土力学土的压缩性及基础沉降量计算
土力学土的压缩性和地基沉降计算课件
土压缩性的定义 01 02
土压缩性的重要性
01
02
地基沉降
地下工程
03 水利工程
土压缩性的影响因素
含水量
颗粒组成
孔隙比
压力
含水量越高,土的压缩 性越大。
颗粒越细,土的压缩性 越大。
孔隙比越大,土的压缩 性越大。
压力越大,土的压缩性 越大。
土的孔隙与孔隙水压力
土是由固体颗粒、水和空气组成的复杂体系,其中孔隙是土中未被固体颗粒占据的 空间,孔隙水压力是孔隙中的水受到的压力。
土的压缩性是指土在压力作用下体积减小的性质,这一过程伴随着孔隙水压力的变化。
孔隙水压力的变化会影响土的压缩性,例如在排水条件下,孔隙水压力减小,土的 压缩性增强。
详细描述
水库大坝的地基沉降分析需要考虑大坝的重量、地基土的物理性质、地下水位等 因素。通过精确的计算和分析,可以预测大坝的沉降量,并采取相应的措施进行 控制,确保大坝的安全和稳定运行。
地基处理方法
01
02
03
04
换填法
预压法
强夯法
桩基法
施工监控与检测
沉降观测
。
土压力监测
地下水位监测 质量检测
预防与应急措施
制定应急预案
储备应急物资
加强巡查 与专业机构合作
土的压缩性指标
土的压缩性可以通过压缩试验进行测定,常用的压缩性指标包括压缩系 数、压缩模量、泊松比等。
压缩系数是描述土压缩性随压力变化的关系曲线,该曲线呈非线性;压 缩模量是在一定压力范围内,土的应力与应变之比;泊松比是横向应变
土力学 第4章 土的压缩性与地基沉降计算
变形测量 固结容器
百分表
加压上盖
透水石
环刀 压缩
容器
加
压
试样
护环
支架
设 备
《土力学》 第4章 土的压缩性与地基沉降计算
(2)利用受压前后土粒体积不变和土样截面面积不变两个
条件,可求土样压缩稳定后孔隙比ei
受压前
:VS
(1
e 0
)
H
0
A
受压后:VS (1 e1) H1A
Vs
H 0
A
《土力学》 第4章 土的压缩性与地基沉降计算
土的固结状态对土的压缩性的影响:
在压力p作用下的地基沉降值si: 正常固结土为s1; 超固结土为s2; 欠固结土为s3。
则有:s2<s1<s3
《土力学》 第4章 土的压缩性与地基沉降计算
pc卡萨格兰德法
① 在e–lgp坐标上绘出试样
的室内压缩曲线; ② 找出压缩曲线上曲率最
Cc
lg
e1 p2
e2 lg
p1
e1 e2 lg p2
p1
一般认为:
cc<0.2时, 为低压缩性土; cc=0.2~0.4时,属中压缩性土; cc>0.4时, 属高压缩性土。
图5-6 由e-lgp曲线确定压缩系数cc
《土力学》
第4章 土的压缩性与ຫໍສະໝຸດ 基沉降计算(5)土的回弹与再压缩曲线
H1
A
1e 1e
0
1
受压前后Vs,A不变
H0 H1 H0 s1 1 e0 1 e1 1 e1
e1
e0
s1 H0
1
e0
式中 e0 为土的初始孔隙比,可由土的三个基本实验指标求得,即
3土的压缩性和地基沉降计算
3 土的压缩性和地基沉降计算
土力学地基基础
2 单一压缩土层的沉降计算
文字部分见教材 根据图3-2和式3-1可知,
将S=H1-H2代入上式,
1 e2 H2 H1 1 e1
e1 e2 p S H1 H 2 H1 H1 1 e1 Es △P:土层厚度内的平均附加应力△p=p2-p1
3 土的压缩性和地基沉降计算
土力学地基基础
• 分层总和法的计算步骤 • • • • 1 计算自重应力和附加应力,并绘制曲线 2 确定沉降计算深度。然后分层, 3 计算各分层的沉降量 4 将各分层的加起来。
3 土的压缩性和地基沉降计算 规范法
土力学地基基础
3.2.2 规范法
是《建筑地基基础设计规范》(GBJ 7-89)提出的计算 地基最终沉降的另一种形式的分层总和法,只不过在计 算中采用了平均附加应力系数,使计算成果更接近实测
Zi
zi
Zi-1
5
6
第i层hi
3 4
附加应力曲线αP0
平均附加应力曲线αP0
3 土的压缩性和地基沉降计算
土力学地基基础
规范法计算公式的推导
根据分层总和法基本原理得成层地基最终沉降量的 基本计算公式如下:注意符号的物理意义:
p0 S sS s z i i z i 1 i 1 i 1 Esi
Vv1=e1
1
1
Vs=1
3 土的压缩性和地基沉降计算
土力学地基基础
因而土体的竖向应变为
