (S.F.C.C.)and BSA –HPLC columns.Mobile phase,0.01M phosphate buffer (pH 7.0)containing 5%2-propanol (IPA)or acetonitrile (MeCN)modifiers.I.Fitos et al./J.Biochem.Biophys.Methods 54(2002)71–8477tiomers are more strongly bound.(b)There is a strong resemblance between the results obtained with dog and human albumins:R 1:CH 3substitution and the negative charge of R 3produce exceedingly high stereoselectivities (2and 4),while R 2’:Cl substitution impairs it (3and 6).The effects of substituents are opposite for the enantiomers.(c)Due to R 1:CH 3substitutions,the binding of both enantiomers significantly decreased on bovine,rabbit and rat albumins.(d)In cases of rabbit and rat albumins,the anionic character of R 3does not result in strong binding of the (S )-enantiomer;the affinity of methylsuccinate is higher than that of hemisuccinate.The binding of oxazepam n -butyrate to these albumins (not shown)could be characterized with k R ca.3and k S ca.14parameters,suggesting a dominantly hydrophobic interaction instead of the anionic interaction of HSA.These results are in accordance with the conclusion of other binding studies [17,18]stating that dog albumin has a ligand binding region analogous to ‘‘Site II’’on HSA (which accommodates the bound (S )-benzodiazepines),while this site is substantially different in rat and rabbit albumins.Table 2Structure of 3-substituted 1,4-benzodiazepinesinvestigatedpoundR 1R 3R 2V 1Oxazepam acetate H OCOCH 3H 2Temazepam acetate CH 3OCOCH 3H 3Lorazepam acetateH OCOCH 3Cl 4Oxazepam hemisuccinate H OCO(CH 2)2COOH H 5Oxazepam methylsuccinate H OCO(CH 2)2COOCH 3H 6Lorazepam hemisuccinateHOCO(CH 2)2COOHClI.Fitos et al./J.Biochem.Biophys.Methods 54(2002)71–84783.3.Binding of coumarinsWarfarin,phenprocoumon,and acenocoumarol are important coumarin-type anticoagu-lants with stereoselective action.HSA preferentially binds the (S )-enantiomers of warfarin and phenprocoumon,while the (R )-enantiomer of acenocoumarol is favoured [3,22,24].Species-dependency was studied with warfarin [7,10]and phenprocoumon [19],indicating slight differences in favour of either the (S )-or the (R)-enantiomer.Fig.4.Chromatographic resolution of oxazepam on a BSA–HPLC column with simultaneous UV and circular dichroism detection.Mobile phase,0.01M phosphate buffer (pH 7.0)containing 2%acetonitrile;sample,20A l of 0.1mg/ml stock solution.I.Fitos et al./J.Biochem.Biophys.Methods 54(2002)71–8479Chromatographic parameters obtained for the seven species are summarized in Table 4.In case of acenocoumarol,the (R )-enantiomer always showed somewhat stronger binding,while the other two drugs exhibited various stereoselectivities for the different species.Exceedingly high preference was found for (S )-phenprocoumon on the dog albumin–HSA column,while on rat albumin the binding of the (R )-enantiomer was stronger.TheseTable 4Chromatographic parameters for the separation of the enantiomers of chiral coumarin drugs on the albumins of different species,immobilized on SepharosegelSpecies Warfarin Phenprocoumon Acenocoumarol k R k S a k R k S a k R k S a Human 8.7111.30 1.30(S >R )12.1421.86 1.80(S >R )10.14 5.86 1.73(R >S )Dog 8.677.33 1.18(R >S )12.0040.67 3.39(S >R ) 5.83 4.67 1.25(R >S )Bovine 9.338.17 1.14(R >S )20.6729.00 1.40(S >R )10.67 6.50 1.64(R >S )Horse 3.15 2.69 1.17(R >S ) 5.627.92 1.41(S >R ) 5.31 3.62 1.47(R >S )Pig 19.0025.67 1.35(S >R )25.6732.33 1.26(S >R )9.67 6.17 1.57(R >S )Rabbit 6.00 2.83 2.12(R >S )7.33 6.00 1.22(R >S )8.67 3.83 2.26(R >S )Rat7.5714.711.94(S >R )12.717.861.62(R >S )10.439.001.16(R >S )Table 3Chromatographic parameters for the separation of 3-substituted 1,4-benzodiazepines (Table 2)on the albumins of different species,immobilized on Sepharose gel No.Human Dog Bovine Horse Pig Rabbit Rat 1k R 1.090.910.75 1.64 1.15 1.58 1.45k S 5.91 3.36 4.67 2.36 2.46 2.58 2.73a 5.42 3.70 6.22 1.44 2.13 1.63 1.872k R 0.640.550.25 1.000.620.750.91k S 12.649.91 1.42 2.82 2.690.920.91a 19.8618.17 5.67 2.82 4.37 1.22 1.003k R 1.36 1.18 1.92 2.00 1.54 1.75 2.27k S 2.73 1.91 3.08 2.00 1.92 2.25 4.45a 2.00 1.62 1.61 1.00 1.25 1.29 1.964k R 0.820.82 1.83 1.82 1.85 1.25 1.45k S 11.7317.18 5.42 6.55 6.69 1.25 2.00a 14.3021.00 2.95 3.60 3.63 1.00 1.385k R 1.27 1.270.92 3.73 1.23 1.33 1.45k S 7.55 5.55 1.50 3.73 3.54 5.00 5.36a 5.39 4.37 1.64 1.00 2.87 3.75 3.696k R 1.45 2.09 3.42 2.36 3.23 1.50 1.82k S 4.73 3.36 3.42 3.36 3.23 1.50 3.09a3.251.611.001.421.001.001.70I.Fitos et al./J.Biochem.Biophys.Methods 54(2002)71–8480opposite effects were checked with native proteins.Fig.5shows the enantiomer compo-sition of the free ligand in the ultrafiltrates.The measured S /R enantiomeric distributions (32/68in human,22/78in dog,and 62/38in rat)are in accordance with the chromato-graphic results.The measured 0.11and 0.38free fractions for the binding of (S )-and (R )-phenprocoumon binding in the dog corresponds to K S /K R ca.5stereoselectivity.This result is in contradiction with the notion about the absence of ‘‘Site I’’from dog albumin [18].3.4.Drug–drug binding interaction studiesIn previous studies performed with HSA,stereoselective allosteric binding inter-action was found during the simultaneous binding of certain benzodiazepinesand Fig.5.Enantiomer composition of phenprocoumon in the ultrafiltrates of solutions containing the racemic ligand (18A M)and different albumins (30A M).HPLC on Chiral-AGP column;mobile phase,0.01M phosphate buffer (pH 7.0)containing 15%2-propanol.coumarins which manifested itself in mutually enhanced binding of the two ligands[21,22,24].The most remarkable effects were found between (S )-lorazepam acetate (LoAc)and (S )-warfarin or (S )-phenprocoumon.The phenomenon could be observed spectacularly by affinity chromatography:(S )-LoAc could practically not be eluted from the HSA column