高中排列组合知识点汇总和典型例题[全]
高中 排列组合 知识点+例题 全面分类
辅导讲义―排列组合教学内容1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.1.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲.则不同的传递方式共有()A.5种B.2种C.3种D.4种2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.2793.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.104.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)题型一分类加法计数原理的应用例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?分类计数原理与分步计数原理(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?在所有的两位数中,个位数字大于十位数字的两位数共有多少个?题型二分步乘法计数原理的应用例2有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.题型三两个原理的综合应用例3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有()A.30种B.27种C.24种D.21种方法与技巧1.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.分类标准要明确,做到不重复不遗漏.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.A 组 专项基础训练1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( ) A .3 B .4 C .6 D .82.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有( ) A .4种 B .5种 C .6种 D .9种3.集合P ={x,1},Q ={y,1,2},其中x ,y ∈{1,2,3,…,9},且P ⊆Q .把满足上述条件的一对有序整数对(x ,y )作为一个点的坐标,则这样的点的个数是( ) A .9 B .14 C .15 D .214.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A .9 B .10 C .18 D .205.从-2、-1、0、1、2、3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a 、b 、c ,则可以组成顶点在第一象限且过原点的抛物线条数为( ) A .6 B .20 C .100 D .120. B 组 专项能力提升1.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1))、B (2,f (2))、C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有( ) A .6种 B .10种 C .12种 D .16种2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个3.如图,一环形花坛分成A ,B ,C ,D 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .484.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!性质(1)0!=1;A n n=n!.(2)C m n=C n-mn;C m n+1=C m n+C m-1n.1.用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48 D.1202.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.243.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()4.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.排列组合题型一排列问题例1有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数,求:(1)有多少个含有2,3,但它们不相邻的五位数?(2)有多少个数字1,2,3必须由大到小顺序排列的六位数?题型二组合问题例2某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?从10位学生中选出5人参加数学竞赛.(1)甲必须入选的有多少种不同的选法?(2)甲、乙、丙不能同时都入选的有多少种不同的选法?题型三排列与组合的综合应用问题例34个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?思维升华排列、组合综合题目,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.(1)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种(2)(2014·重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168排列、组合问题计算重、漏致误典例:有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有________种.温馨提醒(1)排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻,考虑周全,这样才能做到不重不漏,正确解题.(2)“至少、至多”型问题不能利用分步乘法计数原理求解,多采用分类求解或转化为它的对立事件求解.方法与技巧1.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.失误与防范求解排列与组合问题的三个注意点:(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理做最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决,分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.A组专项基础训练1.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A354.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种5.如图所示,要使电路接通,开关不同的开闭方式有()1。
(完整word版)高中数学排列组合题型归纳总结,推荐文档
排列组合1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有m 种不同的方法,…,在第n 类办法中有n m 不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解: 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2、 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解: 522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解5456A A练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.、 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高中数学知识点:排列组合
排列组合
一、排列
1. 定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn。
2. 排列数的公式与性质
排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2) (321)
规定:0!=1
二、组合
1. 定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。
(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2. 比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。
