2020-2021全国中考数学相似的综合中考模拟和真题分类汇总含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021全国中考数学相似的综合中考模拟和真题分类汇总含答案
一、相似
1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).
(1)求函数y=ax2+bx+c的解析式;
(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;
(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的
Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.
【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,
把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,
∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4
(2)解:∵y=x2+2x+1=(x+1)2,
∴A(﹣1,0),
当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);
当x=0时,y=﹣x2+4=4,则B(0,4),
从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,
∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,
∴△BCD为等腰三角形,
∴构造的三角形是等腰三角形的概率=
(3)解:存在,
易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,
M点的坐标为(m,﹣2m+4)(0≤m≤2),
①当N点在AC上,如图1,
∴△AMN的面积为△ABC面积的,
∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,
当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,
∴tan∠MAC= =4;
当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,
∴tan∠MAC= =1;
②当N点在BC上,如图2,
BC= =2 ,
∵BC•AN= AC•BC,解得AN= ,
∵S△AMN= AN•MN=2,
∴MN= = ,
∴∠MAC= ;
③当N点在AB上,如图3,
作AH⊥BC于H,设AN=t,则BN= ﹣t,
由②得AH= ,则BH= ,
∵∠NBG=∠HBA,
∴△BNM∽△BHA,
∴,即,
∴MN= ,
∵AN•MN=2,
即•(﹣t)• =2,
整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,
∴点N在AB上不符合条件,
综上所述,tan∠MAN的值为1或4或
【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。
(2)先求出抛物线y=x2+2x+1的顶点坐标A,与x轴、y轴的交点D、C、B的坐标,可得出从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,再求出它们的各边的长,得出构造的三角形是等腰三角形可能数,利用概率公式求解即可。
(3)利用待定系数法求出直线BC的函数解析式及△ABC的面积、点M的坐标,再分情况
讨论:①当N点在AC上,如图1;②当N点在BC上,如图2;③当N点在AB上,如
图3。
利用△AMN的面积=△ABC面积的,解直角三角形、相似三角形的判定和性质等相关的知识,就可求出tan∠MAN的值。
2.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线
y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).
(1)直接写出点C坐标及OC、BC长;
(2)连接PQ,若△OPQ与△OBC相似,求t的值;
(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.
【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,
∴A(0,),
令y=0,则x=10,
∴B(10,0),
由,解得,
∴C(,).
∴OC= =8,
BC= =10
(2)解:①当时,△OPQ∽△OCB,
∴,
∴t= .
②当时,△OPQ∽△OBC,
∴,
∴t=1,
综上所述,t的值为或1s时,△OPQ与△OBC相似(3)解:如图作PH⊥OC于H.
∵OC=8,BC=6,OB=10,
∴OC2+BC2=OB2,
∴∠OCB=90°,
∴当∠PCH=∠CBQ时,PC⊥BQ.
∵∠PHO=∠BCO=90°,
∴PH∥BC,
∴,
∴,
∴PH=3t,OH=4t,
∴tan∠PCH=tan∠CBQ,
∴,
∴t= 或0(舍弃),
∴t= s时,PC⊥BQ.
【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B点的坐标,解联立直线AB,与直线OC的解析式组成的方程组,求出C点的坐标,根据两点间的距离公式即可直接算出OC,OB的长;
(2)根据速度乘以时间表示出OP=5t,CQ=4t,OQ=8-4t,①当OP∶OC=OQ∶OB时,△OPQ∽△OCB,根据比例式列出方程,求解得出t的值;②当OP∶OB=OQ∶OC时,△OPQ∽△OBC,根据比例式列出方程,求解得出t的值,综上所述即可得出t的值;(3)如图作PH⊥OC于H.根据勾股定理的逆定理判断出∠OCB=90°,从而得出当∠PCH=∠CBQ时,PC⊥BQ.根据同位角相等二直线平行得出PH∥BC,根据平行线分线段成比例定理得出OP∶OB=PH∶BC=OH∶OC,根据比例式得出PH=3t,OH=4t,根据等角的同名三角函数值相等及正切函数的定义,由tan∠PCH=tan∠CBQ,列出方程,求解得出t的值,经检验即可得出答案。
3.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.
