高二数学(文倾)函数及其性质练习
江苏省盐城中学高二数学暑假作业:函数的表示及性质学生
盐城中学高二数学暑假作业(2)-----函数的表示及性质姓名 学号 班级一、填空题1.以下各组函数是表示同一函数的是 . ①2()f x x =,33()g x x =; ②()x f x x=,10,()10;x g x x ≥⎧=⎨-<⎩③2121()n n f x x ++=,()2121()()n n g x xn N -*-=∈;④()1f x x x =+,2()g x x x =+; ⑤2()21f x x x =--,2()21g t t t =--.2.设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1= . 3.若)12(log 1)(21+=x x f ,则)(x f 定义域为 .4. 若函数))(12()(a x x xx f -+=为奇函数,则a = .5.已知实数0≠m ,函数()()()⎩⎨⎧>--≤-=2,22,3x m x x m x x f ,若()()m f m f +=-22,则实数m 的值为 . 6.已知函数()()101log <<+-=a xb xx f a为奇函数,当(]a x ,1-∈时,函数()x f 的值域是(]1,∞-,则实数b a +的值为 .7. 若函数2221xax ay --=-的定义域为R ,则实数a 的取值范围是_______.8.函数2211()f x x x x-=+,则函数)1(-x f 的表达式为 .9.(1)函数24331x x y -+-=-的递增区间是______________;(2)函数()212log 43y x x =-+-的递减区间______________.10. 设函数2(1)1,()411,x x f x x x ⎧+<⎪=⎨--≥⎪⎩则使得()1f x ≥的自变量x 的取值范围为 .11.给定以下函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(0,1)上单调递减的函数序号是 .(A )①② (B )②③ (C )③④ (D )①④ 12.方程22(01)x a x a a +=>≠且的解的个数为 .13.已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-x x a a x g x f()1,0≠>a a 且,若()a g =2,则()=2f .14. 已知0>a ,函数()ax a x x f 2+-=在区间[]4,0上的最大值为107,则a 的值为 .17.若()f x 在定义域(-1,1)内可导,且a x f 又当;0)(<'、0)1,1(=+-∈b a b 且 时,()()0f a f b +=.解不等式2(1)(1)0f m f m -+->.18.某厂家举行大型的促销活动,经测算某产品当促销费用为x 万元时,销售量P 万件满足123+-=x P (其中0x a ≤≤,a 为正常数). 现假定生产量与销售量相等,已知生产该产品P万件还需投入成本()102P +万元(不含促销费用),产品的销售价格定为204P ⎛⎫+ ⎪⎝⎭万元/万件.⑴ 将该产品的利润y 万元表示为促销费用x 万元的函数; ⑵ 促销费用投入多少万元时,厂家的利润最大.。
高常考题—函数的性质(含解析)
函数的性质一、题型选讲题型一 、 函数的奇偶性正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.填空题,可用特殊值法解答,但取特值时,要注意函数的定义域.例1、(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x --D .2x例2、(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15例3、(2020届浙江省台州市温岭中学3月模拟)若函数()2ln 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()1f x <的x 的取值范围为( ) A .11,1e e -⎛⎫- ⎪+⎝⎭B .10,1e e -⎛⎫⎪+⎝⎭C .1,11e e -⎛⎫⎪+⎝⎭D .11,(1,)1e e -⎛⎫-⋃+∞ ⎪+⎝⎭例4、【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =题型二、函数的单调性已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减.例5、(江苏省如皋市2019-2020学年高三上学期10月调研)已知函数22,1()1,1ax x x f x ax x ⎧+≤=⎨-+>⎩在R 上为单调増函数,则实数a 的取值范围为________.例6、函数()()212log 4f x x =-的单调递增区间是例7、(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.题型三、 函数的周期性1、若()f x 是一个周期函数,则()()f x T f x +=,那么()()()2f x T f x T f x +=+=,即2T 也是()f x 的一个周期,进而可得:()kT k Z ∈也是()f x 的一个周期2、函数周期性的判定:(1)()()f x a f x b +=+:可得()f x 为周期函数,其周期T b a =- (2)()()()f x a f x f x +=-⇒的周期2T a = (3)()()()1f x a f x f x +=⇒的周期2T a = (4)()()f x f x a k ++=(k 为常数)()f x ⇒的周期2T a = (5)()()f x f x a k ⋅+=(k 为常数)()f x ⇒的周期2T a =例8、(2019通州、海门、启东期末)已知函数f(x)的周期为4,且当x ∈(0,4]时,f(x)=⎩⎨⎧cos πx 2,0<x≤2,log 2⎝⎛⎭⎫x -32,2<x≤4.则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12的值为________.例9、(2017南京三模)已知函数f (x )是定义在R 上且周期为4的偶函数. 当x ∈[2,4]时,f (x )=|log 4(x -32)|,则f (12)的值为 ▲ .题型四 函数的对称性函数的对称性要注意一下三点:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
高二函数试题及答案
高二函数试题及答案一、选择题(每题4分,共20分)1. 函数f(x) = 2x^2 - 3x + 5的图像与x轴的交点坐标是:A. (1, 0)B. (-1, 0)C. (1/2, 0)D. (0, 0)2. 若函数f(x) = √x + 1的定义域为:A. (-∞, +∞)B. (-1, +∞)C. (0, +∞)D. [1, +∞)3. 函数y = 2^x的反函数是:A. y = log2(x)B. y = log10(x)C. y = log(x)D. y = 1/x4. 若f(x) = x^2 + 2x + 3,则f(-1)的值为:A. 0B. 1C. 2D. 35. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π答案:1. A 2. C 3. A 4. B 5. B二、填空题(每题3分,共15分)1. 函数f(x) = x^3 - 6x^2 + 9x + 2的极值点是______。
2. 若函数g(x) = x^2 - 4x + 3,则g(1) = ______。
3. 函数h(x) = log(x)的定义域是______。
4. 函数y = 1/x的图像关于______对称。
5. 若f(x) = x^2 + bx + c,且f(-1) = 0,f(1) = 2,则b + c =______。
答案:1. x = 3, x = 1 2. 0 3. (0, +∞) 4. 原点 5. 1三、解答题(每题10分,共40分)1. 已知函数f(x) = ax^2 + bx + c(a ≠ 0)的图像是开口向上的抛物线,且与x轴有两个交点,求a、b、c的关系。
解:由于抛物线开口向上,所以a > 0。
又因为与x轴有两个交点,所以判别式Δ = b^2 - 4ac > 0。
2. 已知函数y = 3x - 2的图像经过点(1, 1),求函数的解析式。
解:将点(1, 1)代入函数y = 3x - 2,得1 = 3*1 - 2,验证该点在图像上。
高中数学第三章函数的概念与性质专项训练题(带答案)