when the eluent contained (S )-warfarin or (S )-phenprocoumon in concentrations similar to that of the protein.We performed the same experiments on immobilized albumins of the six other species.Increased binding of (S )-LoAc was detected only with dog albumin (Fig.6),though the effect was less pronounced than with HSA.Even the structural requirements for the ligands (R 1:H and R 2’:Cl on the benzodiazepine,(S )-coumarin)were similar to those of HSA,giving further evidence for the similarities of the two proteins.We studied the change of enantiomeric composition in the ultrafiltrates of solutions,containing rac -LoAc and HSA,in the presence of different coumarins.Results shown in Table 5indicate that while in the presence of (S )-warfarin and (S )-phenprocoumonthe Fig. 6.Effect of (S )-warfarin in the eluent (Ringer buffer,pH 7.4)on the radiochromatogram of rac -[14C]lorazepam acetate on a dog albumin –Sepharose column (V o =13ml).Table 5Stereoselective effect of chiral coumarin compounds on binding stereoselectivity of lorazepam acetate (LoAc)to HSA:Enantiomeric compositions in the ultrafiltrates of rac -LoAc (44A M)and HSA (90A M)in the presence of coumarin additives (150A M)AdditiveConcentration of unbound LoAc enantiomers (R )[A M](S )[A M](control)137(R )-warfarin144(S )-warfarin14<1(R )-phenprocoumon143(S )-phenprocoumon14<1(R )-acenocoumarol138(S )-acenocoumarol 137Method:HPLC analysis on Chiral-HSA column;mobile phase:0.1M phoshate buffer (pH 7.0)containing 10%2-propanol.filtrate practically did not contain(S)-LoAc(all bound to HSA),acenocoumarol enan-tiomers did not affect the binding of LoAc.4.ConclusionStereoselective serum protein binding of chiral drugs can be revealed even if only small amounts of racemates are available.Serum albumins can be immobilized on Sepharose or on silica,preserving the ligand binding abilities of the native proteins.Chromatographic retention of drug samples on albumin-based stationary phases are characteristic for their binding affinities.The method is very efficient in the detection of relative changes. Stereoselective binding of chiral drug molecules manifests itself in the resolution of racemic samples;the separation factor is a measure of the stereoselectivity.Binding interactions can be studied by applying the other ligand in the eluent.Affinity chromatog-raphy is superior to conventional-binding methods in the detection of stereoselective binding of chiral drug molecules,which are subject to fast racemization or conformational transition in solution.Immobilization is useful for studying albumin variants with limited availability.Chiral chromatographic analysis of the enantiomeric composition of free drug in the ultrafiltrate or dialysate of protein solutions containing the racemic drug gives information on the binding stereoselectivity.AcknowledgementsWe are indebted to Prof.Stig Allenmark(University of Gothenburg)and Dr.Jo¨rgen Hermansson(ChromTech)for providing HPLC columns.We thank Dr.F.Zsila for the CD measurements.Technical assistance of Mrs.I.Kawka is appreciated.This work is supported by OTKA T015833from the National Scientific Fund.References[1]Simonyi M,Fitos I,Visy J.Chirality of bioactive agents in protein binding,storage and transport processes.Trends Pharmacol Sci1986;7:112–6.[2]Simonyi M,Fitos I,Kajta´r J,Kajta´r M.Application of ultrafiltration and CD spectroscopy for studyingstereoselective binding of racemic ligands.Biochem Biophys Res Comm1982;109:851–7.[3]Fitos I,Visy J,Magyar A,Kajta´r J,Simonyi M.Inverse stereoselectivity in the binding of acenocoumarol tohuman serum albumin and a1-acid glycoprotein.Biochem Pharmacol1989;38:2259–62.[4]Fitos I,Visy J,Simonyi M,Hermansson J.Stereoselective distribution of acenocoumarol enantiomers inhuman plasma:chiral chromatographic analysis of the ultrafiltrates.Chirality1993;5:346–9.[5]Peters Jr T.All about albumin.New York:Academic Press;1996.[6]Lagercrantz C,Larsson T,Karlsson H.Binding of some fatty acids and drugs to immobilized bovine serumalbumin studied by column affinity chromatography.Anal Biochem1979;99:352–64.[7]Lagercrantz C,Larsson T,Denfors I.Stereoselective binding of the enantiomers of warfarin and tryptophan toserum albumin from some different species studied by affinity chromatography on columns of immobilized serum p Biochem Physiol1981;69C:375–8.[8]Allenmark S,Bomgren B,Bore´n H.Optical resolution of a series of N-aroyl D,L-amino acids by highperformance liquid chromatography on bovine serum albumin covalently bound to silica.J Chromatogr 1983;264:63–8.[9]Domenici E,Bertucci C,Salvadori P,Motellier S,Wainer IW.Immobilized serum albumin:rapid HPLCprobe of stereoselective protein-binding interactions.Chirality1990;2:263–8.[10]Massolini G,Aubry A-F,McGann A,Wainer IW.Determination of the magnitude and enantioselectivity ofligand binding to rat and rabbit serum albumins using immobilized-protein high performance liquid chro-matography stationary phases.Biochem Pharmacol1993;46:1285–93.[11]Hermansson J.Direct chromatographic resolution of racemic drugs using a1-acid glycoprotein as the chiralstationary phase.J Chromatogr1983;269:71–80.[12]Wainer IW.Enantioselective high-performance liquid affinity chromatography as a probe of ligand–bio-polymer interactions:an overview of a different use for high-performance liquid chromatographic chiral stationary phases.J Chromatogr,A1994;666:221–34.[13]Hage DS.Chromatographic and electrophoretic studies of protein binding to chiral solutes.J Chromatogr,A2001;906:459–81.[14]Haginaka J.Protein-based chiral stationary phases for high-performance liquid chromatography enantiose-parations.J Chromatogr,A2001;906:253–73.[15]He X-M,Carter DC.Atomic structure and chemistry of human serum albumin.Nature1992;358:209–15.