h1 h2 A e1 e2 z
h1 A 1 e1
VV1
将上式代入式子3-5
1 e1 p 1 e1 Es e1 e2
第五章同济土力学土的压缩性和地基沉降计算2013
第五章同济土力学土的压缩性和地基沉降计算2013概述地基土在附加应力作用下要产生附加变形,这种变形主要包括:体积变形和形状变形体积变形主要由正应力引起,它一般使土的体积缩小压密,不会导致土体破坏形状变形主要由剪应力引起,当剪应力超过一定限度时,土体将发生剪切破坏,此时变形将不断发展土的压缩性是指土在外力作用下体积缩小的特性压缩量的组成固体颗粒的压缩土中水的压缩空气的压缩和排出水的排出占总压缩量的1/400不到,忽略不计压缩量主要组成部分说明:土的压缩被认为只是由于孔隙体积减小的结果,对于饱和土,土孔隙体积减小主要是孔隙水排水引起的无粘性土粘性土透水性好,水易于排出透水性差,水不易排出压缩稳定很快完成压缩稳定需要很长一段时间土的固结:土在外力作用下,压缩量随时间增长的过程。
土的固结实际上是孔隙水逐渐向外排出,孔隙体积减小的过程地基沉降:地基因土体压缩而产生的竖直方向的位移。
地基沉降大小首先与土的压缩性和厚度(内因)有关,其次与作用于基础上的荷载性质和大小(外因)有关。
研究建筑物的地基沉降主要包括下面两个方面问题:最终沉降量沉降与时间的关系,即渗流固结沉降层状土上堤岸中心点处变形施工前施工后第二节土的压缩性试验与指标一、室内压缩试验与压缩模量研究土的压缩性大小及其特征的一种室内试验方法,简称压缩试验,亦称固结试验1.压缩仪示意图荷载加压活塞刚性护环注意:①土样在竖直压力作用透水石下,由于环刀和刚性护环环刀的限制,只产生竖向压缩,不产生侧向变形;②切土方向与土天然状态的垂直方向一致③通过试验得到ΔH~p关系曲线,可转变为e~p曲线或e~lgp曲线土样透水石底座2.压缩曲线反映土在不同压力p作用下,孔隙比e的变化规律psVv=e0H0 H0/(1+e0)Vv=eH1 H1/(1+e)Vs=1Vs=1整理土样在压缩前后变形量为s,整个过程中土粒体积和底面积不变e= e0 s (1+ e 0 ) H0土粒高度在受压前后不变其中H0 H1= 1+ e0 1+ eρ s (1+ w 0 ) e 0= 1ρ0根据不同压力p作用下,达到稳定的孔隙比e,绘制e-p曲线及e-lgp曲线,为压缩曲线e e0曲线A曲线B曲线A压缩性曲线B压缩性ee p e-p曲线pe-lgp曲线lgp3. e-p曲线及有关指标压缩性不同的土,曲线形状不同,曲线愈陡,说明在相同压力增量作用下,土的孔隙比减少得愈显著,土的压缩性愈高根据e-p压缩曲线可以得到三个压缩性指标1.压缩系数a 2.压缩模量Es 3.体积压缩系数m(1).压缩系数ae e0 e1 e2土体在侧限条件下孔隙比减少量与竖向压应力增量的比值利用单位压力增量所引起Δ e e1 e2得孔隙比改变表征土的压斜率a= =Δ p p 2 p1缩性高低,即压缩系数a,单位MPa-1 M2M1△e△pa=de d pp1 p2 p在压缩曲线中,实际采e-p曲线用割线斜率表示土的压《规范》用p1=100kPa、p2=200kPa缩性,a值与土体所受对应的压缩系数a1-2评价土的压缩性荷载大小有关a1-20.1MPa-1低压缩性土0.1MPa-1≤a1-20.5MPa-1中压缩性土a= Δ e= e 1 e 2Δ p p 2 p1 -1高压缩性土a1-2≥0.5MPa(2).压缩模量Es土在完全侧限条件下竖向压应力与竖向总应变的比值,称为压缩模量,或称为侧限模量,可由压缩试验的e-p曲线得到。
土的压缩性与地基沉降计算
地基瞬时沉降Sd的计算
饱和粘性土的瞬时沉降,可近似按弹性力学公式 计算:
Sd=·(1- 2)·P·B/E
地基的最终沉降量
概述 1)定义:地基的最终沉降量是指地基土层在附
甲:被影响建筑物 乙:影响建筑物 第1步:用角点法计算P0范围(2 abed)的荷载在O点下
任意深度引起的附加应力σz
划分网格:I区: oabc II区: odec
(σz )O= 2 (cI- CII) P0 第2步:用分层法或规范法计算σz
在甲地基中查生的沉降即为所求。
地基沉降与时间的关系
前面讲述的是地基的最终沉降量计算,有时对于饱和软粘土地 基尚需研究地基的沉降过程或在某一个时间点的沉降大小。所 以要研究地基沉降与时间的关系。
详细过程请参照黑板.