因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
排列组合知识点总结+典型例题及答案解析资料
排列组合知识点总结+ 典型例题及答案解析排列组合知识点总结+典型例题及答案解析'•基本原理1加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2. 乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n个不同元素中,任取m( m< n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出 m 个元素的一个排列,所 有排列的个数记为A^1. 1.公式:1. A ! n n 1 n n! n m ! 2 V m 刚三为(於■ 1)3 ■ 2) (2)规定:0!(1) n ! n (n 1)!,( n 1) n! (n 1)!n! [(n 1) 1] n! (n 1) n! n! (n 1)! n!; ⑶(n 1)! (n 1)! (n 1)! (n 1)! n! 1(n 1)! 三.组合:从n 个不同元素中任取 m(m <n )个元素并组成一组,叫做从n 个不同的m 元素中任取m 个元素的组合数,记作 Cn 。
1公式:c m A m n n 1……n m 1A m m! m! n n! J 人 m ! 规定:C ° 12.组合数性质:c_m c :m , c m c m 1 Cm , c n C ;C : 2n rr 「 r 「「;「 「 「 「「;「 r 「「;注: c r c r 1 c r 2 L c n 1 c n c r 1 c r 1 c r 2 L c n 1 c nc r 2 c r 2 L c n 1 c n c n 1 若 C 「1四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序③分步还是分类。
2. 解排列、组合题的基本策略(1) 两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
(完整版)排列组合知识点总结+典型例题及答案解析
g a o o 2. ! ①;②;③;④[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2 28步,那么共有C=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有213种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C种分法,然132后再分到两部门去共有C A种方法,第三步只需将其他3人分成两组,一组1人另一组213人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C种13213方法,由分步乘法计数原理共有2C A C=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36123[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C·A=12个;1233②所得空间直角坐标系中的点的坐标中含有1个1的有C·A+A=18个;13③所得空间直角坐标系中的点的坐标中含有2个1的有C=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144213223[解析] 分两类:若1与3相邻,有A·C A A=72(个),若1与3不相邻有forsos的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选。
排列组合知识点总结+典型例题及答案解析
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合专题复习及经典例题详解
排列组合专题复习及经典例题详解研究目标:掌握排列、组合问题的解题策略。
重点:1.特殊元素优先安排的策略;2.合理分类与准确分步的策略;3.排列、组合混合问题先选后排的策略;4.正难则反、等价转化的策略;5.相邻问题捆绑处理的策略;6.不相邻问题插空处理的策略。
难点:综合运用解题策略解决问题。
研究过程:1.知识梳理1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类型办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+。
+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有mn种不同的方法;那么完成这件事共有N=m1×m2×。
×mn种不同的方法。
特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏。
3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,m<n时叫做选排列,m=n时叫做全排列。
4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号Pn表示。
5.排列数公式:Pn=n(n-1)(n-2)。
(n-m+1)=m!/(n-m)。
其中m≤n,n、m∈N+。
特别提醒:规定0!=1.6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合。
7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数,用符号Cn表示。
高中数学排列组合必考知识点经典练习题(完整版)
排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高中排列组合知识点汇总及典型例题(全)
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 nn n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高中排列组合知识点汇总及典型例题(全)
高中排列组合知识点汇总及典型例题(全)一、基本原理1.加法原理:如果做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:如果做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:当做一件事时,元素或位置允许重复使用时,常用基本原理求解。
二、排列从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An公式:Anm=n(n-1)(n-2)…(n-m+1)=n!/(n-m)!规定:0!=1性质:1.n!=n×(n-1)。
(n+1)×n!=(n+1)!2.n×n!=[(n+1)-1]×n!=(n+1)×n!-n!=(n+1)!-n!3.n(n+1)/2-1=n(n-1)/2三、组合从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不同的m元素中任取m个元素的组合数,记作C nm。
公式:Cnm=n!/m!(n-m)! 性质:1.若Cn1=m,则Cnm=Cnm-1+Cn-1m-1规定:Cn1=Cnn=12.Cn0+Cn1+。
+C nn=2^n3.Crr+1+Crr+2+。
+C rn=Cr+1n4.CnC1nCnn=2^n四、处理排列组合应用题1.明确要完成的是一件什么事(审题);2.确定有序还是无序,分步还是分类;3.解排列、组合题的基本策略:1)直接法;2)间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
3)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
3.排列应用题:一种解法是穷举法,即将所有满足题设条件的排列和组合逐一列举出来。
另一种解法是特殊元素和特殊位置优先考虑。
对于相邻问题,可以使用捆绑法,将相邻的元素看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
数学高中排列组合知识和典例