[16]Ho JX,Holowachuk EW,Norton EJ,Twigg PD,Carter DC.X-ray and primary structure of horse serumalbumin(Equus caballus)at0.27nm resolution.Eur J Biochem1993;215:205–12.[17]Panjehshahin MR,Yates MS,Bowmer CJ.A comparison of drug binding sites on mammalian albumins.Biochem Pharmacol1992;44:873–9.[18]Kosa T,Maruyama T,Otagiri M.Species differences of serum albumins:I.Drug binding sites.Pharm Res1997;14:1607–12.[19]Schmidt W,Ja¨hnchen E.Species-dependent stereospecific serum protein binding of the oral anticoagulantdrug phenprocoumon.Experientia1978;34:1323–5.[20]Fitos I,Simonyi M,Tegyey Zs,O¨tvo¨s L,Kajta´r J,Kajta´r M.Resolution by affinity chromatography:stereo-selective binding of racemic oxazepam esters to human serum albumin.J Chromatogr1983;259:494–8.[21]Fitos I,Tegyey Zs,Simonyi M,Sjo¨holm I,Larsson T,Lagercrantz C.Stereoselective binding of3-acetoxy-,and3-hydroxy-1,4-benzodiazepine-2-ones to human serum albumin.Selective allosteric interaction with warfarin enantiomers.Biochem Pharmacol1986;35:263–9.[22]Fitos I,Visy J,Simoncsits A.Binding studies with recombinant human serum albumin obtained byexpression of a synthetic gene in yeast.Biochem Pharmacol1993;46:1159–63.[23]Simonyi M,Fitos I.Stereoselective binding of a2,3-benzodiazepine to human serum albumin:effect ofconformation on tofizopam binding.Biochem Pharmacol1983;32:1917–20.[24]Fitos I,Simonyi M.Stereoselective effect of phenprocoumon enantiomers on the binding of benzodiaze-pines to human serum albumin.Chirality1992;4:21–3.[25]To´th G,Fogassy E,A´cs M,To n ke L,La´ng T.Racematspaltung von(F)-5-A¨thyl-1-(3,4-dimethoxyphenyl)-6,7-dimethoxy-4-methyl-5H-2,3-benzodiazepin und anomales chiroptisches Verhalten der Enantiomeren.J Heterocycl Chem1983;20:709–13.[26]Fitos I,Visy J,Simonyi M,Hermansson J.Separation of enantiomers of benzodiazepines on the Chiral-AGP column.J Chromatogr,A1995;709:265–73.[27]Konowal A,Snatzke G,Alebic´-Kolbah T,KajfezˇF,Rendic´S,Sˇunjic´V.General approach to chiropticalcharacterization of binding of prochiral and chiral1,4-benzodiazepin-2-ones to human serum albumin.Biochem Pharmacol1979;28:3109–13.[28]Mu¨ller WE,Wollert U.High stereospecificity of the benzodiazepine binding site on human serum albumin.Studies with D-and L-oxazepam hemisuccinate.Mol Pharmacol1975;11:52–60.[29]Yang SK,Lu XL.Racemization kinetics of enantiomeric oxazepams and stereoselective hydrolysis ofenantiomeric oxazepam3-acetates in rat liver microsomes and brain homogenate.J Pharm Sci1989;78: 789–95.[30]Andersson S,Thompson RA,Allenmark SG.Direct liquid chromatographic separation of enantiomers onimmobilized protein stationary phases.IX.Influence of the cross-linking reagent on the retentive and enantio-selective properties of chiral sorbents based on bovine serum albumin.J Chromatogr1992;591: 65–73.。
蛋白质 快速形成二硫键
蛋白质快速形成二硫键Protein rapidly forms disulfide bonds.蛋白质快速形成二硫键。
Disulfide bonds are covalent bonds that play a crucial role in protein structure and stability.二硫键是共价键,对蛋白质的结构和稳定性起着至关重要的作用。
The formation of disulfide bonds occurs through the oxidation of sulfhydryl groups (-SH) in cysteine amino acid residues.二硫键的形成是通过半胱氨酸氨基酸残基中的巯基(-SH)的氧化来实现的。
This process is catalyzed by enzymes called protein disulfide isomerases (PDIs) in living organisms.在生物体中,这一过程是由称为蛋白质二硫键异构酶(PDIs)的酶催化的。
The rapid formation of disulfide bonds can help proteins fold into their correct three-dimensional shapes, enhancing their functional capabilities.二硫键的快速形成有助于蛋白质折叠成正确的三维结构,从而增强其功能能力。
Moreover, disulfide bonds contribute to the thermal and chemical stability of proteins, protecting them from denaturation and degradation.此外,二硫键还有助于提高蛋白质的热稳定性和化学稳定性,防止其变性和降解。
gpc2蛋白的表达 -回复
gpc2蛋白的表达-回复要回答关于GPC2蛋白的表达的问题,我们首先需要了解GPC2蛋白的基本信息。
GPC2(G-protein coupled receptor 2)是一种膜蛋白,属于G蛋白偶联受体超家族的成员之一。
GPC2蛋白在胚胎发育和肿瘤形成过程中起着重要作用。
下面将一步一步回答关于GPC2蛋白的表达的问题。
首先,我们可以探讨GPC2蛋白的基因表达。
基因表达是指基因转录和转译为蛋白质的过程。
GPC2基因是由DNA编码,并通过转录将其转化为RNA。
在胚胎发育过程中,GPC2基因从早期到晚期都有表达。
在成人组织中,GPC2基因在大多数器官和组织中的表达水平较低,但在特定的组织如大脑和肾上腺中表达较高。
接下来,我们可以讨论GPC2蛋白的转录和翻译。
转录是指将DNA 模板转化为RNA的过程,在这个过程中,GPC2基因的DNA序列通过RNA聚合酶转录成为预mRNA。
随后,预mRNA经过剪接和RNA修饰后生成成熟mRNA。
成熟mRNA携带着GPC2基因的遗传信息,通过核糖体参与翻译过程,将mRNA翻译成为蛋白质。
在翻译过程中,mRNA的核糖体通过识别mRNA上的起始密码子,并启动翻译。
这导致tRNA(转运RNA)通过能与密码子互补的三个碱基序列与mRNA结合,并逐渐组装成蛋白质。
在GPC2蛋白的翻译过程中,mRNA的序列信息被翻译成为一系列氨基酸,最终组装成具有特定结构和功能的蛋白质。
GPC2蛋白的翻译过程一般发生在细胞质中的核糖体上。
然后,我们可以讨论GPC2蛋白的后转录修饰。
后转录修饰是指成熟mRNA在转录和翻译之间发生的修饰过程。
这些修饰可以包括剪接、RNA 编辑、RNA修饰等。
GPC2蛋白可能会通过剪接和RNA修饰来调节其转录和翻译的效率和功能。
最后,我们可以探讨GPC2蛋白的定位和功能。
GPC2蛋白是一种膜蛋白,意味着它在细胞膜上表达并发挥功能。
GPC2蛋白通常在胚胎发育和肿瘤形成过程中发挥重要作用。
eif2s2基因
eif2s2基因摘要:1.eif2s2 基因的概述2.eif2s2 基因的功能3.eif2s2 基因的研究进展4.eif2s2 基因的应用前景正文:1.eif2s2 基因的概述eif2s2 基因,全称为Eukaryotic Initiation Factor 2 Subunit S2,是一种蛋白质,属于真核细胞起始因子2(EIF2)的一个亚基。
EIF2 是一个重要的翻译起始因子,它在蛋白质合成过程中起着关键作用。
eif2s2 基因编码的蛋白质与其他EIF2 亚基结合,形成完整的EIF2 复合物,进而调节蛋白质合成的启动过程。
2.eif2s2 基因的功能eif2s2 基因的主要功能是在细胞内调控蛋白质合成。
具体而言,eif2s2 基因编码的蛋白质可与其他EIF2 亚基结合,形成EIF2 复合物,该复合物能够识别并结合到mRNA 上的启动子区域,从而启动蛋白质的合成。
此外,eif2s2 基因还参与细胞应激、细胞生长、细胞凋亡等多种生物学过程。
3.eif2s2 基因的研究进展近年来,关于eif2s2 基因的研究取得了很多进展。
研究人员发现,eif2s2 基因在不同类型的细胞和生物体中具有不同的功能。
此外,eif2s2 基因还与多种疾病的发生和发展密切相关,如癌症、神经退行性疾病等。
因此,研究eif2s2 基因对于理解生命过程中的基因调控以及疾病治疗具有重要意义。
4.eif2s2 基因的应用前景随着对eif2s2 基因研究的深入,该基因在医学领域的应用前景日益广阔。
研究人员已经开始探讨利用eif2s2 基因作为治疗疾病的靶点。
例如,通过抑制eif2s2 基因的表达,可以减缓癌细胞的生长,从而起到抗肿瘤作用。
同时,eif2s2 基因的研究也有助于开发治疗神经退行性疾病的新型药物。
gpc2蛋白的表达
gpc2蛋白的表达
GPC2(G protein-coupled receptor 2)是一种G蛋白偶联受体,主要表达在细胞表面。
GPC2蛋白在多种生物学过程中发挥作用,如细胞信号传导、神经递质释放和肿瘤发生等。
G PC2的表达可以通过以下几个步骤实现:
1.转录:GPC2基因首先在细胞核中转录成mRNA。
这个过程受到多种调控因子的影响,如启动子、增强子和转录因子等。
2.剪接:mRNA在剪接过程中,去除非编码区域和内含子,生成成熟的mRNA。
3.翻译:成熟的mRNA从核糖体中翻译成蛋白质,生成GPC2蛋白。
4.修饰:GPC2蛋白在翻译后经历一系列修饰过程,如糖基化、磷酸化、泛素化等,这些修饰对其功能和定位至关重要。
5.定位:修饰后的GPC2蛋白被定位到细胞膜上,与其他蛋白质如G蛋白、离子通道等相互作用,形成信号传导复合物。
6.激活:GPC2蛋白在细胞表面受到配体结合后,发生构象变化,激活相应的信号传导途径。
7.作用:激活的GPC2蛋白通过信号传导途径调控细胞内生物效应,如基因表达、离子流、细胞增殖等。
在某些疾病状态下,如肿瘤,GPC2的表达可能会异常增加,导致信号传导途径的异常激活,进而影响细胞生物学行为。
针对
GPC2的靶向治疗策略正成为研究热点,如CAR-T细胞疗法等,以期为相关疾病的治疗提供新途径。