2、推荐公式
3、参数释义
σi :基底中心O点以下深度Z i 范围的平均附加应力,kpa σi-1:基底中心O点以下深度Z i-1 范围的平均附加应力,kpa i :基底中心O点以下深度Z i 范围的平均附加应力系数 i-1 :基底中心O点以下深度Z i-1 范围的平均附加应力系数 Z i :自基础底面至第i层土底面的垂直距离,m,cm. Zi-1 :自基础底面至第i-1层土底面的垂直距离,m,cm. Esi:第i层土的侧限压缩模量,Mpa S’:未作修正时按理论计算的地基沉降量大小.m,cm. n:地基压缩层范围内按天然土层界面划分的土层数 S:修正后地基的最终沉降量. s:沉降计算经验系数,由Es 、 P0查表5.3,可以内插.
瞬时沉降; 主固结沉降
土力学_柳厚祥_第五章土的压缩性与沉降计算
第五章 土的压缩性与沉降计算§ 5.1 基本概念一、地基土在上部结构荷载作用下产生应力和变形⎩⎨⎧→→形状变形(剪破)体积变形(不破坏)zx yz xy z y x τττσσσ,,,,地基的竖直方向变形即为沉降三相土受力后的变形包括⎩⎨⎧排出土孔隙中的水和空气的,相互挤紧)土颗粒压缩(重新排列土体积减小的过程土体压缩性:指的是在压力作用下体积减小过程的特性,包括两个方面:1. 1. 压缩变形量的绝对大小(沉降量大) 2. 2. 压缩变形随时间的变化(固结问题)一、一、 工程意义地基的沉降有均匀沉降与不均匀沉降1. 1. 均匀沉降对路桥工程的上部结构危害较小,但过量的 均匀沉降也会导致路面标高的降低,桥下净空的减小而影响正常的使用。
2. 2. 不均匀沉降则会造成路堤的开裂,路面不平,超静定结构,桥梁产生较大的附加应力等工程问题,甚至影响其正常使用。
沉降计算是地基基础验算的重要内容,也是土力学的重要课题之一§5.2 研究土体压缩性的方法及变形指标一、一、 压缩试验与压缩性规律土体积的变小是孔隙体积变小的结果,研究土的压缩性大小及其特征的室内试验方法称为压缩试验。
对一般工程情况来说,或在压缩土层厚度比荷载面宽度小很多的情况下常用侧限压缩试验来研究土的压缩性。
试验室用以进行土的侧限压缩试验的仪器称为压缩仪(固结仪),如图5-1 所示 透水石以便土中水的排出传压活塞向土样施加压力。
由于环刀所限,增压或减压是土样只能在铅直方向产生压缩或回胀,而不可能产生侧向变形,故称为侧限压缩试验。
试验采用压缩仪进行压缩试验是研究土的压缩性最基本的方法,有上述已知,试样土粒本身体积是假定不变的,即()112211211,11,e h he e h e h v v s s +∆=∆+=+=,因此,试样在各级压力pi 作用下的变形,常用孔隙比e 的变化来表示。
(一)e-p 曲线的表示方法如右图所示е0a 曲线为压缩曲线 ab 曲线为减压曲线 ba’为才压缩曲线当在压的压力超过试样所曾经受过的最大压力后,其e-p 曲线很快就和压缩曲线的延长线重合如图a’c 所示。
土力学4.土的压缩性和地基沉降计算
一、基本概念 土在压力作用下,体积缩小的现象称为土的压缩性。 土体产生体积缩小的原因: (1)固体颗粒的压缩; (2)孔隙水和孔隙气体的压缩,孔隙气体的溶解; (3)孔隙水和孔隙气体的排出。 孔隙中水和气体向外排出要有一个时间过程。因此 土的压缩亦要经过一段时间才能完成。我们把这一与时间 有关的压缩过程称为固结。
(2): elogp曲线。 (3): elnp曲线。
压缩试验曲线特征 压缩试验条件下土体体积变化特征: (1)卸荷时,试样不是沿初始压缩曲线,而是沿曲线bc回弹,可见土体的变形是由可 恢复的弹性变形和不可恢复的塑性变形两部份组成。 (2)回弹曲线和再压线曲线构成一迴滞环,土体不是完全弹性体的又一表征; (3)回弹和再压缩曲线比压缩曲线平缓得多。 (4)当再加荷时的压力超过b点,再压缩曲线就趋于初始压缩曲线的延长线。
若pc> p1 ,则试样是超固结的。由于超固结土由 前期固结压力pc减至现有有效应力p1期间曾在原位经历 了回弹。因此,当超固结土后来受到外荷引起的附加 应力p时,它开始将沿着原始再压缩曲线压缩。如果 p较大,超过(pc- p1 ),它才会沿原始压缩曲线压缩 。 超固结土原始压缩曲线推求: (1) 先作b1点,其横、纵坐标分别为试样的现场自 重压力p1 和现场孔隙比 e0; (2) 过b1点作一直线, 其斜率等于室内回弹曲线与再压缩曲线的平均斜率, 该直线与通过B点垂线(其横坐标相应于先期固结压力 值)交于b1 点, b1 b就作为原始再压缩曲线。其斜率为回 弹指数Ce; (3) 作c点,由室内压缩曲线上孔隙比 等0.42 e0处确定; (4) 连接bc直线,即得原始压缩 曲线的直线段,取其斜率作为压缩指标Cc。 若pc < p1,则试样是欠固结的,由于自重作用下的压缩尚 未稳定,实质上属于正常固结土一类,它的现场压缩 曲线的推求方法完全与正常固结土一样。
土力学-土的压缩性及地基沉降
单向压缩(完全侧限)时,单位竖向压力增量产生的孔隙比减小量。
av e0 e 1 p1 p 0
e1 e 0 p1 p 0
e p
(MPa-1)
e
问题:对同一种土,压缩系数是否为常数?