(1)求抛物线的解析式及点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.
【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得
解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)
(2)解:如图1,过F作FG⊥x轴于点G,
设F(x, x2+2x+6),则FG= ,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,
∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,
∴
当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),
当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),
综上可知F点的坐标为(-1,)或(-3,)
(3)解:如图2,
不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于
抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上
∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,
∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),
∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6
解得k1= 或k2=
∴满足条件的点Q有两个,Q1(2,)或Q2(2,).
【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。
(2)过F作FG⊥x轴于点G,设出点F的坐标,表示出FG的长,再证明△FBG∽△BDE,利用相似三角形的性质建立关于x的方程,当点F在x轴上方时和当点F在x轴下方时,求出符合题意的x的值,求出点F的坐标。
(3)由点M,N关于抛物线的对称轴对称,可得出点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2k),M坐标为(2-k,k),再由点M在抛物线上,列出关于k的方程,求解即可得出点Q的坐标。
4.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.
(1)求证:D是弧EC的中点;
(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;
(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH的长
【答案】(1)证明:如图1中,连接OC.
∵AC是⊙O的切线,
∴OC⊥AC,
∴∠ACO=90°,
∴∠A+∠AOC=90°,
∵CA=CB,
∴∠A=∠B,
∵EF⊥BC,
∴∠OGB=90°,
∴∠B+∠BOG=90°,
∴∠BOG=∠AOC,
∵∠BOG=∠DOE,
∴∠DOC=∠DOE,
∴点D是的中点
(2)证明:如图2中,连接OC.
∵EF⊥HC,
∴CG=GH,
∴EF垂直平分HC,
∴FC=FH,
∵∠CFK= ∠COE,
∵∠COD=∠DOE,
∴∠CFK=∠COD,
∵∠CHK= ∠COD,
∴∠CHK= ∠CFK,
∴点K在以F为圆心FC为半径的圆上,
∴FC=FK=FH,
∵DO=OF,
∴DO+OK=OF+OK=FK=CF,
即CF=OK+DO;
(3)解:如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF= ﹣(2﹣x),
∵CG2=CF2﹣FG2=CO2﹣OG2,
∴( +x)2﹣[ -(2﹣x)]2=()2﹣(2﹣x)2,
解得x= ,
∴CF=5,FG=4,CG=3,OG= ,
∵∠CFE=∠BOG,
∴CF∥OB,
∴ = = ,
可得OB= ,BG= ,BH= ,
由△BHM∽△BOG,可得 = = ,
∴BM= ,HM= ,MQ=OQ﹣OB﹣BM=
在Rt△HMQ中,
QH= = =
【解析】【分析】(1)如图1中,连接OC.根据切线的性质得出OC⊥AC,根据垂直的定义得出∠ACO=90°,根据直角三角形两锐角互余得出∠A+∠AOC=90°,根据等边对等角得出∠A=∠B,根据垂直的定义得出∠OGB=90°,根据直角三角形两锐角互余得出∠B+∠BOG=90°,根据等角的余角相等得出∠BOG=∠AOC,根据对顶角相等及等量代换得出∠DOC=∠DOE,根据相等的圆心角所对的弧相等得出结论;
(2)如图2中,连接OC.根据垂径定理得出CG=GH,进而得出EF垂直平分HC,根据线段垂直平分线上上的点到线段两个端点的距离相等得出FC=FH,根据圆周角定理及等量代
换得出∠CFK=∠COD,∠CHK=∠CFK,从而得出点K在以F为圆心FC为半径的圆上,根据同圆的半径相等得出FC=FK=FH,DO=OF,根据线段的和差及等量代换得出CF=OK+DO;
(3)如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF=
﹣(2﹣x),根据勾股定理由CG2=CF2﹣FG2=CO2﹣OG2,列出关于x的方程,求解得出x
的值,从而得出CF=5,FG=4,CG=3,OG= 根据平行线的判定定理得出,内错角相等,两直线平行得出CF∥OB,根据平行线分线段成比例定理得出C F ∶O B = C G∶ G B = F G ∶G O ,进而可得OB,BG,BH的长,由△BHM∽△BOG,可得 B H ∶O B = B M ∶B G = H M ∶O G,再得出BM,HM,MQ的长,在Rt△HMQ中,根据勾股定理得出QH的长。
5.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.