需要注意的是,本回答中提到的表达过程仅供参考,具体过程可能因细胞类型、组织环境和实验条件等因素而有所不同。
内质网应激-综述
浅谈内质网生理和病理潘巍①,胡刚①(①南京医科大学,神经药理学系江苏南京210029)摘要:内质网是蛋白质合成和加工的场所,是细胞“最大的工厂”。
作为细胞内最主要的Ca++库,内质网还参与了各种细胞信号的处理。
由此可见内质网是细胞内最重要的细胞器之一,内质网功能的紊乱对于细胞来说致死性的,特别是蛋白质合成旺盛的细胞类型,如腺细胞和神经元。
内质网的正常的生理功能与细胞内[Ca++]以及氧化还原状态密切相关,而细胞内[Ca++]和局部的氧化还原状态亦是交互影响的,任何一个条件的改变均能导致内质网结构或功能的异常,即内质网病理,主要的特征是内质网应激反应(ER Stress Response)的启动。
内质网应激是细胞重要的防御机制,原核生物和真核生物均存在而且相似,进化上非常保守。
氧化应激也是细胞信号转导系统和重要的防御机制,与内质网应激有着千丝万缕的联系,两者均对整个细胞的生理及病理有重要的“贡献"。
关键词:内质网应激(Endoplasmic Reticulum Stress, ER Stress); 粗面内质网(rough ER)滑面内质网(smooth ER);钙库操纵型通道(Store Operated Channel,SOC);ryanodine 受体(RYR);InsP3受体(InsP3R);Ca++引起的Ca++释放(CICR) ;伴侣蛋白(chaperone); 钙网织蛋白(calreticulin);钙联接蛋白(calnexin); GRP78/BiP;肌浆(内质)网Ca++-ATP酶(SERCA);NADPH氧化酶(NADPH oxidase);未折叠蛋白反应(unfolded-protein response,UPR);内质网相关性降解(ER associated degradation,ERAD);内质网过载反应(ER overload response, EOR); PERK(PKR-like ER kinase;);Ire(inositol regulating);ATF(activating transcription factor); CHOP(C/EBP homologous protein); Nrf—2(nuclear factor erythroid 2-related factor 2); bZIP(basic-leucine zipper);ARE(antioxidant response element);ERSE(ER stress response element);UPRE(unfolded protein response element)内质网是细胞内最大的膜网络结构,其两个主要功能是:1。
cmpk2分子式
cmpk2分子式CMPK2是一种重要的蛋白质分子,它在细胞中起到多种重要的功能。
本文将从分子结构、生物学功能和研究进展等方面介绍CMPK2。
一、分子结构CMPK2的分子式为C12H24N3O10P2,它由碳、氢、氮、氧和磷等元素组成。
CMPK2是一种酶,属于核苷酸激酶家族。
它由一个催化结构域和一个亚基结构域组成。
二、生物学功能CMPK2在细胞中具有多种重要的生物学功能。
首先,CMPK2参与细胞内嘌呤核酸的合成。
嘌呤核酸是构成DNA和RNA的重要组成部分,对于维持细胞的正常功能和遗传信息的传递至关重要。
CMPK2通过催化反应,将胞嘧啶核苷酸(CMP)与三磷酸腺苷(ATP)结合,形成胞嘧啶二磷酸腺苷(CDP)和二磷酸腺苷(ADP),为嘌呤核酸合成提供了基础。
CMPK2还参与细胞内能量代谢过程。
细胞内的ATP是细胞能量的主要来源,而CMPK2通过催化反应,将CMP与ATP结合,形成CDP和ADP,参与了细胞内ATP的合成。
这一过程对于维持细胞的正常代谢和生物学功能至关重要。
CMPK2还与细胞的增殖和分化等生物学过程密切相关。
研究发现,CMPK2的表达水平在肿瘤细胞中显著上调,与肿瘤细胞的增殖和侵袭能力密切相关。
因此,CMPK2可能作为肿瘤的标志物,并有望成为肿瘤治疗的新靶点。
三、研究进展对于CMPK2的研究进展主要集中在其功能和调控机制方面。
研究发现,CMPK2的表达受多种因素的调控,包括转录因子和信号通路等。
通过研究CMPK2的调控机制,可以更好地理解其在细胞生物学中的功能和作用机制。
一些研究还发现CMPK2在一些疾病的发生和发展中起到重要的作用。
例如,在某些免疫相关疾病中,CMPK2的表达水平显著上调,与疾病的发生和发展密切相关。
因此,进一步研究CMPK2在疾病中的功能和调控机制,对于寻找新的治疗策略和药物靶点具有重要意义。
四、总结CMPK2是一种重要的蛋白质分子,参与了细胞内嘌呤核酸的合成和能量代谢等重要生物学过程。
bst2 分子量
bst2 分子量BST2(Bone marrow stromal antigen 2)是一种分子量约为30-40 kDa的膜蛋白,也被称为CD317或Tetherin。
它在人类和其他哺乳动物中广泛表达,对于免疫系统的正常功能至关重要。
BST2是一种整合蛋白,可以通过其N端的糖基磷脂酰肌醇锚定在细胞膜上。
BST2在许多免疫细胞中都有高表达,特别是在淋巴细胞和树突状细胞中。
它在调节病毒感染和肿瘤发展方面起到重要作用。
研究发现,BST2可以抑制多种病毒的复制和传播,包括HIV、乙型肝炎病毒、埃博拉病毒和寨卡病毒等。
BST2通过将病毒颗粒锚定在感染细胞表面,阻止其释放和传播,从而限制病毒的扩散。
在肿瘤学领域,BST2也被证明是一个重要的抗肿瘤因子。
它的高表达与多种肿瘤的预后改善相关,包括乳腺癌、结肠癌、肺癌和黑色素瘤等。
研究人员发现,BST2可以通过多种机制抑制肿瘤细胞的增殖和迁移,促进肿瘤细胞凋亡,并且可以激活免疫系统对肿瘤的攻击。
因此,BST2被认为是一种潜在的抗肿瘤治疗靶点。
除了在免疫和肿瘤领域的研究外,BST2还被发现在许多其他生物学过程中发挥重要作用。
例如,在胚胎发育中,BST2参与胚胎发育和器官形成的调节。
在神经系统中,BST2参与神经元发育和突触形成。
此外,BST2还参与调节炎症反应、自身免疫疾病和肝脏疾病等多种生理和病理过程。
由于BST2在多种生物学过程中的重要作用,它成为了许多研究的焦点。
研究人员通过基因敲除、过表达和功能研究等方法,揭示了BST2在调节病毒感染、肿瘤发展和其他生物学过程中的机制。
此外,一些研究还尝试开发BST2作为新型抗肿瘤和抗病毒治疗的靶点。
总结起来,BST2是一种分子量约为30-40 kDa的重要膜蛋白,它在免疫系统的正常功能、病毒感染的抵抗和肿瘤的抑制等方面起着关键作用。
研究BST2的机制和应用潜力,有助于我们更好地理解和应对与免疫和肿瘤相关的疾病。
希望未来的研究能够深入探索BST2的功能和应用,并为相关疾病的预防和治疗提供新的思路和方法。
hmmsearch的鉴定蛋白结构域
hmmsearch的鉴定蛋白结构域hmmsearch是一种常用的工具,用于鉴定蛋白质结构域。
蛋白质是生物体内的重要组成部分,它们在细胞的生理过程中扮演着关键的角色。
蛋白质的功能与其结构密切相关,而蛋白质结构域则是蛋白质结构的基本组成单元。
蛋白质结构域是指具有相对稳定的结构和功能的蛋白质片段。
通过鉴定蛋白质结构域,我们可以了解到蛋白质的结构和功能,并进一步研究其在生命活动中的作用。
hmmsearch是一种基于隐马尔可夫模型(Hidden Markov Model,HMM)的搜索方法,它可以根据已知的蛋白质结构域模型,对给定的蛋白质序列进行比对和鉴定。
hmmsearch的工作原理是通过比对待鉴定蛋白质序列与已知的蛋白质结构域模型,计算它们之间的相似度。
相似度的计算是基于HMM 的概率模型,它考虑了蛋白质序列的氨基酸组成、结构特征以及进化信息等多个因素。
通过比对分析,hmmsearch可以确定待鉴定蛋白质序列中存在的结构域,并预测其可能的结构和功能。
使用hmmsearch进行蛋白质结构域鉴定的步骤如下:1. 构建蛋白质结构域模型库:hmmsearch使用的关键是已知的蛋白质结构域模型。
这些模型可以通过多种方法获取,如从已知的蛋白质结构数据库中提取、通过实验手段确定等。
在使用hmmsearch之前,需要先构建一个包含已知蛋白质结构域模型的库。
2. 准备待鉴定蛋白质序列:待鉴定蛋白质序列可以是已知的序列,也可以是新发现的序列。
这些序列可以通过实验手段获取,也可以通过生物信息学方法预测得到。
在使用hmmsearch之前,需要准备好待鉴定蛋白质序列。
3. 运行hmmsearch进行比对:将待鉴定蛋白质序列与蛋白质结构域模型库进行比对。
hmmsearch会计算待鉴定序列与每个模型之间的相似度,并给出相应的比对结果。
4. 结果解读和分析:根据hmmsearch的输出结果,可以得知待鉴定蛋白质序列中存在的结构域。
这些结构域的信息可以用于预测蛋白质的结构和功能,并进行相关的生物学研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CHAPTER 2PROTEINSCentral molecules of biochemistry include:Nucleic Acid (DNA/RNA)SugarsLipidsProteinsPROTEINSA.What is a protein and what does it do?1.The term protein is derived from the Greek term Proteios meaning ofthe first rank [Jöns Berzelius]2.All functions of proteins are important for life; some more than others3.Without proteins, life as we know it, would not exist. Withoutproteins the chemical changes which are necessary to sustain lifewould occur much too slowly4.Proteins come in basically two “flavors” Fibrous and Globulara)Fibrous – water insoluble structural proteins (polymeric)b)Globular – mostly water soluble (variety of functions)B. Protein functions:1.Enzymatic catalysis – lowers activation energy and thus increases therate of chemical reactions without increasing temperature. Increasedrate of at least million fold 106a) Important for sight, thought, warmth, movement – in generallife cannot be sustained without enzymes2. Transport and Storage – Transport of oxygen and other nutrients isfacilitated by proteinsa) Ions such as Ca+2, K+, Na+ are transported across membranesand are important in nerve signal transmission, musclecontraction and inter and intra-cellular communication.b) Transport of sugar, fats and other proteins is essential forenergy production and storagec) Storage of Fe, starch, glycogen, fats, amino acids and otherions and molecules is maintained and regulated by proteins3. Motion – Proteins such as myosin and actin form muscle fibers.a) Proteins are also essential for the movement of sperm cells,bacteria and other single celled organismsb) Proteins facilitate the movement of DNA during cellularmitosis and meiosis.4. Structural and Mechanical Support – Fibrous proteins are essentialcomponents of all organisms, especially among the more complexeukaryotes such as plants and animalsa) Cell walls, Hair, fingernails, muscles, wings, tendons and