• 标准压缩系数a1-2
欠固结土: pc<p0。 under consolidated clay 土层压缩尚未完成。 超固结土: pc>p0。 over consolidated clay 以前承受过更大的固结压力。
p0 h
pc p0
过去地表(超固结)
当前地表(正常固结)
过去地表(欠固结)
h
超固结比 over consolidation ration
膨胀指数 swelling index
Cs
e1 e 2 lg p 2 p 1
(回弹曲线)
4. 应力历史对黏性土压缩性的影响
(1) 原状土样压缩曲线的特征
e
再加载 从土层中取出(卸载)
土样在自重应力作 用下的压缩过程
试验加载
卸载
平 缓 段
直线段
lg p
p c 先期固结压力
自重应力
问题:为什么原状黏性土的压缩曲线会呈现出平缓段和直线段?
n
黏 土
s
s
i 1
粉 质 黏 土
7 8
9 自重应力 q z 附加应力
z
8 9
i
4. 计算内容
(1)分层 hi 0 .4 b • 为什么要分层? a. 应力随深度变化。(包括自重应力和附加应力) b. 压缩性随深度变化: 不同深度土层类型的不同;土的压缩性与其应力状态有关,因此 即使同一种土,不同深度的压缩性也不同。
土力学完整课件---4第4章-土的压缩性和地基沉降计算可编辑全文
σc(kPa) 16 35.2 54.4 65.9 77.4 89.0
3.计算基底压力
4.计算基底附加压力
G G Ad 20 4 4 320 kN
p F G 1440 320 110kPa p0 p d 110 16 1 94kPa
A
44
5.计算基础中点下地基中附加应力
系数s(与土质和土层的模量等因素有关, 可从规范中的相关表中查得).
地基最终沉降 量修正公式
s s s s
n i 1
p0 Esi
(
zi
i
zi1 ) i1
i、i-1——基础底面至第i层土、第i-1层土底面范围内平均附加应
力系数,可通过积分求出,规范中已制成表供查用。可查表。
zi、zi-1——基础底面至第i层土、第i-1层土底面的距离(m)
用角点法计算,过基底中点将荷载面四等分,计算边长l=b=2m, σz=4αap0,αa由表查得
z(m) z/b αa σz(kPa) σc(kPa) σz /σc
0
0 0.2500 94.0 16
zn (m)
1.2 0.6 0.2229 83.8 35.2
2.4 1.2 0.1516 57.0 54.4
在一定厚度的均质土层上施加无限均布荷载,土层 产生竖向压缩,没有侧向变形。
△p
∞
s
∞ 土层竖向应力由p1增加到p2, 引起孔隙比从e1减小到e2,
竖向应力增量为△p
可压缩土层
H2
H1
S
由于
H1
H2
e1 e2 1 e1
H1
a e= e1 e2
所以
p p2 p1
3.单向压缩分层总和法
土力学第3章土的压缩性与地基沉降计算
pc p0
第14页/共27页
e
e
e
p
z z p0 pc
OCR 1 正常固结状态
p
p0 pc
pc p0 OCR 1
超固结状态
p
pc p0
pc p0 OCR 1
欠固结状态
第15页/共27页
先期固结压力 pc 的确定
Casagrande 法
1. 在e-lgp曲线上,找出曲 率半径最小的点A
3.1.3 土的回弹曲线与再压缩曲线 土的回弹曲线与再压缩曲线
在进行室内试验过程中,当土压力加到某一数值后,逐渐卸压,土样 将发生回弹,土体膨胀,孔隙比增大,若测得回弹稳定后的孔隙比, 则可绘制相应的孔隙比与压力的关系曲线称为回弹曲线。
第12页/共27页
3.1.4 应力历史对压缩性的影响
一、沉积土的应力历史
后,进行逐级加压固结(一
般按p=50kPa、100kPa、
200kPa、300kPa、400kPa
5级加荷),测定各级压力p
作用下土样的压缩稳定后的
孔隙比变化。
三联固结仪
第2页/共27页
• 压缩仪示意图
试验方法:侧限压缩试验
加压活塞 刚性护环
荷载 透水石 环刀
土样
注意:土样在竖直压 力作用下,由于环刀 和刚性护环的限制, 只产生竖向压缩,不 产生侧向变形
2. 作水平线m1
3. 作A点切线m2
4. 作m1,m2 的角分线m3
5. m3与试验曲线的直线段 交于点B
pc
6. B点对应开普顿在对大量资料
进行统计分析的基础上