1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.排列数、组合数的公式及性质顺序有关,组合问题与顺序无关.一、排列问题排列典型例题:有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.解:(1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37·A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.648C.328 D.3602.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.3.甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()A.10种B.16种C.20种D.24种二、组合问题组合典型例题:某运动队有男运动员6名,女运动员4名,若选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员.解:(1)任选3名男运动员,方法数为C36,再选2名女运动员,方法数为C24,共有C36·C24=120(种)方法.(2)法一:(直接法)至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男,由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246(种).法二:(间接法)“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法有C510-C56=246(种).1.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A.30种B.36种C.60种D.72种2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种三、排列组合综合问题(1)简单的排列与组合的综合问题;(2)分组、分配问题.1.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为()A.15 B.20C.30 D.422.将5位同学分别保送到大学、交通大学、大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A .150种B .180种C .240种D .540种此题是高考出现频率最高的题型,我把他称为均分问题:对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.(3)涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。
高中排列组合知识点汇总及典型例题全
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m n m n m m m==--+=-11……!!!! 10=n C 规定:①;②;③;④ 若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3数原理解决。
排列组合知识点归纳总结高考真题
排列组合知识点归纳总结高考真题在高考数学中,排列组合是一个重要而常见的考点。
它是数学中的一种计数方法,用于求解不同元素的排列和组合。
通过对高考真题的总结和归纳,我们可以更好地理解排列组合知识点,提高解题能力。
一、排列的概念与性质排列是指从n个不同元素中,按照一定的顺序取出m(m≤n)个元素的方式数。
排列的顺序很重要,即不同的顺序被视为不同的排列。
高考常见的排列问题有:1. 从n个元素中取出m个元素的排列数:记作A(n, m)或P(n, m),其计算公式为A(n, m) = n!/(n-m)!2. 从n个元素中取出全部元素的全排列数:记作n!,即A(n, n)。
3. 若排列中的n个元素都不重复,则称为无重排列;若排列中的n 个元素中有重复的元素,则称为有重排列。
二、组合的概念与性质组合是指从n个不同元素中,任意取出m(m≤n)个元素的方式数。
组合不考虑元素的顺序,即不同顺序被视为相同的组合。
高考常见的组合问题有:1. 从n个元素中取出m个元素的组合数:记作C(n, m),其计算公式为C(n, m) = n!/(m!(n-m)!)2. 从n个不同元素中取出全部元素的组合数:记作C(n, n)或C(n, 0),即1。
3. 若组合中的n个元素都不重复,则称为无重组合;若组合中的n个元素中有重复的元素,则称为有重组合。
三、排列组合在高考中的应用1. 求解问题的可能性当需要从给定的元素中选择一定数量的元素进行排列或组合时,可以通过排列组合的知识来计算可能的情况数。
这对于求解各类可能性问题非常有效。
2. 求解概率问题排列组合的知识在概率问题中也有广泛的应用。
例如,求解事件发生的概率、不同事件组合的概率等。
在解决这类问题时,可以利用组合数来计算事件发生的可能性。
3. 分配问题的计数排列组合的知识在分配问题中也有常见的应用。
例如,班级中选举学生干部,要求每个职位只能由一个学生担任,可以利用排列数进行计算;若要求每个职位可以有多个学生担任,可以利用组合数进行计算。
高中排列组合知识点汇总及典型例题(全)之欧阳法创编
一.基本原理时间2021.03.10 创作:欧阳治1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m≤n)个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:()()()C A A n n n m m n m n m n m n m mm==--+=-11……!!!!10=n C 规定:①;②;③;④若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
高中排列组合知识点汇总及典型例题(全)[2]
高中排列组合知识点汇总及典型例题(全)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中排列组合知识点汇总及典型例题(全)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中排列组合知识点汇总及典型例题(全)(word版可编辑修改)的全部内容。
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘. 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1。
公式:1。
()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m n mn m mm==--+=-11……!!!! 10=n C 规定:组合数性质:.2 nn nn n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1。
完整版)高考排列组合知识点归纳
完整版)高考排列组合知识点归纳第四讲:排列组合一、分类计数原理与分步计数原理1.分类加法计数原理:对于一件事情,有两种不同的方案,第一类方案有m种不同的方法,第二类方案有n种不同的方法,那么完成这件事情共有m+n种不同的方法。
2.分步乘法计数原理:完成一件事情需要两个步骤,第一步有m种不同的方法,第二步有n种不同的方法,那么完成这件事情共有m×n种不同的方法。
二、排列数1.组合:从n个元素中取出m个元素,记作Cnmn!/m!(n-m)!2.排列:1)全排列:将n个元素全排列,记作Ann!2)从n个元素中取出m个元素,并将这m个元素全排列,记作Anmn!/ (n-m)!三、二项式定理a+b)nC n 0 a n b 0C n 1 a n-1 b 1 C n n abn1.二次项系数之和:Cnr2.展开式的第r项:Tr+1Cnr例题1:(x-1)4的展开式中的常数项是()A、6.B、4.C、-4.D、-6例题2:在二项式(x-2y) 5的展开式中,含x2y3的项的系数是()A、-20.B、-3.C、6.D、20 随堂训练:1、在二项式(x21)5的展开式中,含x4的项的系数是()A、-10.B、10.C、-5.D、52、(1/x-2x25的展开式中的常数项是()A、5.B、-5.C、10.D、-103、在二项式(x+3y)6的展开式中,含x2y4的项的系数是()A、45.B、90.C、135.D、2704、已知关于x的二项式(x+3an的展开式的二项式系数之和为32,常数项为80,则a的值为()A、1.B、±1.C、2.D、±25、(1-2x)(1-3x)4的展开式中,x2的系数等于?6、(ax21/2x-2)7的展开式中各项系数的和为243,则该展开式中常数项为?7、(x22)2x的展开式中常数项是70,则n=?若展开式(ax+)(2x+)5中常数项为-40,则a=?四、排列组合题型总结解决排列组合综合性问题的一般过程如下:1.认真审题,弄清要做什么事;2.确定采取分步还是分类,或分步与分类同时进行,确定分多少步及多少类;3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素;4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