otherconnective tissuesb) Cytoskeleton – inner framework of animal cells which definesshapec) Proteins provide the machinery to make other proteins5. Protection – proteins play an integral role in protecting organismsfrom invasion by other organisms and in repairing extraneous damagea) Antibodies and complement are proteins which are involved ineliminating foreign substances.b) MHC complexes are proteins which provide for selfrecognitionc) Fibrinogen and thrombin are proteins which are involved inblood clotting6. Regulatory Functions – Some proteins function as hormones and areinvolved in systemic communicationa) Insulin signals the fed state and initiates many intracellularevents, one of which culminates in the uptake of glucose.b) Human growth hormone, oxytocin and vasopressin are allexamples of protein hormonesc) Cell cycle, growth and differentiation are all controlled at somelevel by proteins. Proteins play a key role in replicating,packaging, winding and unwinding DNA7. Nervous System – proteins are actively involved in the generation,transmission and resetting of nerve impulses.Note:Many inherited diseases occur due to faulty or missing proteins which are required for a specific taskC.We have still not answered the question -- What is a protein?1. A protein is a very large molecule (macromolecule) which is made-upof mostly C, H, N and O ----- some S2. A protein is a polymer made-up of repeating subunits (similar tonylon or polystyrene)a)each subunit (often called a residue) is analogous to a singlecar on a train; where the train represents the entire proteinb)Subunits of proteins (residues) are called amino acids due tothe functional groups present in the molecules.i)amine functional group R-NH2ii)carboxylic acid group R-COOHiii) R - is the distinguishing group for each amino acidR = variable groupC = called the "-carbonc)There are basically 20 different R-groups -- corresponding to20 different amino acidsi)some species modify the basic amino acids for differentreasonsii)Humans ----> bacteria use the same repertoire of 20 a.a.for the construction of proteinsiii) Humans and other animals are not capable ofsynthesizing all 20 amino acids and must thereforeconsume certain amino acids which are termed essential(there are 9 essential a.a. required by humans)d)Two absolute configurations possible R or S The "-carbon ischiral [exception glycine]3.Fischer Notation ---- biochemists replace R and S notationsa)Simplifies stereochemistry (R and S dependent on first atom onR-group)b)L and D notations are independent of the R-group!EnantiomersD isomer L isomerc)Book states that only L amino acids are constituents of proteins Not always true —It appears that all amino acids placed into a newly synthesized protein are all L, however some species change certain residues from L to D for specific reasons.One and three letter codes:most of the three letter codes are simply abbreviations of the name4.Acidity / Basicity of amino acids a)Amine group is a Bronstead/Lowery BASENH 2 accepts proton --------> NH 3+b)Carboxyl group is a B/L ACIDCOOH donates proton -------> COO -c)R-groups --- some acidic ------ some basicNote:The ionization state of any of these groups is dependent on the pH of the solution pH 1.0 ------------->totally protonated amino acidsCHARGED +pH 7.0 -------------->Partially deprotonated amino acidCHARGE is Neutral pH 9.0 -------------->Totally deprotonated amino acidCHARGED -REVIEW ACID/BASE CALCULATIONSA.Water constant 2 H2O <======> H3O+ + OH-sometimes writtenas simple dissociation H2O <======> H+ + OH-[H2O] is 55.5M -- ionization is comparably insignificant[H2O] is considered constantpure water -----[H+] = 1 X 10-7 and [OH-] = 1 X 10-7 Therefore-----Kw = 1 X 10-14(Kw is equilibrium constant)B.If we add exogenous [H+] or [OH-] to water we will disrupt the equilibriumand establish a new equilibrium based on the constant value of water(Example)Say we add HCl so that the final concentration of [H3O+] isnow much greater than 10-7 ---------> Let's say 10-3MThe [OH-] is automatically adjusted to 10-11 M so that theproduct [H3O+] [OH-] will equal the Kw of 10-14C.Weak acids ---- DO NOT donate ALL H+ to waterACID + H2O <=======> [H3O+] + [A-]Rearrange the above equation and solve for [H+]Take the - Log of both sides of the equation- Log [H+] is defined as the pHBy definition the - Log Ka is called the pKaIf we invert the A- / Acid ratio then the sign is changed to +Henderson/ Hasslebalch equationQuestion:When does the pH equal the pKa?Answer:When [A-] = [Acid] concentrationLog [1] = 0When 1/2 of the H+ has been donated the pH of the solution is = pKa. InO+] when 1/2 of the acid is ionized other words the pKa describes the [H3The pKa value gives us a quick look at the strength of the weak acidD.If we consider the ionization state [A-] to [Acid] ratio at a fixed pH we canuse the above equation also.1.What is the ionization state of the acid at 1.5 pH units above the pKa?a)mostly deprotonated (almost completely ionized)[A-] predominates2.What is the ionization state of the acid at 1.5 pH units below the pKa?a)Mostly protonated (mostly unionized)[Acid] predominatesE.Biological systems are buffered to fix charges on amino acids and adsorbany H+ produced during chemical reactions1.Buffers are usually weak acids which maintain a fixed pH bydonating or scavanging H+ as needed ---- they are most effective atpH values close to the pKa of the acida)WHY ?ACID/BASE RELATIONSHIPS OF AMINO ACIDSA.Each amino acid has at least two pKa values:1 -- for the amine group1 -- for the carboxyl group1.Some amino acids have a third pKa value contributed by the R-group2.pKa COOH Low(acidic)pH = 1.8 to 2.3+High (basic)pH = 9.0 to 11.03.pKa NH3(pKa values are dependent on other factors)B.If we exclude the R-group for a moment and look