高中数学第三章函数的概念与性质专项训练题单选题1、若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f(a)−f(b)a−b>0成立,则必有( )A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增 答案:A分析:根据条件可得当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),从而可判断. 由f(a)−f(b)a−b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.2、若函数y =√ax 2+4x +1的值域为[0,+∞),则a 的取值范围为( ) A .(0,4)B .(4,+∞)C .[0,4]D .[4,+∞) 答案:C分析:当a =0时易知满足题意;当a ≠0时,根据f (x )的值域包含[0,+∞),结合二次函数性质可得结果. 当a =0时,y =√4x +1≥0,即值域为[0,+∞),满足题意; 若a ≠0,设f (x )=ax 2+4x +1,则需f (x )的值域包含[0,+∞), ∴{a >0Δ=16−4a ≥0,解得:0<a ≤4;综上所述:a 的取值范围为[0,4]. 故选:C.3、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B4、已知幂函数y =x m 2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)−m3<(3−2a )−m 3的a 的取值范围为( )A .(0,+∞)B .(−23,+∞) C .(0,32)D .(−∞,−1)∪(23,32)答案:D分析:由条件知m 2−2m −3<0,m ∈N ∗,可得m =1.再利用函数y =x −13的单调性,分类讨论可解不等式. 幂函数y =x m2−2m−3(m ∈N ∗)在(0,+∞)上单调递减,故m 2−2m −3<0,解得−1<m <3.又m ∈N ∗,故m =1或2.当m =1时,y =x −4的图象关于y 轴对称,满足题意; 当m =2时,y =x −3的图象不关于y 轴对称,舍去,故m =1. 不等式化为(a +1)−13<(3−2a )−13,函数y =x −13在(−∞,0)和(0,+∞)上单调递减,故a +1>3−2a >0或0>a +1>3−2a 或a +1<0<3−2a ,解得a <−1或23<a <32.故应选:D .5、已知函数f (x +1)的定义域为(−1,1),则f (|x |)的定义域为( ) A .(−2,2)B .(−2,0)∪(0,2) C .(−1,0)∪(0,1)D .(−12,0) 答案:B分析:根据抽象函数定义域的求法求得正确答案. 依题意函数f (x +1)的定义域为(−1,1), −1<x <1⇒0<x +1<2, 所以0<|x |<2,解得−2<x<0或0<x<2,所以f(|x|)的定义域为(−2,0)∪(0,2).故选:B6、已知函数f(x)是定义在R上的偶函数,f(x)在[0,+∞)上单调递减,且f(3)=0,则不等式(2x−5)f(x−1)<0的解集为()A.(−2,52)∪(4,+∞)B.(4,+∞)C.(−∞,−2)∪[52,4]D.(−∞,−2)答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x−5>0f(x−1)<0、{2x−5<0f(x−1)>0求解集即可. 由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0,对于(2x−5)f(x−1)<0,当{2x−5>0f(x−1)<0,即{x>52x−1<−3或{x>52x−1>3,可得x>4;当{2x−5<0f(x−1)>0,即{x<52−3<x−1<3,可得−2<x<52;综上,解集为(−2,52)∪(4,+∞).故选:A7、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1, 故选:C 8、函数f (x )=√−x 2+5x+6x+1的定义域( )A .(−∞,−1]∪[6,+∞)B .(−∞,−1)∪[6,+∞)C .(−1,6]D .[2,3] 答案:C分析:解不等式组{−x 2+5x +6≥0x +1≠0得出定义域.{−x 2+5x +6≥0x +1≠0,解得−1<x ⩽6即函数f (x )的定义域(−1,6] 故选:C 多选题9、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C[0,1]项错误,D项正确.故选:ABD10、下列各组函数是同一函数的是()A.y=|x|x与y=1B.y=√(x−1)2与y=x−1C.y=(√x)2x 与y=(√x)2D.y=x3+xx2+1与y=x答案:CD分析:根据同一函数的概念,逐一分析各个选项,即可得答案.对于A:函数y=|x|x的定义域为x≠0,函数y=1定义域为R,两函数定义域不同,故不是同一函数;对于B:函数y=√(x−1)2定义域为R,化简可得y=|x−1|,与y=x−1解析式不同,故不是同一函数;对于C:函数y=(√x)2x 定义域为x>0,化简可得y=1(x>0),函数y=(√x)2定义域为x>0,化简可得y=1(x>0),故为同一函数;对于D:函数y=x3+xx2+1定义域为R,化简可得y=x,与y=x为同一函数.故选:CD11、如图所示是函数y=f(x)的图象,图中x正半轴曲线与虚线无限接近但是永不相交,则以下描述正确的是()A.函数f(x)的定义域为[−4,4)B.函数f(x)的值域为[0,+∞)C.此函数在定义域内是增函数D.对于任意的y∈(5,+∞),都有唯一的自变量x与之对应答案:BD分析:利用函数的图象判断.由图象知:A.函数f(x)的定义域为[−4,0]∪[1,4),故错误;B.函数f(x)的值域为[0,+∞),故正确;C. 函数f(x)在[−4,0],[1,4)上递增,但在定义域内不单调,故错误;D.对于任意的y∈(5,+∞),都有唯一的自变量x与之对应,故正确;故选:BD12、已知函数y=(m−1)x m2−m为幂函数,则该函数为()A.奇函数B.偶函数C.区间(0,+∞)上的增函数D.区间(0,+∞)上的减函数答案:BC分析:由幂函数的概念可得m的值,根据幂函数的性质可得结果.由y=(m−1)x m2−m为幂函数,得m−1=1,即m=2,则该函数为y=x2,故该函数为偶函数,且在区间(0,+∞)上是增函数,故选:BC.13、已知函数f(x)是定义在[−4,0)∪(0,4]上的奇函数,当x∈(0,4]时,f(x)的图象如图所示,那么满足不等式f(x)−3x+1−3≥0的x的可能取值是()3A .-4B .-1C .12D .2 答案:AC分析:把“求f(x)−3x+1−33≥0的解集”转化为“求f (x )≥3x −1的解集”,进而转化为观察两个函数图象的特征,即可求出不等式的解集.因为函数f (x )是定义在[−4,0)∪(0,4]上的奇函数,由题意,画出函数f (x )在[−4,0)∪(0,4]上的图象(如图),在同一坐标系内画出y =3x −1的图象,因为f (2)=89,所以f (−2)=−f (2)=−89=3−2−1,又f (1)=2=31−1,所以f (x )的图象与y =3x −1的图象交于(−2,−89)和(1,2)两点,f (x )−3x+1−33≥0即为f (x )≥3x −1,由图象可得,只需−4≤x ≤−2或0<x ≤1,故A ,C 可能取到故选:AC . 填空题14、函数y =√x 2−1的单调递减区间为___________. 答案:(−∞,−1](或(−∞,−1)都对)解析:利用复合函数的单调性,同增异减,即可得到答案; 令t =x 2−1,则y =√t ,∵ t =x 2−1在(−∞,−1)单调递减,y =√t 在(0,+∞)单调递增, 根据复合函数的单调性可得:y =√x 2−1在(−∞,−1)单调递减,所以答案是:(−∞,−1).15、为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,的大小评价在[a,b]这段时间内企业污水治理设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.答案:①②③分析:根据定义逐一判断,即可得到结果表示区间端点连线斜率的负数,−f(b)−f(a)b−a在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;所以答案是:①②③小提示:本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.16、已知幂函数f(x)的图象过点(3,13),则此函数的解析式为______.答案:f(x)=x−1##f(x)=1x分析:设出幂函数f(x),代入点(3,13)即可求解.由题意,设f(x)=xα,代入点(3,13)得13=3α,解得α=−1,则f(x)=x−1.