(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:________.
(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.
【答案】(1)PA=PB
(2)解:把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:
如图②,过C作CE⊥n于点E,连接PE,
,
∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,
∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,
∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,
在△PAC和△PBE中,∴△PAC∽△PBE,∴PA=PB
(3)解:如图③,延长AP交直线n于点F,作AE⊥BD于点E,
,
∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;
在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF•BP=AE•BF,
∵AF=2PA,AE=2k,BF=AB,∴2PA•PB=2k.AB,∴PA•PB=k•AB.
【解析】【解答】解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P 为线段CD的中点,
∴PA=PB.
【分析】(1)根据直角三角形斜边上的中线等于斜边上的一半;
(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,根据直角三角形斜边上的中线等于斜边上的一半得出PD=PE=PC,根据等边对等角得出∠CDE=∠PEB,根据二直线平行,内错角相等得出∠CDE=∠PCA,故∠PCA=∠PEB,根据夹在两平行线间的平行线相等得出AC=BE,然后利用SAS判断出△PAC∽△PBE,根据全等三角形的对应边相等得出PA=PB;
(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,根据平行线分线段成比例定理得出AP=PF,根据线段垂直平分线上的点到线段两个端点的距离相等得出BF=AB;然后判断出△AEF∽△BPF,根据相似三角形的对应边成比例即可得出AF•BP=AE•BF,根据等量代换得出2PA•PB=2k.AB,即PA•PB=k•AB.
6.如图,已知AB是⊙O的直径,弦CD与AB交于点E,F为CD的延长线上一点,连接AF,且FA2=FD•FC.
(1)求证:FA为⊙O的切线;
(2)若AC=8,CE:ED=6:5,AE:EB=2:3,求AB的值.
【答案】(1)证明:连接BD、AD,如图,
∵
∴
∵∠F=∠F,
∴△FAD∽△FCA.
∴∠DAF=∠C.
∵∠DBA=∠C,
∴∠DBA=∠DAF.
∵AB是⊙O的直径,
∴
∴
∴
∴即AF⊥AB.
∴FA为⊙O的切线.
(2)解:设CE=6x,AE=2y,则ED=5x,EB=3y.
由相交弦定理得:EC⋅ED=EB⋅EA.
∴
∴
∴
∵
∴
∴
∴
∴FD=5x.
∴
∴
∵
∴
∵△FAD∽△FCA.
∴
∵
∴
解得:
∴
∴AB的值为10
【解析】【分析】(1)连接BD、AD,根据两边成比例且夹角相等可得△FAD∽△FCA;由△FAD∽△FCA及同弧所对的圆周角相等可得∠DBA=∠DAF;再根据直径所对的圆周角是直角即可得出结论。
(2)设CE=6x,则ED=5x,用相交弦定理表示出则AE的长,用勾股定理及题中的已知条件分别表示出FD、AF、AD的长;再利用△FAD∽△FCA即可得出结论。
7.如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题:
(1)如图(2),当AC过点E时,求t的值;
(2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长;(3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t的取值范围.