提出了按塑性指数近似
•
确定pc 的公式可供参考。 式中, -土的不排水剪抗
土的压缩性与地基沉降计算
灌浆加固
通过灌浆技术将浆液注 入土体中,提高土体的
强度和稳定性。
土体置换
对于软弱土体,可采用 优质土进行置换,提高 土体的承载力和稳定性
。
地基沉降控制案例分析
某高层建筑地基沉降控制
某桥梁墩台基础沉降控制
通过采用复合地基和分层处理方法, 有效控制了高层建筑的地基沉降。
通过采用桩基和扩大基础等措施,有 效控制了桥梁墩台的基础沉降。
80%
室内试验
通过室内试验测定土的压缩系数 、压缩模量等参数,进而预测地 基沉降量。
100%
数值模拟
利用数值模拟软件对土体进行模 拟分析,预测地基沉降量。
80%
经验公式
根据工程实践经验,总结出一些 经验公式来预测地基沉降量。
04
地基沉降控制措施
地基沉降控制原则
预防为主
在设计和施工过程中,应采取 有效的预防措施,减少地基沉 降的可能性。
缺点
计算量大,对计算机资源要求较高,且建模和参 数设置需专业人员操作。
极限分析法
基本原理
基于土体的极限平衡状态,通 过分析土体的极限承载力和稳
定性来进行地基沉降计算。
应用范围
适用于大变形和应力状态的极 限分析,如滑坡、沉陷等。
优点
能够考虑土体的极限承载力和 稳定性,适用于大变形和应力 状态的工程问题。
缺点
忽略土体的非线性、剪切变形 和孔隙水压力等因素,可能的地基土体离散为有限个单元,根据力的 平衡条件和变形协调条件进行计算。
优点
能够模拟复杂的地形、地质条件和施工过程,计 算精度高。
应用范围
适用于各种复杂的地质条件和边界条件,能够考 虑土体的非线性、剪切变形和孔隙水压力等因素 。
土力学 第五章 土压缩性与地基沉降计算
土的压缩性的有关概念
为了保证建筑物的安全和正常使用,地基的最大
沉降量和沉降差都必须控制在一定的范围之内。
建筑物地基沉降的研究内容:
绝对沉降量的大小
沉降与时间的关系
第一节 土的压缩性试验 及压缩性指标
一、室内压缩试验及压缩模量
室内侧限压缩试验(固结试验)
百分表 压缩容器
支架
加 压 设 备
pc OCR p0
土的固结状态的划分
正常固结土:
土层的自重应力等于前期固结压力,OCR = 1;
超固结土:
土层的自重应力小于前期固结压力,OCR > 1;
欠固结土:
土层的自重应力大于前期固结压力,OCR < 1。
二、现场载荷试验及变形模量
载荷试验装置
堆重平台反力法
地锚反力架法
室内压缩试验与现场载荷试验的比较
地基是均质的、各向同性的线弹性半无限连续体;
基础整个底面和地基土体一直保持接触。
集中荷载作用下地表沉降
Q 1
2 2 2
s
2
E x y
Q 1
Er
完全柔性基础沉降
均布荷载作用下矩形完全柔性基础下任意点沉降:
1 so obp0 E
2
中点沉降影响系数, l/b的函数,表5-3
高压缩性土 Cc > 0.4
土的回弹曲线和再压缩曲线
回弹曲线与初始压
缩曲线并不重合; 土样中有残留的塑 性变形(残余变 形),但也有恢复 的弹性变形;
超过卸载点后,再
压力完全卸除以后,
压缩曲线就像是初 始压缩曲线的延长 线。
e~p 曲线
土的压缩性与地基沉降计算—地基沉降量计算(土力学课件)
1 5
Ai-16
2
C i-1σz0
△z
(2)计算原理
利用附加应力面积A的等代值计算地基任意 土层的沉降量,因此第i层沉降量为
si
Ai
Ai1 Esi
z(0)
Esi
( zi Ci
zi1Ci1)
根据分层总和法基本原理可得 地基沉降量的基本公式
s
n i1
si
n i1
(z 0) Esi
(
ziCi
△z
zi
zi-1
第i层 第n层
b C i-1
Ci
平均附加应力 系数曲线
s
ms
n
si
i 1
ms
n
i 1
z(0)
Esi
( zi Ci
zi1Ci1 )
2.地基总沉降量的计算
(2)计算原理
厚度为z均质地基土,在侧限条件下,压缩模量Es 不随深度变化,土层的压缩量为
分层总和法
si
zi
Esi
hi
按铁路桥涵地基和基础设计规范 计算地基沉降量-案例1
按《铁路桥涵地基和基础设计规范》计算地基沉降量-案例1
矩形基础长3.6m,宽2m,地面以上荷载重量F=900KN, 地基为均质黏土,重度γ=18KN/m3,e0=1.0;a=0.4MPa-1。 试按《铁路桥涵地基和基础设计规范》计算地基沉降量 (确定修正系数时,按σz0=σ0 确定)