所以答案是:f(x)=x−1.解答题17、已知函数f(x)=x2x2+1(1)证明:f(x)为偶函数;(2)判断g(x)=f(x)+x的单调性并用定义证明;(3)解不等式f(x)−f(x−2)+2x>2答案:(1)证明见解析(2)g(x)为R上的增函数,证明见解析(3)(1,+∞)分析:(1)根据奇偶性的定义证明即可;(2)首先得到g(x)的解析式,再利用定义法证明函数的单调性,按照设元、作差、变形、判断符号,下结论的步骤完成即可;(3)根据函数的单调性将函数不等式转化为自变量的不等式,解得即可;(1)证明:f(x)的定义域为R,又f(−x)=(−x)2(−x)2+1=x2x2+1=f(x),故f(x)为偶函数;(2)解:g(x)=f(x)+x=x2x2+1+x,所以g(x)为R上的增函数,证明:任取x1,x2∈R,且x1>x2,g(x1)−g(x2)=x12x12+1+x1−(x22x22+1+x2)=x1−x2+x12x12+1−x22x22+1=x1−x2+x12(x22+1)−x22(x12+1) (x12+1)(x22+1)=x1−x2+x12−x22(x12+1)(x22+1)=(x1−x2)[1+x1+x2(x12+1)(x22+1)]=(x1−x2)[x12x22+x12+x22+1+x1+x2 (x12+1)(x22+1)]=(x1−x2)[x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)].∵x1>x2,∴x2−x2>0,又x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)>0,∴(x1−x2)[x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)]>0,即g(x1)>g(x2),∴g(x)为R上的增函数;(3)解:不等式f(x)−f(x−2)+2x>2,等价于f(x)+x>f(x−2)+2−x=f(2−x)+2−x即g(x)>g(2−x),∵g(x)为R上的增函数,∴x>2−x,解得x>1,故不等式的解集为(1,+∞).18、函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),当x<0时,f(x)<0,且f(1)=13.(1)证明f(x)是奇函数;(2)证明f(x)在R上是单调递增函数;(3)若f(x)+f(x−3)≥−1,求实数x的取值范围.答案:(1)证明见解析;(2)证明见解析;(3)[0,+∞).分析:(1)先用赋值法求出f(0)=0,令y=−x,即可根据定义证明f(x)是奇函数;(2)利用定义法证明f(x)是R上的增函数;(3)先把f(x)+f(x−3)≥−1转化为f(2x−3)≥f(−3),利用单调性解不等式即可.(1)令x =y =0,则f (0)=f (0)+f (0),解得f (0)=0,令y =−x ,则f (0)=f (x )+f (−x ),即f (x )+f (−x )=0,即f (−x )=−f (x ), 易知f (x )的定义域为R ,关于原点对称,所以函数f (x )是奇函数;(2)任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,因为当x <0时,f (x )<0,所以f (x 1−x 2)<0,则f (x 1)−f (x 2)=f (x 1)+f (−x 2)=f (x 1−x 2)<0,即f (x 1)<f (x 2),所以函数f (x )是R 上的增函数;(3)由f (1)=13,得f (2)=23,f (3)=1,又由f (x )是奇函数得f (−3)=−1. 由f (x )+f (x −3)≥−1,得f (2x −3)≥f (−3),因为函数f (x )是R 上的增函数, 所以2x −3≥−3,解得x ≥0,故实数x 的取值范围为[0,+∞).。
高考数学(文科)习题 第二章 函数的概念及其基本性质课时撬分练2-4 Word版含答案
………………………………………………………………………………………………时间:60分钟基础组1.已知幂函数f (x )=(n 2+2n -2)x n 2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2答案 B解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1适合题意,故选B.2.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )答案 A解析 函数f (x )=x 2+bx +c 图象的顶点坐标为⎝ ⎛⎭⎪⎫-b 2,4c -b 24,则-b 2>0.f ′(x )=2x+b ,令f ′(x )=0,得x =-b2>0,即导函数f ′(x )的图象与x 轴的交点位于x 轴正半轴上,且斜率为正,故选A.3.定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈时,f (x )=x 2-x ,则当x ∈时,f (x )的最小值为( )A .-116B .-18C .-14D .0答案 A解析 设x ∈,则x +2∈,则f (x +2)=(x +2)2-(x +2)=x 2+3x +2,又f (x +2)=f =2f (x +1)=4f (x ),∴f (x )=14(x 2+3x +2)∴当x =-32时,取到最小值为-116.4. 对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( )点击观看解答视频A .(-2,1)B .C .幂函数f (x )=x α的图象过点(2,4),那么函数f (x )的单调递增区间是( ) A .(-2,+∞)B .设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若a =c ,则函数f (x )的图象不可能是( )答案 D解析 由A 、B 、C 、D 四个选项知,图象与x 轴均有交点,记两个交点的横坐标分别为x 1,x 2,若只有一个交点,则x 1=x 2.因为a =c ,所以x 1x 2=ca=1,比较四个选项,可知选项D 的x 1<-1,x 2<-1,所以D 不满足.故选D.点击观看解答视频7. 已知函数f (x )=a sin x -12cos2x +a -3a +12(a ∈R ,a ≠0),若对任意x ∈R 都有f (x )≤0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32,0B .C .(0,1]D .答案 C解析 化简函数得f (x )=sin 2x +a sin x +a -3a.令t =sin x (-1≤t ≤1),则g (t )=t2+at +a -3a,问题转化为使g (t )在上恒有g (t )≤0,即⎩⎪⎨⎪⎧g -1=1-3a≤0,g1=1+2a -3a≤0,解得0<a ≤1,故选C.8.若二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,则f (x )的表达式为( ) A .f (x )=-x 2-x -1 B .f (x )=-x 2+x -1 C .f (x )=x 2-x -1 D .f (x )=x 2-x +1答案 D解析 设f (x )=ax 2+bx +c (a ≠0),由题意得⎩⎪⎨⎪⎧c =1,a x +12+b x +1+c -ax 2+bx +c =2x .故⎩⎪⎨⎪⎧2a =2,a +b =0,c =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =1,则f (x )=x 2-x +1.故选D.9.“a =1”是“函数f (x )=x 2-4ax +3在区间已知二次函数f (x )=ax 2+bx +c 满足条件:①f (3-x )=f (x );②f (1)=0;③对任意实数x ,f (x )≥14a -12恒成立.则其解析式为f (x )=________. 答案 x 2-3x +2解析 依题意可设f (x )=a ⎝ ⎛⎭⎪⎫x -322+k ,由f (1)=14a +k =0,得k =-14a ,从而f (x )=a ⎝ ⎛⎭⎪⎫x -322-a 4≥14a -12恒成立,则-a 4≥14a -12,且a >0,即14a +a 4-12≤0,即a 2-2a +14a≤0,且a >0,∴a =1. 从而f (x )=⎝ ⎛⎭⎪⎫x -322-14=x 2-3x +2.11.已知二次函数图象的对称轴为x =-2,截x 轴所得的弦长为4,且过点(0,-1),求函数的解析式.解 ∵二次函数图象的对称轴为x =-2,∴可设所求函数的解析式为f (x )=a (x +2)2+b .∵二次函数f (x )的图象截x 轴所得的弦长为4,∴f (x )过点(-2+2,0)和(-2-2,0).