【答案】(1)解:如图(2),当AC过点E时,
在Rt△ABC中,BC=3,AC=6,
∴BC所对锐角∠A=30°,
∴∠ACB=60°,
依题意可知∠ABC=∠EDC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EDC,
∴,即,
∴CD= ,
∴t=CD= ;
(2)解:如图(3),∵∠EDG=90°,DE=3,EG=6,
∴DG= =3 ,
在Rt△EDG中,sin∠EGD= ,
∴∠EGD=30°,
∵∠NCB=∠CNG+∠EGD,
∴∠CNG=∠NCB﹣∠EGD=60°﹣30°=30°,
∴∠CNG=∠EGD,
∴NC=CG=DG﹣BC=3 ﹣3;
(3)解:由(1)可知,当x>时,△ABC与△EFG有重叠部分.
分两种情况:①当<t≤3时,如图(4),
△ABC与△EFG有重叠部分为△EMN,设AC与EF、EG分别交于点M、N,过点N作直线NP⊥EF于P,交DG于Q,
则∠EPN=∠CQN=90°,
∵NC=CG,
∴NC=DG﹣DC=3 ﹣t,
在Rt△NQC中,NQ=sin∠NCQ×NC=sin60°×(3 ﹣t)= ,
∴PN=PQ﹣NQ=3﹣ = ,
∵∠PMN=∠NCQ=60°,
∴sin∠PMN= ,MN= =t﹣,
在矩形DEFG中,EF∥DG,
∴∠MEN=∠CGN,
∵∠MNE=∠CNG,∠CNG=∠CGN,
∴∠EMN=∠MNE,
∴EM=MN,
∴EM=MN=t﹣,
∴y=S△EMN= EM•PN= × ;
②当3<t≤3 时,如图(5),
△ABC与△EFG重叠部分为四边形PQNM,设AB与EF、EG分别交于点P、Q,AC与EF、EG分别交于点M、N,则∠EPQ=90°,
∵CG=3 ﹣t,
∴S△EMN= ,
∵EP=DB=t﹣3,∠PEQ=30°,
∴在Rt△EPQ中,PQ=tan∠PEQ×EP=tan30°×(t﹣3)= ,
∴S△EPQ= EP•PQ= (t﹣3)× = ,
∴y=S△EMN﹣S△EPQ=()﹣()= +(﹣,
综上所述,y与t的函数关系式:y= .
【解析】【分析】(1)证△ABC∽△EDC,由相似三角形的性质可求出CD的值,即可求t;
(2)利用勾股定理求出DG的值,则由三角函数可∠EGD=30°,进而可证得∠CNG=∠EGD,则NC=CG=DG﹣BC,可求出答案;
(3)根据重叠部分可确定x的取值范围,再由三角形的面积公式可求出函数解析式.
8.在平面直角坐标系中,点 A 点 B 已知满足
.
(1)点A的坐标为________,点B的坐标为________;
(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF交轴于点D,若点D(-1,0),求点E的坐标;
(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由。
【答案】(1)(-4,0);(0,-4)
(2)解:作FH⊥OA于H,
∵AF⊥AE,
∴∠FAE=∠AHF=∠AOE=90°,
∴∠FAH+∠OAE=90°,∠FAH+∠AFH=90°,∴∠AFH=∠OAE,
∵AF=OA,
∴△AFH≌△EAO,
∴FH=OA,
∵点A(-4,0),点B(0,-4)
∴FH=OA=OB=4,
∵∠FHD=∠BOD=90°,∠FDH=∠BDO,
∴△FDH≌△BDO,
∴OD=DH=1,
∴AH=OH=OE=2,
∴E(0,-2)
(3)解:结论:MN=OM,MN⊥OM,
理由:连接OH,OM与BN交于G,
∵OA=OB,∠AOB=45°,
∴∠OAB=45°
∵OE=EB=2,EH∥OA,
∴AH=BH,OH⊥AB,∠AHM=∠OAB=45°,
∵∠MON=45°
∴∠GON=∠GHM,
∵∠NGO=∠MGH,
∴△NGO∽△MGH,
∴ = ,
∴ = ,
∵∠NGM=∠OGH,
∴△NGM∽△OGH,
∴∠NMG=∠OHG=90°,
∴△OMN是等腰直角三角形
∴MN=OM,MN⊥OM.