分层总和法简介-作业1
1.分层总和法:将地基压缩层范围以内的土层划 分成若干薄层,分别计算每一薄层土的变形量, 最后总和起来,即得基础的沉降量。 2.地基最终沉降量:地基变形完全稳定时,地基 表面的最大竖向变形量。
分层总和法简介-作业1
土力学第四章、土的最终沉降量
4.4.2 一维固结理论
基本假设: 1.土层是均质、各向同性和完全饱和的; 2.土的压缩完全是由于孔隙体积的减少,土粒和水是不可压缩的; 3.水的渗流和土层的压缩仅在竖向发生; 4.水的渗流遵从达西定律; 5.渗透系数k和压缩系数a保持不变。 6.外荷载一次瞬时施加。
孔隙中水和气体向外排出要有一个时间过程 。因此土的压缩亦要经过一段时间才能完成。我 们把这一与时间有关的压缩过程称为固结。
对于饱和土体来说,固结就是孔隙中的水逐 渐向外排出,孔隙体积减小的过程。显然,对于 饱和砂土,由于它的透水性强,在压力作用下,孔 隙中的水易于向外排出,固结很快就能完成;而 对于饱和粘土,由于它的透水性弱,孔隙中的水不 能迅速排出,因而固结需要很长时间才能完成。
s ss' si n1E ps0i(zi izi1 i1)
地基沉降计算深度zn
《建筑地基基础设计规 范》规定zn应满足下列条件 ( 包括考虑相邻荷载的影响):
n
sn 0.025 si i1
无相邻荷载影响,基础中点 的地基沉降计算深度也可按 下列经验公式计算:
弹性变形部分来自土颗粒和孔隙水 的弹性变形、封闭气体的压缩和溶解, 以及薄膜水的变形等造成的变形。
塑性变形部分来自颗粒相互位移、 土颗粒被压碎、孔隙水和孔隙气体被排 出等造成的变形。
土体变形机理非常复杂,土体不是 理想的弹塑性体,而是具有弹性、粘性 、塑性的自然历史的产物。
4.1.3 土的载荷试验及变形模量
E0值和βEs值比较接近。
4.2 地基最终沉降量计算
地基最终沉降量的计算方法主要有以 下几种方法:
1、 分层总和法 2、 规范法 3、 理论公式计算法
4.2.1 分层总和法
土力学压缩性
第三章 土的压缩性和基础沉降计算
地基沉降计算的e~p曲线法
一、分层总和法简介实际计算地基土的压缩量时,只须考虑某一深度范围内内土层的压缩量,这一深度范围内的土层就称为“压缩层”。对于一般粘性土,当地基某深度的附加应力σz 与自重应力σs之比等于0.2时,该深度范围内的土层即为压缩层;对于软粘土,则以σz / σs=0.1为标准确定压缩层的厚度。
第12页/共68页
第三章 土的压缩性和基础沉降计算
(四)其它压缩性指标广义虎克定律:泊松比:0.3~0.4,饱和土在不排水条件下接近0.5变形模量与压缩模量之间的关系:
变形模量
土的类型
变形模量(kPa)
土的类型
变形模量(kPa)
泥炭
100-500
松砂
10000-20000
塑性粘土
500-4000
式中:e1,e2分别为p1,p2所对应的孔隙比。
第10页/共68页
第三章 土的压缩性和基础沉降计算
虽然压缩系数和压缩指数都是反映土的压缩性的指标,但两者有所不同。前者随所取的初始压力及压力增量的大小而异,而后者在较高的压力范围内是常数。为了研究土的卸载回弹和再压缩的特性,可以进行卸荷和再加荷的固结试验。
第21页/共68页
第三章 土的压缩性和基础沉降计算
分层总和法的基本思路是:将压缩层范围内地基分层,计算每一分层的压缩量,然后累加得总沉降量。分层总和法有两种基本方法:e~p曲线法和e~lgp曲线法。
第22页/共68页
第三章 土的压缩性和基础沉降计算
二、用e~p曲线法计算地基的最终沉降量(1)首先根据建筑物基础的形状,结合地基中土层性状,选择沉降计算点的位置;再按作用在基础上荷载的性质(中心、偏心或倾斜等情况),求出基底压力的大小和分布。
土力学 5.土的压缩性和地基沉降计算
土结构性的压缩——与土形成的应力历史有关,(p>pc时,影响大)
压 缩
说明:正常固结土的压缩认为只是由于孔隙体积减小的结果 无粘性土 粘性土
透水性好,水易于排出 透水性差,水不易排出
压缩稳定很快完成 压缩稳定需要很长一段时间
土的固结:土体在压力作用下,压缩量随时间增长的过程
5.2.2 压缩试验和压缩性指标
OCR=1:正常固结 OCR>1:超固结 OCR<1:欠固结