又二次函数f (x )的图象过点(0,-1),∴⎩⎪⎨⎪⎧4a +b =02a +b =-1,解得⎩⎪⎨⎪⎧a =12b =-2.∴f (x )=12(x +2)2-2.即f (x )=12x 2+2x -1.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0)在区间上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-2mx 在上单调,求m 的取值范围. 解 (1)f (x )=a (x -1)2+2+b -a .①当a >0时,f (x )在上为增函数,故⎩⎪⎨⎪⎧ f3=5,f 2=2,∴⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,∴⎩⎪⎨⎪⎧a =1,b =0.②当a <0时,f (x )在上为减函数,故⎩⎪⎨⎪⎧f 3=2,f2=5,∴⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5,∴⎩⎪⎨⎪⎧a =-1,b =3.∴a =1,b =0或a =-1,b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-2m x =x 2-(2+2m)x +2.若g (x )在上单调,则2+2m 2≤2或2m+22≥4,∴2m ≤2或2m ≥6,即m ≤1或m ≥log 26.故m的取值范围是(-∞,1]∪已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( )A .先减后增B .先增后减C .单调递减D .单调递增答案 D解析 当m =1时,f (x )=2x +3不是偶函数;当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增,故选D.14.函数f (x )=ax 2+ax -1在R 上恒满足f (x )<0,则a 的取值范围是( ) A .a ≤0 B .a <-4 C .-4<a <0 D .-4<a ≤0答案 D解析 当a =0时,f (x )=-1在R 上恒有f (x )<0; 当a ≠0时,∵f (x )在R 上恒有f (x )<0,∴⎩⎪⎨⎪⎧a <0a 2+4a <0,∴-4<a <0.综上可知:-4<a ≤0.15.当0<x <1时,函数f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________.点击观看解答视频答案 h (x )>g (x )>f (x )解析 如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知,h (x )>g (x )>f (x ).16.是否存在实数a ,使函数f (x )=x 2-2ax +a 的定义域为时,值域为?若存在,求a 的值;若不存在,说明理由.解 f (x )=(x -a )2+a -a 2. 当a <-1时,f (x )在上为增函数,∴⎩⎪⎨⎪⎧f -1=1+3a =-2,f 1=1-a =2⇒a =-1(舍去);当-1≤a ≤0时,⎩⎪⎨⎪⎧fa =a -a 2=-2,f 1=1-a =2⇒a =-1;当0<a ≤1时,⎩⎪⎨⎪⎧f a =a -a 2=-2,f-1=1+3a =2⇒a 不存在;当a >1时,f (x )在上为减函数,∴⎩⎪⎨⎪⎧f -1=1+3a =2,f 1=1-a =-2⇒a 不存在.综上可得a =-1.。
高中函数文科练习题及讲解
高中函数文科练习题及讲解### 函数的概念及性质练习题1:判断下列函数是否为一次函数,并说明原因。
1. \( y = 3x + 2 \)2. \( y = ax + b \)(\( a \neq 0 \))3. \( y = \frac{1}{x} \)练习题2:已知函数 \( f(x) = 2x^2 - 3x + 1 \),求其值域。
练习题3:函数 \( y = \sqrt{x} \) 的定义域是什么?练习题4:已知函数 \( y = \frac{1}{x} \),求其在 \( x = 2 \) 时的导数。
练习题5:函数 \( y = \log_2 x \) 的反函数是什么?讲解:1. 一次函数是形式为 \( y = ax + b \) 的函数,其中 \( a \) 和\( b \) 是常数,\( a \neq 0 \)。
因此,\( y = 3x + 2 \) 和\( y = ax + b \)(\( a \neq 0 \))是一次函数,而 \( y =\frac{1}{x} \) 不是一次函数。
2. 函数 \( f(x) = 2x^2 - 3x + 1 \) 是一个开口向上的抛物线,其最小值出现在 \( x = \frac{3}{4} \) 处,因此其值域为\( [ \frac{7}{8}, +\infty) \)。
3. 函数 \( y = \sqrt{x} \) 的定义域是所有非负实数,即 \( x\geq 0 \)。
4. 函数 \( y = \frac{1}{x} \) 在 \( x = 2 \) 时的导数可以通过求导公式 \( \frac{dy}{dx} = -\frac{1}{x^2} \) 计算得到,代入\( x = 2 \) 得 \( \frac{dy}{dx} = -\frac{1}{4} \)。
5. 函数 \( y = \log_2 x \) 的反函数可以通过将 \( y \) 和 \( x \) 互换并解出 \( x \) 来得到,即 \( x = 2^y \),因此反函数是\( y = 2^x \)。
人教高中数学 第三章 函数概念与性质 单元测试(含答案)
人教高中数学函数概念与性质一、单选题1.下列函数中,在其定义域内既是增函数又是奇函数的是( )A.y=x2B.y=―log2x C.y=3x D.y=x3+x 2.若幂函数f(x)=xα的图象经过点(3,3),则α的值为( )A.2B.-2C.12D.―123.若f[g(x)]=6x+3且g(x)=2x+1,则f(x)的解析式为( )A.3B.3x C.3(2x+1)D.6x+14.已知函数y=f(x+2)的定义域为(0,2),则函数y=f(log2x)的定义域为( )A.(﹣∞,1)B.(1,4)C.(4,16)D.(14,1)5.下列各组函数中,表示同一函数的是( )A.f(x)=x和g(x)=(x)2B.f(x)=|x|和g(x)=3x3C.f(x)=x|x|和g(x)={x2(x>0)―x2(x<0)D.f(x)=x2―1x―1和g(x)=x+1,(x≠1)6.已知函数f(x)={2x+1,x≤0|ln x|,x>0,则方程f[f(x)]=3的实数根的个数是( )A.2B.3C.4D.57.连续函数f(x)是定义在(―1,1)上的偶函数,当x≠0时,x f′(x)>0.若f(a+1)―f(2a)>0,则a的取值范围是( )A.(―13,1)B.(―12,0)C.(―12,1)D.(―13,0)8.已知函数f(x)是定义在R上的偶函数,且在(―∞,0)上单调递减,若a=f(log215),b=f( log24.1),c=f(20.8),则a,b,c的大小关系是( )A.a<b<c B.b<a<c C.c<a<b D.c<b<a二、多选题9.下列函数中既是奇函数又在定义域上是单调函数的有( )A.y=1x2B.y=―x3C.y=x|x|D.y=x+1x10.给出定义:若m―12<x≤m+12(m∈Z),则称m为离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x―{x}|的四个结论,其中正确的是( )A.函数y=f(x)的定义域为R,值域为[0,12]B.函数y=f(x)的图象关于直线x=k2(k∈Z)对称C.函数y=f(x)是偶函数D.函数y=f(x)在[―12,12]上单调递增11.设函数f(x)=ln|x+2|―ln|x―2|,则( )A.f(x)的定义域为(―∞,―2)∪(2,+∞)B.f(x)的值域为RC.f(x)在(―∞,―2)单调递增D.f(x)在(2,+∞)单调递减12.定义:若对于定义域内任意x,总存在正常数a,使得f(x+a)>f(x)恒成立,则称函数f(x)为“a距”增函数,以下判断正确的有( )A.函数f(x)=3x(x∈R)是“a距”增函数B.函数f(x)=2x―x(x>0)是“1距”增函数C.若函数f(x)=x3―14x+4(x∈R)是“a距”增函数,则a的取值范围是(0,1)D.若函数f(x)=2x2+k|x|(x∈(―1,+∞))是“2距”增函数,则k的取值范围是(―2,+∞)三、填空题13.幂函数f(x)图象过(2,4),则幂函数f(x)= .14.已知函数f(x)= 2x―3x+1的图象关于点P中心对称,则点P的坐标是 .15.