【解析】【解答】(1)∵ =0,
∴a=-4,b=-4,
∴点A的坐标为(-4,0),点B的坐标为(0,-4)
【分析】(1)先将式子变形为完全平方公式的形式,再根据平方的非负性求解;(2)如图1中,作FH⊥OA于H,由△AFH≌△EAO,推出FH=OA,由△FDH≌△BDO,推出
AH=OH=OE=2;(3)连接OH,OM与BN交于G,由△NGO∽△MGH,推出 = ,再推出
= ,再得出△NGM∽△OGH,推出∠NMG=∠OHG=90°,推出△OMN是等腰直角三角形即可解决问题.
9.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
【答案】(1)解:把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得
,解得,
∴抛物线解析式为y=﹣ x2+ x+4;
∵AC=BC,CO⊥AB,
∴OB=OA=3,
∴B(3,0),
∵BD⊥x轴交抛物线于点D,
∴D点的横坐标为3,
当x=3时,y=﹣ ×9+ ×3+4=5,
∴D点坐标为(3,5)。
(2)解:在Rt△OBC中,BC= =5,
设M(0,m),则BN=CM=4﹣m,CN=5﹣(4﹣m)=m+1,
∵∠MCN=∠OCB,
∴当时,△CMN∽△COB,则∠CMN=∠COB=90°,
即,解得m= ,此时M点坐标为(0,);当时,△CMN∽△CBO,则∠CNM=∠COB=90°,
即,解得m= ,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,)。
(3)解:连接DN,AD,如图,
∵AC=BC,CO⊥AB,
∴OC平分∠ACB,
∴∠ACO=∠BCO,
∵BD∥OC,
∴∠BCO=∠DBC,
∵DB=BC=AC=5,CM=BN,
∴△ACM≌△DBN,
∴AM=DN,
∴AM+AN=DN+AN,
而DN+AN≥AD(当且仅当点A、N、D共线时取等号),
∴DN+AN的最小值=AD= ,
∴AM+AN的最小值为.
【解析】【分析】(1)将A(﹣3,0),C(0,4)代入函数解析式构造方程组解出a,c 的值可得抛物线解析式;由AC=BC,CO⊥AB,根据等腰三角形的“三线合一”定理,可得OB=OA=3,而BD⊥x轴交抛物线于点D,则D点的横坐标为3,当x=3时求得y的值,即可得点D的坐标。
(2)当△CMN是直角三角形时,有两种情况:∠CMN=90°,或∠CNM=90°,则可得△CMN∽△COB,或△CMN∽△CBO,由对应边成比例,设M(0,m),构造方程解答即可。
(3)求AM+AN的最小值,一般有两种方法:解析法和几何法;解析法:用含字母的函数关系式表示出AM+AN的值,根据字母的取值范围和函数的最值来求;几何法:将点A,M,N三点移到一条直线上;此题适用于几何法:观察图象不难发现,AC=BD=5,CM=BN,且∠BCO=∠DBC,连接AD,可证得△ACM≌△DBN,则AM=DN,而DN+AN≥AD (当且仅当点A、N、D共线时取等号),求AD的长即可。
10.在平面直角坐标系中,抛物线经过点,、,,其中、是方程的两根,且,过点的直线与抛物线只有一个公共点
(1)求、两点的坐标;
(2)求直线的解析式;
(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,
∴x1=-2,x2=4,
∴A(-2,2),C(4,8)
(2)解:①设直线l的解析式为y=kx+b(k≠0),
∵A(-2,2)在直线l上,
∴2=-2k+b,
∴b=2k+2,
∴直线l的解析式为y=kx+2k+2①,
∵抛物线y= x2②,
联立①②化简得,x2-2kx-4k-4=0,
∵直线l与抛物线只有一个公共点,
∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,
∴k=-2,
∴b=2k+2=-2,
∴直线l的解析式为y=-2x-2;
②平行于y轴的直线和抛物线y= x2只有一个交点,
∵直线l过点A(-2,2),
∴直线l:x=-2
(3)解:由(1)知,A(-2,2),C(4,8),
∴直线AC的解析式为y=x+4,
设点B(m,m+4),
∵C(4.8),
∴BC= |m-4|= (4-m)
∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,∴D(m, m2),E(m,-2m-2),
∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,
∵DC∥EF,
∴△BDC∽△BEF,
∴,
∴,
∴BF=6 .