相同p时,一般OCR越大,土 越密实,压缩性越小
先期固结压力pc的确定:A.Casagrande 法
A
1.在e-lgp压缩试验曲线上, 找曲率最大点m
2.作水平线m1 3.作m点切线m2 4.作m1,m2 的角分线m3 5.m3与试验曲线的直线段 交于点B 6.B点对应于先期固结压力pc
到的相应孔隙比
3.计算步骤
d 地基沉降计算深度
1.绘制基础中心点下地基中自重 应力和附加应力分布曲线
σc线 σz线
2.确定基础沉降计算深度
一般土层:σz=0.2σc 软粘土层:σz=0.1σc, 存在基岩:计算至基岩表面
3.确定地基分层
土层的分界面 地下水位面 每层厚度hi ≤0.4b
e1i-e2 i s i hi 1 e1i
e C m
B
m1 m3 m2
土力学基础沉降量计算
工程上计算地基的沉降 时,在地基可能产生压 缩的土层深度内,按土 的特性和应力状态的变 化将地基分为若干(n) 层,假定每一分层土质 均匀且应力沿厚度均匀 分布。
第13页/共34页
然后对每一分层分别计算其压缩 量Si,最后将各分层的压缩量总和 起来,即得地基表面的最终沉降量 S,这种方法称为分层总和法。
第18页/共34页
二、用e~p曲线法计算地基的最终沉降量
(2)将地基分层: ①天然土层的交界面 ②地下水位 ③每层厚度控制在Hi=2m~4m或 Hi≤0.4b,b为基础宽度
第19页/共34页
二、用e~p曲线法计算地基的最终沉降量
(3)计算地基中土的自重应力分布。 (4)计算地基中竖向附加应力分布。 (5)按算术平均求各分层平均自重应
第27页/共34页
【例题】
第28页/共34页
【例题】
(5)确定压缩层厚度。 从计算结果可知,在第4 点处有 σz4/ σs4=0.195<0.2, 所以,取压缩层厚度为 10m。
第29页/共34页
【例题】
(6)计算各分层的平均自重应力和平 均附加应力。 各分层的平均自重应力和平均附加 应力计算结果见下表
第22页/共34页
【例题】
【解】(1)由l/b=10/5=2<10 可知,属于空间问题,且为 中心荷载,所以基底压力为
p=P/(l×b)=10000/(10×5) =200kPa 基底净压力为 pn=p-γd=200-20 ×1.5
=170kPa
第23页/共34页
【例题】
(2)因为是均质土, 且地下水位在基底 以下2.5m处,取分 层厚度Hi=2.5m。
力和平均附加应力
第20页/共34页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土被压缩的实质是:土颗粒之间产生相对移动而靠拢,水和 气体排出,使土体孔隙减小所致。土体在压力作用下,孔隙中 的水和气体的排出需要有一个时间过程,压缩量随时间增长的 过程称为土的固结,土体压缩完成称为固结完成。
从对土评价的一致性出发,我国《建筑地基基础设
计规范》中规定,取压力:
p1=100kPa (0.1MPa)
p2=200 kPa (0.2MPa)
对应的压缩系数1-2作为判别土体压缩性的标准:
1-2<0.1MPa-1
属低压缩性土;
0.1MPa-1≤1-2<0.5 MPa-1 属中压缩性土;
1-2≥0.5 MPa-1
属高压缩性土。
开封大学 土木建筑工程学院
土力学与地基基础 (2)压缩指数 Cc
在e~lgp曲线上其后部很长一段为直线, 此直线段的斜率称为土体的压缩指数Cc:
Cc
lg
e1 e2 p2 lg
p1
压缩指数越大,土的压缩性也越大,
Cc <0.2 0.2≤Cc ≤0.4 Cc>0.4
为低压缩性土; 为中压缩性土;
土力学与地基基础 4.土体压缩性指标
(1)压缩系数
侧限压缩试验的e-p曲线 上任一点处切线的斜率α反映了 土体在该压力p作用下土体压缩 性的大小。曲线平缓,其斜率小, 土的压缩性低;曲线陡,其斜率
大,土的压缩性高。
tan e e1 e2
p p2 p1
开封大学 土木建筑工程学院
土力学与地基基础
开封大学 土木建筑工程学院
土力学与地基基础
4.1 土的压缩试验和压缩曲线
4.1.1 基本概念 4.1.2 室内侧限压缩试验 4.1.3 变形模量和弹性模量
开封大学 土木建筑工程学院
土力学与地基基础
§4.1.1 基本概念
土在压力作用下体积减小的特性称为土的压缩性。 在一般工程压力(100-600kPa)作用下,固体矿物颗粒和