设函数g(x)满足g(x+2)=2x+3,则g(x)的解析式为 .16.设函数f(x)= {1,x≥0―1,x<0,g(x)= x2e2f(x﹣1),则函数g(x)的递增区间是 .四、解答题17.已知f(x)为二次函数,且f(x)的两个零点为1和3,g(x)为幂函数,且y=f(x)和y=g(x)都经过点(4,2).(1)求函数y=g(f(x))的定义域;(2)当x∈[1,16]时,求函数y=f(g(x))的值域.18.已知函数f(x)=x2+ax+bx(a,b∈R).(1)若函数f(x)为奇函数,求实数a的值;(2)当a=2,b=1时,求函数f(x)在区间(0,+∞)上的最小值.19.已知f(x)=x|x﹣a|+2x﹣3,其中a∈R(1)当a=4,2≤x≤5时,求函数f (x )的最大值和最小值,并写出相应的x 的值.(2)若f (x )在R 上恒为增函数,求实数a 的取值范围.20.已知二次函数f (x )=ax 2+bx+1,(a >0), F (x )={f (x ),x >0―f (x ),x <0 若f (﹣1)=0且对任意实数x 均有f (x )≥0成立(1)求F (x )的表达式;(2)当x ∈[﹣2,2]时,g (x )=f (x )﹣kx 是单调函数,求k 的取值范围. 21.某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x 个月的利润 f (x )={1(1≤x ≤20,x ∈N ∗)110x (21≤x ≤60,x ∈N ∗) (单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x 个月的当月利润率 g (x )=第x 个月的利润第x 个月前的资金总和 ,例如: g (3)=f (3)81+f (1)+f (2) . (1)求g (10);(2)求第x 个月的当月利润率g (x );(3)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率. 22.已知定义域为 R 的函数 f (x )=ℎ(x )+n ―2ℎ(x )―2是奇函数, ℎ(x ) 为指数函数且 ℎ(x ) 的图象过点 (2,4) .(1)求 f (x ) 的表达式;(2)若对任意的 t ∈[―1,1] .不等式 f (t 2―2a )+f (at ―1)≥0 恒成立,求实数 a 的取值范围; (3)若方程 f (|x 2+3x |)+f (―a |x ―1|)=0 恰有2个互异的实数根,求实数 a 的取值集合.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】C5.【答案】D6.【答案】D7.【答案】D8.【答案】D9.【答案】B,C10.【答案】A,B,C11.【答案】B,D12.【答案】A,B,D13.【答案】x 214.【答案】(﹣1,2)15.【答案】g (x )=2x ―116.【答案】(﹣∞,0],[1,2]17.【答案】(1)解:设 f (x )=a (x ―1)(x ―3) ,( a ≠0 ) 又 y =f (x ) 过点 (4,2) ,∴2=a (4―1)(4―3) ,∴a =23 ,∴f (x )=23(x ―1)(x ―3) ,设 g (x )=x α ,由 y =g (x ) 都经过点 (4,2) 知, 2=4α ,∴α=12 ,∴g (x )=x ,y =g (f (x ))=23(x ―1)(x ―3) ,∴23(x ―1)(x ―3)≥0 ,∴x ≥3 或 x ≤1 ,∴函数的定义域为 (―∞,1]∪[3,+∞) .(2)令 t =g (x )=x ,∵x ∈[1,16] ,∴t ∈[1,4] ,所以 y =f (g (x ))=23(t 2―4t +3)=23[(t ―2)2―1] ,当 t =2 时, y min =―23 ; t =4 时, y max =2 ,所以函数的值域为[―23,2].18.【答案】(1)解:函数f(x)=x2+ax+bx的定义域为{x|x≠0},若函数f(x)为奇函数,则f(―x)=―f(x)成立,即(―x)2+a(―x)+b―x=―x2+ax+bx,即2ax=0恒成立,因为x≠0,所以a=0;(2)解:当a=2,b=1时,函数f(x)=x2+2x+1x =x+1x+2,因为x>0,所以f(x)=x+1x +2≥2x⋅1x+2=4,当且仅当x=1x,即x=1时等号成立,则函数f(x)取得最小值为4.19.【答案】(1)解:∵f(x)=x|x﹣a|+2x﹣3,∴当a=4时,f(x)=x|x―4|+2x―3={―x2+6x―3,2≤x≤4x2+2x―3,4<x≤5;作图如下:由图知,当x=5时,f(x)max=f(5)=52﹣2×5﹣3=12;当x=2或4时,f(x)min=f(2)=f(4)=﹣22+6×2﹣3=5,(2)解:f(x)={―x2+(a+2)x―3,x≤ax2+(2―a)x―3,x>a,∵f(x)在R上恒为增函数,∴{a+22≥aa―22≤a,解得﹣2≤a≤2.∴实数a的取值范围是[﹣2,2].20.【答案】(1)解:∵f(x)=ax2+bx+1(a>0),f(﹣1)=0且对任意实数x均有f(x)≥0成立;∴x=﹣b2a=﹣1,且a﹣b+1=0;即{b=2aa―b+1=0,解得{a=1b=2;∴f(x)=x2+2x+1,∴F(x)= {x2+2x+1(x>0)―x2―2x―1(x<0)(2)解:∵f(x)=x2+2x+1,∴g(x)=f(x)﹣kx=x2+(2﹣k)x+1,∵g(x)在[﹣2,2]上是单调函数,∴x= ―(2―k)2应满足:―(2―k)2≥2,或―(2―k)2≤﹣2,即k≥6,或k≤﹣2;∴k的取值范围是{k|k≤﹣2,或k≥6}21.【答案】(1)解:由题意得:f(1)=f(2)=f(3)=…═f(9)=f(10)=1g(x)=f(10)81+f(1)+⋯f(9)= 181+1+⋯+1= 190(2)解:当1≤x≤20时,f(1)=f(2)═f(x﹣1)=f(x)=1∴g(x)=f(x)81+f(1)+⋯f(x―1)= 181+1+⋯+1= 181+(x―1)=1x+80.当21≤x≤60时,g(x)=f(x)81+f(1)+⋯+f(20)+f(21)+⋯+f(x―1)=110x81+f(1)+⋯f(x―1)=110x81+20+2110+⋯+x―110=110x101+12(2110+x―110)(x―21)=110x101+(x―21)(x+20)20=2xx2―x+1600∴当第x个月的当月利润率g(x)={1x+80(1≤x≤20,x∈N∗)2xx2―x+1600(21≤x≤60,x∈N∗)(3)解:当1≤x≤20时,g(x)=1x+80是减函数,此时g(x)的最大值为g(1)=181当21≤x≤60时,g(x)=2xx2―x+1600=2x+1600x―1≤221600―1=279当且仅当x=1600x时,即x=40时,g(x)max=279,又∵279>181,∴当x=40时,g(x)max=279所以,该企业经销此产品期间,第40个月的当月利润率最大,最大值为279 22.【答案】(1)由题意,设ℎ(x)=a x,因为ℎ(x)过点(2,4),可得a2=4,解得a=2,即ℎ(x)=2x,所以f(x)=2x+n―2x+1―2,又因为f(x)为奇函数,可得f(0)=0,即f(0)=20+n―2―2=0,解答n=―1,经检验,符合f(x)=―f(―x),所以f(x)=―2x+12x+1+2.(2)由函数f(x)=―2x+12x+1+2=―12+12x+1,可得f(x)在R上单调递减,又因为f(x)为奇函数,因为f(t2―2a)+f(at―1)≥0,即f(t2―2a)≥f(1―at),所以t2―2a≤1―at,即t2+at―1―2a≤0,又因为对任意的t∈[―1,1],不等式f(t2―2a)+f(at―1)≥0恒成立,令g(t)=t2+at―1―2a,即g(t)≤0对任意的t∈[―1,1]恒成立,可得{g(―1)≤0g(1)≤0,即{(―1)2+a×(―1)―1―2a≤012+a―1―2a≤0,解得a≥2,所以实数a的取值范围为[0,+∞).(3)由于f(x)为奇函数,所以由f(|x2+3x|)+f(―a|x―1|)=0,可得f(|x2+3x|)=f(a|x―1|),又因为f(x)在R上递减,即|x2+3x|=a|x―1|,显然x≠1,所以a=|x2+3xx―1|,令t=x―1,则a=|t+4t+5|,又由当t>0时,t+4t +5≥2t⋅4t+5=9,当且仅当t=4t时,即t=2时等号成立;当t<0时,t+4t +5=―[(―t)+4―t]+5≤―2(―t)⋅4(―t)+5=1,当且仅当―t=―4t时,即t=―2时等号成立,方程有2个互异实数根,画出y=|t+4t+5|的图象,如图所示,由图可得,实数a的取值集合为{a|1<a<9或a=0}。
步步高高二数学暑假作业:【文】作业2 函数的概念与性质
A.-3
B.-
D.无法确定
C.