【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.
11.如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t=________时,PQ∥AB
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB 能否垂直?若能,求出相应的t值;若不能,请说明理由.
能垂直,理由如下:
延长QE交AC于点D,
∵将△PQC翻折,得到△EPQ,
∴△QCP≌△QEP,
∴∠C=∠QEP=90°,
若PE⊥AB,则QD∥AB,
∴△CQD∽△CBA,
∴,
∴,
∴QD=2.5t,
∵QC=QE=2t
∴DE=0.5t
∵∠A=∠EDP,∠C=∠DEP=90°,
∴△ABC∽△DPE,
∴
∴,
解得:,
综上可知:当t= 时,PE⊥AB
【答案】(1)2.4
(2)解:∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB 向B点以2厘米/秒的速度匀速移动,
∴PC=AC-AP=6-t,CQ=2t,
∴S△CPQ= CP•CQ= =5,
∴t2-6t+5=0
解得t1=1,t2=5(不合题意,舍去)
∴当t=1秒时,△PCQ的面积等于5cm2
(3)解:
【解析】【解答】解:(1) ∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q 从C出发沿CB向B点以2厘米/秒的速度匀速移动,
∴PC=AC-AP=6-t,CQ=2t,
当PQ∥AB时,∴△PQC∽△ABC,
∴PC:AC=CQ:BC,
∴(6-t):6=2t:8
∴t=2.4
∴当t=2.4时,PQ∥AB
【分析】(1)根据题意可得PC=AC-AP=6-t,CQ=2t,根据平行线可得△PQC∽△ABC,利用相似三角形对应边成比例可得PC:AC=CQ:BC,即得(6-t):6=2t:8,求出t值即可;
(2)由S△CPQ=CP•CQ =5,据此建立方程,求出t值即可;
(3)延长QE交AC于点D,根据折叠可得△QCP≌△QEP,若PE⊥AB,则QD∥AB,可得△CQD∽△CBA,利用相似三角形的对应边成比例,求出DE=0.5t,根据
两角分别相等可证△ABC∽△DPE,利用相似三角形对应边成比例,据此求出t 值即可.
12.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒1cm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)求t=9时,△PEF的面积;
(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;
(3)当t为何值时,△EOP与△BOA相似.
【答案】(1)解:∵EF∥OA,
∴∠BEF=∠BOA
又∵∠B=∠B,
∴△BEF∽△BOA,
∴ = ,
当t=9时,OE=9,OA=20,OB=15,
∴EF= =8,
∴S△PEF= EF•OE= ×8×9=36(cm2)
(2)解:∵△BEF∽△BOA,
∴EF= = = (15-t),
∴ × (15-t)×t=40,
整理,得t2-15t+60=0,
∵△=152-4×1×60<0,
∴方程没有实数根.
∴不存在使得△PEF的面积等于40cm2的t值
(3)解:当∠EPO=∠BAO时,△EOP∽△BOA,
∴ = ,即 = ,
解得t=6;
当∠EPO=∠ABO时,△EOP∽△AOB,
∴ = ,即 = ,
解得t= .
∴当t=6或t= 时,△EOP与△BOA相似
【解析】【分析】(1)由于EF∥x轴,则S△PEF= •EF•OE.t=9时,OE=9,关键是求
EF.易证△BEF∽△BOA,则 = ,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.。