at protonation of anamino acid at pH 7.01.More than 1.5 pH units above pKa of COOH group (deprotonated)More than 1.5 pH units below pKa of NH3+ group(protonated)At pH 7.0 amino acids aredipolar ions with oppositecharges on the same moleculeCalled a ZWITTER ION(Hybrid)C.Consider titration curve for amino acid with 2-pKa valuesKa1Ka2Gly+Gly o Gly-We must consider 2 equations1.2.Titration curve(example problem)100 ml of a 0.250 M solution of glycine-HCl (Gly+) is titrated with 10 N NaOH to pH 3.20 . What are the relative concentrations of Gly+ and Gly o at this pH? Do not consider Gly- concentration (pH is well below the second pKa)1.First calculate the total moles of Gly+ found in 100 mL of solution2.After titration some of the Gly+ will be converted to Gly o, but none of it willbe lost. Therefore:O + Na+3.Gly+ + NaOH --------------> Gly o + H20.0250 - X X X4.0.0250 moles Gly+ - X will remain after titration5.X = Gly o X Gly o will be formed during titration6.Plug values for weak acid Gly+ and its conjugate base Gly o into theHenderson/ Hasslebalch equation and solve for X7.PROTEINS --- Polymers of amino acidsA.20 different amino acids (monomers or subunits). They each vary in shape,size, charge (given pH), H-bonding capacity and chemical reactivity1.different physical and chemical propertiesa)some ---- hydrophobicb)some ----hydrophilicc)some ----aromatice)some ----contain Sf)some ----acid R groupg)some ----basic R groupB.Amino acids link together to form long chains (polymers). The linkagebetween the amino acids is called an amide bond.1.The polymer is called a polypeptide or protein2.Linkage occurs as follows:3.Amino terminus is considered the beginning of the polymer or+)protein chain (NH34.Carboxyl terminus is considered the end of the polymer or proteinchain (COO-)5.Main Chain (regular repeating portion) of the protein is called thebackbone6.Variable portion of the protein ---- R groupsC.The overall charge of a protein is independent of the ends. At physiologicalpH the ends are nearly always charged and the charges cancel each other1.The charge of a protein is dependent on R-groups and pH of themedium.a)Charge determines chemical reactivityb)Charges may participate in protein structure (Example problem)1.What is the net charge on the following protein at a given pH 7.5?G H W S F M L E E A R small peptide (11 a.a.)First assume that deprotonation of the R-group is predominates at 1- pH unit above the pKa and protonation of the R-group predominates at 1- pH unitbelow the pKa.+G H W S F M L E E A R-o - - +(SEE pKa Table)His pKa 6.0 -- 6.5Glu pKa 4.4Arg pKa12.0pH of 7.5 is well below the pKa of Arg --- Arg must be protonated (+ charge)pH of 7.5 is 1-full pH unit above the pKa of His --- His deprotonated (no charge) pH of 7.5 is well above the pKa of Glu --- Glu deprotonated (- charge)NET CHARGE AT pH 7.5 = -12.What is the net charge at pH 5.5?+G H W S F M L E E A R-+ - - +The only change is His ---- protonated below pKa ---- His is + chargedNET CHARGE AT pH 5.5 = 0(close to isoelectric point)PROTEIN MASSA.The mass of a protein is described in Daltons1. 1 - Dalton is simply 1-amu12C mass = 12.00000 Daltons2.Typical proteins contain between 50 to 2000 amino acids linkedtogether. The majority falls somewhere between 200 - 1000 a.a.3.The average atomic mass of all amino acids is . 110 Daltons50 a.a. X 110 Daltons = 5,500 Daltons or 5.5 kdamino acidAgain most proteins fall between ----- 10 to 100 kdB.Peptides ----- Small chains of amino acids1.No absolute defined line between a protein and a peptidea)generally 2 a.a -------> 50 a.a chains are called peptides(Have seen 8.0 kd and below called peptides) PRIMARY PROTEIN SEQUENCEA.In 1953 Frederick Sanger determined the first sequence of amino acidswithin a small protein called bovine insulin******SHOW OVER HEAD*****1.Bovine insulin consists of two peptide chains called " and $a)Sanger showed that proteins have a defined order ofamino acids within a peptide or proteinb)Sanger showed that proteins are made-up of only L a.a.and not D2.It is now known that the " and $ chains are initially synthesized asonly one single chain called Proinsulin and then processed into twoseparate chainsB. Sequencing peptides: Almost exclusively automated º Simply applysample to Automatic Sequencer and the sequence of a small peptide can be determined!(10-15 amino acids with very good accuracy) See Edman Degredation.1. N-Terminusa) FDNB (5-fluoro-1,3-dinitrobenzene)(Sanger’s Technique) Forms bright yellow derivative with N-Terminal residue.b) Dabsyl Chloride - commonly used now - more sensitive - candetect smaller quantities.c) Dansyl Chloride - very sensitive- forms fluorescentsulphonamides.(Note) After reaction - perform amino acid composition. Look foramino acid linked to label.* Only good for N-Terminal Residue. Must be repeated for entire protein Auung!! 400-500 residues. (If you could do 1 per day, 1-2 years!)2. Edman Degredation - Method applied by automated sequenators!Chemical used Phenylisothiocyanate.Label at N–Terminus º Brief acidic cleavage leaving newN-Terminus for another reaction. (Organic Chemistry)Requires very little sample 10 picomoles (10-12 moles protein!!)C. Larger Proteins: Divide and Conquer1. Cleavage of Proteins: Not into amino acids but into smallersections . peptides.a) CNBrº Very dangerous - work with in hood only.i) Seems to be a specific chemical cleavage of a protein.