高中数学知识点:排列组合
排列组合
一、排列
1. 定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn。
2. 排列数的公式与性质
排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2) (321)
规定:0!=1
二、组合
1. 定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。
(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2. 比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。
因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
排列组合知识点总结
排列组合知识点总结一、排列组合的基本概念1.1 排列的概念排列是指从给定的元素中按照一定的顺序选取若干元素的方式。
例如,从元素集合{a, b, c}中选择2个元素,按照顺序选择的话可能得到的排列有ab, ac, ba, bc, ca, cb。
可以看出,排列与元素的顺序有关。
通常情况下,从n个元素中取出m个元素,按照顺序排列的方式有n*(n-1)*(n-2)* ... *(n-m+1)种。
1.2 组合的概念组合是指从给定的元素中按照一定的规则选取若干元素的方式,但是不考虑元素的顺序。
例如,从元素集合{a, b, c}中选择2个元素,组合的情况有ab, ac, bc,并且ba, ca, cb这三种情况都属于ab, ac, bc中的一种。
通常情况下,从n个元素中取出m个元素,不考虑顺序的组合方式有C(n,m) = n! / (m! * (n-m)!)种。
1.3 排列组合的关系排列和组合是紧密相关的,它们之间的关系可以通过以下公式表示:A(n,m) = n! / (n-m)!C(n,m) = A(n,m) / m!也就是说,排列是组合乘以选取的元素顺序的情况。
二、排列组合的性质2.1 基本性质(1)排列和组合的个数都是离散的,不能是负数,也不能是小数。
(2)从n个元素中取出m个元素的排列个数一定是比组合个数多的,即A(n,m) > C(n,m)。
2.2 乘法原理乘法原理是排列组合问题中的重要原理,它指出,如果一个问题可以分解为多个步骤,每个步骤有若干种选择,那么整个问题的解法个数就等于各个步骤选择方式的乘积。
例如,如果有4个选择项,分别为A、B、C、D,每个选择项都有3种情况,那么根据乘法原理,一共有3*3*3*3=81种选择方式。
2.3 加法原理加法原理是排列组合问题中的另一个重要原理,它指出,如果一个问题可以分解为多个独立的子问题,那么整个问题的解法个数就等于各个子问题解法个数之和。
例如,从n个元素中取出m个元素的排列个数等于从n个元素中取出m个元素放在前面或者放在后面的情况之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n nn m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
2.解排列、组合题的基本策略 (1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(4元素分析法;②位置分析法。
3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。
(5)、顺序一定,除法处理。
先排后除或先定后插解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
即先全排,再除以定序元素的全排列。
解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法;(6)“小团体”排列问题——采用先整体后局部策略对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。
(7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。
(8).数字问题(组成无重复数字的整数)①能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。
②能被3整除的数的特征:各位数字之和是3的倍数;③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。
⑤能被5整除的数的特征:末位数是0或5。
⑥能被25整除的数的特征:末两位数是25,50,75。
⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。
4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2).“含”与“不含”用间接排除法或分类法:3.分组问题:均匀分组:分步取,得组合数相乘,再除以组数的阶乘。
即除法处理。
非均匀分组:分步取,得组合数相乘。
即组合处理。
混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。
4.分配问题:定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。
随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。
5.隔板法:不可分辨的球即相同元素分组问题例1.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).例3.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有2.从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须A.40 B.50 C.60 D.702.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A.36种B.48种 C.72种D.96种3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.1449.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A .50种B .60种C .120种D .210种10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A )12种 (B )18种 (C )36种 (D )54种15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有 A. 504种 B. 960种 C. 1008种 D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法 甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法 故共有1008种不同的排法排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情)分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列排列定义:从n 个不同元素中,任取m (m ≤n )个元素(被取出的元素各不相同),3,组合组合定义 从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m ≤n )个元素的所有组合个数 mn Cmn C =!!()!n m n m -性质 mn C =n mn C - 11mmm n n n C C C -+=+排列组合题型总结 一. 直接法 1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 捆绑法) (2) 女生必须全分开 (插空法 须排的元素必须相邻) (3) 两端不能排女生 (4) 两端不能全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种不同的排法 二. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种 ,2,某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C )(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)三. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。