5. 已知函数
,那么( )
A.函数的单调递减区间为
,
B.函数的单调递减区间为
C.函数的单调递增区间为
,
D.函数的单调递增区间为
6. 函数y= sin2x的图象可能是 A.
C.
步步高高二数学暑假作业:【文】作业2 函数的概念与性质
D.3
B. D.
7. 偶函数 A. B. C. D.
的定义域为 ,当
时, 是增函数,则不等式
二、填空题
的解集是( )
8. 函数
的值域是________.
步步高高二数学暑假作业:【文】作业2 函数的概念与性质
9. 函数
的单调递增区间为________.
10. 若 为 上的奇函数,给出下列结论:① 有________(填序号).
;②
;③ቤተ መጻሕፍቲ ባይዱ
;④
.其中正确的结论
11. 已知函数
,
,则
________.
12. 已知函数
在区间 上具有单调性,则实数 的取值范围为________.
三、解答题
13. 已知奇函数
.
(1)求实数 的值,并画出函数 的图象;
(2)若函数 在区间
上是增函数,结合函数 的图象,求实数 的取值范围;
(3)结合图象,求函数 在区间
上的最大值和最小值.
一、单选题
1. 函数 A. C.
步步高高二数学暑假作业:【文】作业2 函数的概念与性质
的定义域是( ) B. D.
2. 已知 A.
,则
等于( )
B.
C.7
3. 下列四个函数中,在
函数的性质练习题
1.2.1 函数的单调性与最值(练习题)第1课时 函数的单调性1、下列说法中不正确的是__________。
①已知f(x)=x1,因为f(—1)<f(2),所以函数f(x)是增函数。
②若函数f(x)满足f(2)<f(3),则函数f(x)在区间[2,3]上为增函数。
③若函数f(x)在区间[1,2]和(2,3)上均为增函数,则函数f(x)在区间(1,3)上为增函数。
④因为函数f(x)=x 1在区间(—∞,0)和(0,+∞)上都是减函数,所以f(x)=x1在其定义域内是减函数。
2、已知函数f(x)=x 2+2(m —1)x+2在(]4,∞-上单调递减,则m 的取值范围是__________。
3、已知函数f(x)=8+2x —x 2,则:( )A 、在(—∞,0)上是减函数B 、f(x)是减函数C 、f(x)是增函数D 、f(x)在(—∞,0)上是增函数 4、指出下列函数的单调区间。
(1)y=x 2—4|x|+3; (2)y=|x 2—4x+3|5、关于单调性有下列说法:①函数f(x)=2x 在(—∞,+∞)上是增函数;②函数f(x)=x2—2x+2在(—∞,1)是减函数,在(1,+∞)上增函数; ③函数y=5不具有单调性。
A 、②③B 、①③C 、①②③D 、①②6、函数y=f(x)满足以下条件:①定义域是R ; ②图象关于直线x=1对称; ③在区间[)+∞,2上是增函数。
试写出函数y=f(x)的一个解析式(只需写出一个即可)。
7、设函数f(x)满足:对任意的x 1,x 2∈R ,都有(x 1—x 2)[f(x 1)—f(x 2)]>0,则f(—3)与f(—π)的大小关系是___________。
8、若x=f(x)是R 上的单调减函数,则f(m)与f(m —1)的大小关系为________。
第2课时 函数的最值1、函数y=x1在(0,+∞)上:( ) A 、仅有最大值 B 、仅有最小值 C 、既有最大值,又有最小值 D 、既无最大值,也无最小值 2、函数y= —3x 2+2在区间[—1,2]上的最大值为:( )A 、—1B 、2C 、0D 、43、函数y=x 2在[0,2]上是______函数,最大值是________,最小值是________。
高考数学(文科)习题 第二章 函数的概念及其基本性质课时撬分练2-3 word版含答案
………………………………………………………………………………………………时间:60分钟基础组1.下列函数中,既是偶函数又在(-∞,0)上单调递增的是( ) A .y =x 2B .y =2|x |C .y =log 21|x |D .y =sin x答案 C解析 函数y =x 2在(-∞,0)上是减函数;函数y =2|x |在(-∞,0)上是减函数;函数y =log 21|x |=-log 2|x |是偶函数,且在(-∞,0)上是增函数;函数y =sin x 不是偶函数.综上所述,选C.2. 函数f (x )=a sin 2x +bx 23 +4(a ,b ∈R ),若f ⎝ ⎛⎭⎪⎫lg 12014=2013,则f (lg 2014)=( )A .2018B .-2009C .2013D .-2013答案 C解析 g (x )=a sin 2x +bx 23 ,g (-x )=a sin 2x +bx 23 ,g (x )=g (-x ),g (x )为偶函数,f ⎝⎛⎭⎪⎫lg12014=f (-lg 2014),f (-lg 2014)=g (-lg 2014)+4=g (lg 2014)+4=f (lg 2014)=2013,故选C.3.若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则一定成立的是( ) A .函数f (g (x ))是奇函数 B .函数g (f (x ))是奇函数 C .函数f (f (x ))是奇函数 D .函数g (g (x ))是奇函数 答案 C解析 由题得,函数f (x ),g (x )满足f (-x )=-f (x ),g (-x )=g (x ),则有f (g (-x ))=f (g (x )),g (f (-x ))=g (-f (x ))=g (f (x )),f (f (-x ))=f (-f (x ))=-f (f (x )),g (g (-x ))=g (g (x )),可知函数f (f (x ))是奇函数,故选C.4.定义域为(-∞,0)∪(0,+∞)的函数f (x )不恒为0,且对于定义域内的任意实数x ,y 都有f (xy )=f y x +f xy成立,则f (x )( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数 答案 A解析 令x =y =1,则f (1)=f 11+f 11,∴f (1)=0. 令x =y =-1,则f (1)=f -1-1+f -1-1,∴f (-1)=0.令y =-1,则f (-x )=f -1x +f x-1, ∴f (-x )=-f (x ).∴f (x )是奇函数. 又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6} D .{x |x <-2或x >2}答案 B解析 当x <0时,-x >0,∵f (x )是偶函数, ∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0,-x 3-8,x <0,∴f (x -2)=⎩⎪⎨⎪⎧x -23-8,x ≥2,-x -23-8,x <2,由f (x -2)>0,得⎩⎪⎨⎪⎧x ≥2x -23-8>0或⎩⎪⎨⎪⎧x <2,-x -23-8>0,解得x >4或x <0.故选B.6. 已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案 D解析 由函数f (x )是奇函数且f (x )在上是增函数可以推知,f (x )在上递增, 又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( ) A .3 B .0 C .-1 D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-,得到f (-m )=-(2-1)+1=0.8.设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.