(unusual)ii) Splits the peptide bond on the carboxyl side of metresiduesiii) Separate and Sequence pieces!b) Trypsin - Enzyme (protein) produced by pancreas whichdegrades proteins.i) Specifically cleaves on the COOH side of Lys or Arg.c) Endo Proteinase Lys C - Enzymei) Specifically cleaves on the COOH side of Lys (only)Very Populard) Chymotrypsin - Enzymei) Non specific cleavage on the COOH side of aromatic andsome other non polar residues.Note * digestion with two or more reagents is used to determine therelatedness of proteins - called peptide mapping.Show example: Show how to put a peptide back together using piecesD. Multiple Chains:1. Separate chains first using reducing agent i.e., $-mercaptoethanol orDTT (dithiothreitol) and denaturants, i.e., Urea or Guanidine HCla) isolate each polypeptide, digest into pieces, isolate each of thepieces and then sequenceE. Importance of Primary sequence:1. Protein Folding – All the information required for proper proteinfolding and function must be found in the primary sequence of aminoacids2. Inherited Disease– Many hereditary diseases are caused byalterations in the primary structure of proteins. Comparing theprimary amino acid sequence of a functional protein with that of anonfunctional or abnormal protein helps establish the underlyingcause of a given diseaseExamples:Cystic Fibrosis, Sickle cell anemia3. Nonfatal Alterations– Primary amino acid differences andsimilarities in common proteins among related and non relatedspecies are used to establish relationships among species:Evolutionary Lineages4. Protein Families–Proteins with similar or related primary structuresoften have similar functions. We group these related proteins into“families.” The primary structure of these related proteins helpsestablish structure/function relationshipsa) Cancer causing viruses often contain DNA segments whichencode for proteins that are similar to growth regulationproteins found in normal cells5. 3D Structure– The primary protein sequence is very helpful, if notessential, in the determination of the complete 3-dimensionalstructure by X-ray diffractiona) The X-ray diffraction gives electron density data only. The datalooks a lot like a 3D topographical map6. Repetitive Sequences– Short stretches of amino acids common todifferent proteins, often provide a similar function to these differentproteins. The stretches are called amino acid motifsExample:The binding of Ca+2 or Zn+2 is carried out in differentproteins by similar stretches of amino acids.Glycosylation sites are similar among different proteinsAsn – X – Ser Asn – X – Thr7. Cloning Genes– The primary amino acid structure can be used tomake DNA probes. These DNA probes are used to identify genesthat encode for the protein of interest8. Generate Antibodies – In some cases short protein sequences(peptides) can be used to elicit an immune response. The antibodiesgenerated can be used to study the production of the original proteinin different species or tissues.F.Changes in the amino acid sequence may cause serious phenotypicdisorders!1.Depends on the protein, location and type of amino acid changea)substitutions of similar a.a. in noncritical locations may notaffect the function of a protein at allb)Insulin ---- several changes -----> same functionc)Hemoglobin ---- one a.a. change -----> sickle cellG.Protein sequencing of an entire protein is rarely done anymore (exceptionsmall peptides 10 to 50 a.a). The work is very tedious and expensive1.Most researchers sequence small portions of a protein and then usethat information to find the DNA sequence (gene). The DNAsequence will reveal the entire protein sequencea)Also very complicated and time consuming -- advantage,you have the gene to work with when you are done AMINO ACID MODIFICATIONS IN PROTEINSA.Conversion of Proline into hydroxyProline1.H-pro is an important constituent of collagen (Vit C is required forthe conversion)------------------->a)Vit C deficiency ---- Bad collagen ---- ScurvyB.Carboxy Glutamate (dicarboxylic acid)1.Prothrombin (blood clotting protein) converted to thrombin (active)(Vit K is important for this conversion)--------------->a)Vit K deficiency --- inefficient clotting, bleeding disordersC.Phosphorylation(molecular switch)1.Regulation of enzyme and other protein functions can be controlledby phosphorylationa)signals activation or deactivation via phosphoester bond to oneof the hydroxyl-containing R-groups --- Ser, Thr or Tyr------------->b)Phosphorylation is reversible --- switch on or offD.Glycosylation(Sugar added to protein)1.Modified sugars are attached to either Asn, Ser or Thra)Asn --- N-linkedb)Ser, Thr --- O-linked2.Important for solubility of some hydrophobic proteins3.Important for localization --- usually targeted to outer membraneE.Signal Sequences1.The first 10 - 30 amino acids of some proteins are removed from anacent protein chaina)Targets protein to cellular organellesb)Targets proteins for insertion into membranesF.Proteolysis1.Specific cleavage of one protein by another protein (molecularswitch)a)Proinsulin -----> insulin (active)b)Prothrombin -----> thrombin (active)SECONDARY PROTEIN STRUCTUREA.The peptide unit is defined as the amide bond (fairly rigid structure)1.Resonance stabilized structure. The hybrid structure demonstrates thatboth the O and N bonds have double bond characteristica)Limits rotation about the C-N bondN RThe O from the carbonyl and the H are nearly always in the trans positions(exception is Pro)2.Two Planar rigid structures called the N and R planes can freely rotateabout the central "-carbona)rotation and rigidity allows proteins to assume well defined 3-D conformations (Not like a string)i)Proteins are not a random mess of amino acids3.Linus Pauling and Corey built precise models of proteins based onexperimental bond angles. (daunting task)a)Linus Pauling decided to see where H-bonds might form byrolling the paper (Nobel Prize)4.After much work two possible structures were proposeda)"-helix and $-SheetNote:Both structures were proven correct when the first X-rayreconstruction of myoglobin and other proteins were solved THE"-HELIXA.Proteins can be nearly 100% "-helices or nearly devoid of them1.Right handed helix ---- look up through the bottom of the spiral ----turns right or clockwise away from you(Example)Phone cord2. 