土力学与地基基础
基坑开挖,引起阳台裂缝
工程实例
开封大学 土木建筑工程学院
土力学与地基基础
建新 筑建 物筑 开引 裂起
原 有
开封大学 土木建筑工程学院
土力学与地基基础
高层建筑物由于不均匀沉降而被爆破拆除
工程实例
开封大学 土木建筑工程学院
土力学与地基基础
建 筑 物 立 面 高 差 过 大
工程实例
Es1-2<4MPa 4Mpa≤Es1-2≤15MPa Es1-2>15MPa
高压缩性土; 中压缩性土;
低压缩性土。
开封大学 土木建筑工程学院
土力学与地基基础 4.土的回弹和再压缩曲线
当土体历史上曾受过的固结压力大于目前所受压力作用时,土体压缩 量将大大减小,因而地基的变形也较小。根据这一原理,为了减小高 压缩性地基的沉降量,往往在修建筑物前对其进行预压处理。同时要 考虑基坑开挖引起的地基土回弹问题。
土力学与地基基础
§4.3 压缩性原位测试及土的变形模量
土力学与地基基础
4 土的压缩性与地基沉降量计算
▪ 学习目标:
❖ 了解影响土的压缩性的主要因素,土的弹性变形和塑 性变形的概念,规范法计算沉降量的原理,饱和黏性 土地基单向渗透固结理论。
❖ 掌握压缩试验原理及其压缩性指标,土的单向压缩的 计算公式及适用条件。
❖ 会用分层总和法和规范法计算沉降量。
开封大学 土木建筑工程学院
开封大学 土木建筑工程学院
土力学与地基基础
e
1
Cc
0.9
0.8 1 Ce
0.7
0.6
100
1000
lg p(kPa)
回弹和再压缩e-lgp曲线
特点:在压力较大部分, 接近直线段
指标:
• 压缩指数
Cc
e (lgp)
• 回弹指数
(再压缩指数)
Ce
Ce << Cc, 一般Ce≈0.1-0.2Cc
开封大学 土木建筑工程学院
验
其它原位试验
标准贯入试验 触探试验
开封大学 土木建筑工程学院
土力学与地基基础
§4.1.2 室内(侧限)压缩试验
1.侧Байду номын сангаас试验原理
Q
e
Vv Vs
Vv
e Vs
V Vs (1 e0 )
AH0 Vs (1 e0 )
AHi Vs (1 ei )
H0 Hi 1 e0 1 ei
H0 Hi 1 ei
开封大学 土木建筑工程学院
土力学与地基基础 2.侧限压缩试验装置
测定: 轴向应力 轴向变形
百分表
变形测量 固结容器
透水石
加压活塞
水槽 环刀
支架
备加 压 设
护环
试样
开封大学 土木建筑工程学院
土力学与地基基础
3.绘制压缩曲线:
ei
e0
Hi H0
1
e0
e~p曲线
e~lgp曲线
开封大学 土木建筑工程学院
土力学与地基基础
左部:1709年 右部:1622年 地基:20多米厚粘土
墨西哥某宫殿
问题: 沉降2.2米,且左右 两部分存在明显的 沉降差。左侧建筑 物于1969年加固
工程实例
开封大学 土木建筑工程学院
土力学与地基基础
Kiss
由于沉降相互影响,两栋相邻的建筑物上部接触
工程实例
开封大学 土木建筑工程学院
为高压缩性土。
开封大学 土木建筑工程学院
土力学与地基基础
(3)压缩模量 Es
土体在侧限条件下,其竖向压力的变化增量与相应竖向应变
的比值,称为土的压缩模量Es,即:
H e0 ei H 1 e 0
0
H
e 0
e i
e
H0 1 e0 1 e0
Es
p
p e
1
e 0
e
1
e 0
1 e p 0
同样可以用相应于p1=100 kPa、p2=200 kPa范围内的压缩模量Es 值评价地基土的压缩性。
开封大学 土木建筑工程学院
土力学与地基基础
建筑物过长:长高比7.6:1
47m
39
87
150
194 199
175
沉降曲线(mm)
工程实例
开封大学 土木建筑工程学院
土力学与地基基础
4.1 土的压缩试验和压缩曲线(指标)
本 4.2 应力历史对土体压缩性的影响 章 内 容 4.3 地基最终沉降量计算
4.4 地基变形与时间的关系
开封大学 土木建筑工程学院
土力学与地基基础 压缩性指标测试:
室
侧限压缩试验 一维问题
压缩系数 压缩模量Es
弹性模量E
内
三轴压缩试验 三轴应力状态
压缩指数Cc
试
抗剪强度指标c、
验
无侧限抗压强
弹性模量E
度试验
抗剪强度指标c、
原
荷载试验
变形模量E0 地基承载力az
位
试
旁压试验
旁压模量Em 不排水抗剪强度等