答案 32解析 f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32.9.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 答案 4解析 由f (x )=(x +a )(x -4), 得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.10.设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f (2014)=2a -3a +1,则实数a 的取值范围是________.答案 ⎝⎛⎭⎪⎫-1,23 解析 ∵f (2014)=f (1)=f (-2)=-f (2)<-1, ∴2a -3a +1<-1,解得-1<a <23. 11.设函数f (x )是定义在R 上的偶函数,且满足: ①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2. (1)判断函数f (x )是否为周期函数; (2)求f (5.5)的值.解 (1)由⎩⎪⎨⎪⎧fx =f 2-x ,f x =f -x⇒f (-x )=f (2-x )⇒f (x )=f (x +2)⇒f (x )是周期为2的周期函数.(2)f (5.5)=f (4+1.5)=f (1.5)=f (2-1.5)=f (0.5)=0.25.12.已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ). (1)求函数g (x )的定义域;(2)若f (x )为奇函数,并且在定义域上单调递减,求不等式g (x )≤0的解集.解 (1)由题意可知⎩⎪⎨⎪⎧-2<x -1<2,-2<3-2x <2,∴⎩⎪⎨⎪⎧-1<x <3,12<x <52,解得12<x <52,故函数g (x )的定义域为⎝ ⎛⎭⎪⎫12,52.(2)由g (x )≤0得f (x -1)+f (3-2x )≤0. ∴f (x -1)≤-f (3-2x ).又∵f (x )为奇函数,∴f (x -1)≤f (2x -3),而f (x )在(-2,2)上单调递减,∴⎩⎪⎨⎪⎧x -1≥2x -3,12<x <52,解得12<x ≤2,∴不等式g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 能力组13.已知y =f (x )是偶函数,而y =f (x +1)是奇函数,且对任意0≤x ≤1,都有f ′(x )≥0,则a =f ⎝ ⎛⎭⎪⎫9819,b =f ⎝ ⎛⎭⎪⎫10117,c =f ⎝ ⎛⎭⎪⎫10615的大小关系是( ) A .c <b <a B .c <a <b C .a <c <b D .a <b <c答案 B解析 因为y =f (x )是偶函数,所以f (x )=f (-x ),① 因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ),② 所以f (-x )=-f (2-x ),即f (x )=f (x +4).所以函数f (x )的周期为4.又因为对任意0≤x ≤1,都有f ′(x )≥0,所以函数在上单调递增,又因为函数y =f (x +1)是奇函数,所以函数在上单调递增,又a =f ⎝ ⎛⎭⎪⎫9819=f ⎝ ⎛⎭⎪⎫2219,b=f ⎝⎛⎭⎪⎫10117=f ⎝ ⎛⎭⎪⎫3317,c =f ⎝ ⎛⎭⎪⎫10615=f ⎝ ⎛⎭⎪⎫-1415=f ⎝ ⎛⎭⎪⎫1415,所以f ⎝ ⎛⎭⎪⎫1415<f ⎝ ⎛⎭⎪⎫2219<f ⎝ ⎛⎭⎪⎫3317,即c <a <b .14.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. 答案 -1解析 设h (x )=f (x )+x 2为奇函数, 则h (-x )=f (-x )+x 2,∴h (-x )=-h (x ),∴f (-x )+x 2=-f (x )-x 2, ∴f (-1)+1=-f (1)-1,∴f (-1)=-3, ∴g (-1)=f (-1)+2=-1.15. 定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数). (1)判断k 为何值时f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0,令x =y =0,则f (0+0)=f (0)+f (0)+k ,∴k =0.证明:令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0. 令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ), 又f (0)=0,则有0=f (x )+f (-x ), 即f (-x )=-f (x )对任意x ∈R 成立, ∴f (x )是奇函数.(2)∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立. 又f (x )是R 上的增函数,∴mx 2-2mx +3>2对任意x ∈R 恒成立, 即mx 2-2mx +1>0对任意x ∈R 恒成立, 当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1.∴实数m 的取值范围是已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (1)=-2.(1)判断f (x )的奇偶性; (2)求证:f (x )是R 上的减函数; (3)求f (x )在区间上的值域;(4)若∀x ∈R ,不等式f (ax 2)-2f (x )<f (x )+4恒成立,求a 的取值范围. 解 (1)取x =y =0,则f (0+0)=2f (0),∴f (0)=0.取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立,∴f (x )为奇函数.(2)证明: 任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)+f (-x 1)=f (x 2-x 1)<0,∴f (x 2)<-f (-x 1),又f (x )为奇函数, ∴f (x 1)>f (x 2). ∴f (x )是R 上的减函数.(3)由(2)知f (x )在R 上为减函数, ∴对任意x ∈,恒有f (3)≤f (x )≤f (-3),∵f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=-2×3=-6, ∴f (-3)=-f (3)=6,f (x )在上的值域为.(4)f (x )为奇函数,整理原式得f (ax 2)+f (-2x )<f (x )+f (-2), 则f (ax 2-2x )<f (x -2),∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >x -2, 当a =0时,-2x >x -2在R 上不是恒成立,与题意矛盾;当a >0时,ax 2-2x -x +2>0,要使不等式恒成立,则Δ=9-8a <0,即a >98;当a <0时,ax 2-3x +2>0在R 上不是恒成立,不合题意.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫98,+∞.。
(完整版)《函数的基本性质》练习题