3.6 residues (a.a) per complete 360o turn of the helix3. Pitch: rise (1.5 Å) X 3.6 residues = 5.4 Å rise/ turn4.Local proximity of amino acids — interactions among amino acids islocalized to 5 amino acidsa) H-bonding pattern is a very important force which holds thestructure in placeb) Amine H shared with the carbonyl O every 4th residue away3.Coiled/coils---- compound coils (example twisted telephone cord)a)Strong structures found in keratin ---- porcupin quilsb)Found in cytoskeleton proteinsTHE$-SHEETA.The $-sheet(often called a $ pleated sheet due to the folds in the structure)1.$-sheets require a 180o turna) $ -turn, reverse turn or hairpin turn are all names for the samestructureb)$ -turn is a small structure usually 4 a.a. in lengthc)Gly is nearly always found in the structure (small R-group)2.Several strands can be involved in a $-sheet structure******SHOW OVER HEAD*****3.H-bonding pattern is also a very important force which holds thestructure in placea)Amine H interacts with the carbonyl Ob)Distant interactions --- several a.a may intervene between theH-bonding pair (No set distance)4.There are basically two types of $-sheets --- Parallel and antiparallela) Parallel – all strands are facing the same directionb) antiparallel – all strands alternate in directionD.Super secondary Structures – combinations of " and $ secondary structures******SHOW OVER HEADS*****1. "$ Saddle2. $$ Sandwich3. "$ Barrel4. Four helix bundle5. " turn "LEVELS OF PROTEIN STRUCTUREA.1o structure ---linear sequence of a.a. in a protein chain: The types ofa.a. present and their unique order in the chainB.2o structure ---Substructures of a protein; "- helix, $-sheet or somecombination of the two (super secondary structure)C.3o structure ---The total unique 3-D structure of a single protein chain(polypeptide) ----> interactions (disulfide bonds,dipole/dipole, H-bonds) involve residues which are farapart in the primary sequenceD.4o structure ---Interactions between two or more completely foldedpolypeptide chains. Many proteins contain subunitpolypeptides of differing types. A tetramer is a proteinformed by four polypeptide chains. Each polypeptidemay be identical in primary structure or they may be verydifferent. Often the protein contains two sets of identicalpolypeptides called "2$ 2Summary of 2o structures and the forces which are involved in both the 2o and 3o structure of a proteinNote:disulfide bond is a covalent linkage of S--S atoms between Cys residues. Reversible oxidation/reduction reactionPROTEIN FOLDINGA.It is believed, with some strong experimental evidence, that the 3o structureand ultimate function of a protein is completely coded by the primary a.a.sequence1.Proteins cannot possibly fold into a 3o structure merely by a randomsearch of all possible conformations !2.Consider a small protein of 100 a.a. ---- Cyrus Levinthal calculatedthat if each residue could only assume 3 different conformations(positions in space), then the total number of possible structureswould be 3100 ---- 5 X 1047 different possible structures(whoaaaaaaa!!!!!)3.If it took only 10-13 sec (incredibly fast) to try each possible structureallowing for no repeated structures --- it would take 1.6 X 1027years for a protein to fold !!!a)Actual time is less than 0.1 secB.Richard Dawkins asked --- how long would it take a monkey to randomlytype a short line from one of the sonets of Shakespear's plays (Hamlet)?1.He calculated that at random keystrokes it would take 1040 keystrokes2.Now, retain correct keystrokes and allow the monkey to retype onlythe wrong ones ---- calculated 2 - 3,000 keystrokesa)difference of 1037 keystrokes by retaining correct lettersStryer --- "The essence of protein folding is the retention of partiallycorrect intermediates"C.Protein folding --- area of intense research ---- very complex subject!!1.Impetus for such research --- thousands of primary structures are nowknown --- very few 3o structures are known.a) Scientists would like to predict 3o from 1o information FOLDING AND FUNCTION RELATIONSHIPA.Christian Anfinsen: worked to understand the folding/function relationshipof an enzyme called ribonuclease (degrades RNA)1.Chemicals used:a)Urea (8M): chemical which disrupts the H-bonding within the2o structure of a protein ---- denaturant (unfolds proteins)b)Guanidine HCl: strong denaturant --- probably disrupts H-bonding as wellc)$-mercaptoethanol ($-ETSH): mild reducing agent ---reduces S--S bonds to SH SH (unlinks the disulfide bonds)2.Treated RNase with Urea or g-HCl (+ $-ETSH) ----- completelyunfolded "denatured" protein chaina)Dialysis: removes all denaturants (size exclusion)i)Complete retoration of enzyme activty (24 hr)3.Conclusion: Protein folded into native conformation on its own (noother proteins were needed to intercede)a)S--S bonds probably reformed by oxidation with airB.Alternate procedure1.Remove $-ETSH first, allow S--S bonds to form, then remove Ureaa)retain denatured state but allow S--S bonds to reform2.Removal of the Urea --- 1% of the total activity remained ?3.Conclusion: The RNase was scrambled by the random formation ofS--S bondsa)8 - SH (Cys) groups taken in pairs = 105 combinationsb) 1 out of 105 RNase molecules formed correct S--S bondsbefore they were allowed to fold --- 1% activity4.Added trace of $-ETSH to 1% active sample ---- total activity slowlyreturned --- ($-ETSH is volatile)C.Native (active) form of RNase must be the most thermodynamically stableconformation (conformation of lowest energy) and water must be driving force in foldingNote:The folding of some proteins is assisted by enzymes which do catalyze the lowest energy state conformation。