(完整版)《函数的基本性质》练习题一、选择题1. 设函数 f(x) = 3x^2 + 2x + 1,在区间 [-2, 2] 上,f(x) 的最小值出现在区间的哪个点?A. x = -2B. x = -1C. x = 0D. x = 1E. x = 2答案:C. x = 02. 若函数 g(x) 的定义域为实数集,且对任意 x,g(x) = g(x + 1),则函数 g(x) 的图像具有什么样的性质?A. 对称性B. 周期性C. 单调性D. 渐近性E. 不对称性答案:B. 周期性二、填空题1. 设函数 h(x) = 2^(x - 1),则 h(0) = ____答案:12. 设函数i(x) = √(x^2 - 9),则定义域为 ____ 的实数集。
答案:[-∞, -3] 并[3, +∞]三、解答题1. 证明函数 f(x) = x^3 - 6x^2 + 9x + 2 在整个实数集上是递增的。
解答:首先,计算 f'(x) = 3x^2 - 12x + 9。
我们可以使用求函数的导数的方法证明 f(x) 的递增性。
根据二次函数的性质,当 3x^2 - 12x + 9 > 0 时,即 x^2 - 4x + 3 > 0 时,函数 f(x) 在该区间上是递增的。
化简方程得到 (x - 1)(x - 3) > 0,所以 f(x) 在 (-∞, 1)U(3, +∞) 上是递增的。
因此,函数 f(x) 在整个实数集上是递增的。
2. 设函数 g(x) = |x + 3| - 2x,求函数 g(x) 的定义域以及其在定义域上的单调区间。
解答:对于函数 g(x) 来说,|x + 3| 在定义域内的取值范围为 x+ 3 ≥ 0 和 x + 3 < 0 两种情况,即x ≥ -3 或 x < -3。
同时,2x 在定义域内的取值范围为 x 属于实数集。
综合两种情况,g(x) 的定义域为x 属于实数集。
高二函数性质练习题
高二函数性质练习题1. 已知函数f(x) = x^3 - 3x^2 + 2x + 5,请回答以下问题:a) 判断f(x)的奇偶性,并解释原因。
b) 求f(x)的极值点,并判断其为极大值还是极小值。
c) 求f(x)的图像在x轴上的截距点。
2. 已知函数g(x) = log2(x - 1) + 2,请回答以下问题:a) 判断g(x)的定义域,并解释原因。
b) 判断g(x)的单调性,并说明理由。
c) 判断g(x)是否有对称轴,并求出对称轴的方程。
3. 已知函数h(x) = e^x + e^(-x),请回答以下问题:a) 判断h(x)的奇偶性,并解释原因。
b) 求h(x)的零点,并判断其为单个还是重根。
c) 求h(x)在x = 0处的导数,并解释其几何意义。
4. 已知函数k(x) = sin(x) + cos(x),请回答以下问题:a) 判断k(x)的周期,并解释原因。
b) 判断k(x)的最小正周期内是否有对称轴,并解释原因。
c) 求k(x)在区间[0, π/2]上的最大值和最小值。
5. 已知函数m(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,请回答以下问题:a) 求m(x)的导函数,并写出其化简形式。
b) 判断m(x)的单调区间,并说明理由。
c) 判断m(x)的图像是否有拐点,并解释原因。
6. 已知函数n(x) = √(x^2 - 4x + 3),请回答以下问题:a) 判断n(x)的定义域,并解释原因。
b) 求n(x)的零点,并判断其为单个还是重根。
c) 求n(x)在x = 1处的切线方程。
7. 已知函数p(x) = |x - 1| - |2x + 1|,请回答以下问题:a) 求p(x)的定义域。
b) 求p(x)的解析式,并区分x属于哪个区间。
c) 求p(x)的最大值和最小值。
8. 已知函数q(x) = tan(x) + cot(x),请回答以下问题:a) 判断q(x)的定义域,并解释原因。
高二(文倾)答案
高二数学(文倾)答案及评分标准提示:解答题若有其他解法,请老师根据相应的题意、解题步骤评分。
一、选择题:BABCC CDBAD AC二、填空题:13. 1- 14. 69 15. 2x = 16. ①③三、解答题:17.解(Ⅰ)依题意得,10(20.020.030.04)1a +++=,解得0.005a =………………………4分(Ⅱ)设优秀人数为x ,则(0.020.005)10100x =+⨯,解得25x =……………8分 (Ⅲ)这100名学生的平均分为:550.05650.4750.3850.2950.0573⨯+⨯+⨯+⨯+⨯=(分)………………………12分18.解(Ⅰ)由已知2a x =-是函数2()3f x x ax =++的对称轴 若在区间(3,)+∞上为单调递增,所以32a -≤,解得6a ≥-………………5分 (Ⅱ)若32a -≤-即6a ≥,则令()f x 的最小值(3)123f a a -=-≥ 解得3a ≤,不成立………………7分 若322a -<-<即46a -<<,则()f x 的最小值22()3242a a a f a -=-+≥ 解得62a -≤≤,所以42a -<≤………………9分 若22a -≥即4a ≤-,则()f x 的最小值(2)27f a a =+≥ 解得7a -≤,所以74a -≤≤-………………11分 所以a 的范围为72a -≤≤………………12分19.解(Ⅰ)由已知323()2a f x x xb =-+………………2分 因为()f x 为奇函数,所以(0)0f =,则0b =………………3分又()()0f x f x -+=,所以323233022a a x x x x --+=恒成立 即230ax -=,所以0a =………………5分则3()f x x =,因为2()30f x x '=≥,所以()f x 单调增所以函数()f x 不存在极值点………………6分(Ⅱ)因为 ax x x f 33)(2-=',b f =)0( 所以b ax x x f +-=2323)( 由 0)(3)(=-='a x x x f 得01=x ,a x =2因为 ∈x [-1,1],21<<a ,所以 当∈x [-1,0)时,0)(>'x f ,)(x f 递增; 当∈x (0,1]时,0)(<'x f ,)(x f 递减。
高二函数练习题附答案
高二函数练习题附答案1. 解方程:将函数 y = 2x^2 + 5x - 3 和 y = 4x + 1 进行图像比较,求出它们相交的点。
解析:要求两条函数图像的交点,即要求找出同时满足两个方程的x 和 y 的值。
将两个方程相等,得到等式:2x^2 + 5x - 3 = 4x + 1化简等式:2x^2 + x - 4 = 0因此,可以使用因式分解法或者配方法求解此二次方程。
将方程因式分解为:(2x - 1)(x + 4) = 0得到两个解:2x - 1 = 0 或 x + 4 = 0x = 1/2 或 x = -4将解 x 分别代入一开始的任一方程中,求得对应的 y 值,即可找到两个函数图像的交点坐标。
当 x = 1/2 时,代入 y = 2x^2 + 5x - 3,得到:y = 2(1/2)^2 + 5(1/2) - 3y = -1/2当 x = -4 时,代入 y = 2x^2 + 5x - 3,得到:y = 2(-4)^2 + 5(-4) - 3y = 25因此,两个函数图像相交于点 (1/2, -1/2) 和 (-4, 25)。
2. 求函数 y = x^3 在区间 [-2, 2] 上的最大值和最小值,并指出取到最大最小值的点。
解析:要求函数在给定区间内的最大值和最小值,首先需要求出函数的导数,然后找出导数为零的点,再验证这些点的二阶导数来确定是极大值还是极小值。
对函数 y = x^3 求导数,得到:y' = 3x^2令 y' = 0,解方程得到导数为零的点:3x^2 = 0x = 0根据二阶导数的符号判断,当 x < 0 时,y' < 0;当 x > 0 时,y' > 0。
因此,x = 0 是函数的一个极小值点。
接下来,在给定区间 [-2, 2] 上,分别计算出函数的值以及导数的值:当 x = -2 时,y = (-2)^3 = -8当 x = 2 时,y = 2^3 = 8因此,在区间 [-2, 2] 上,函数的最小值为 -8,最大值为 8。