中考数学专题题库∶锐角三角函数的综合题及答案

合集下载

四川成都市九年级数学下册第二十八章《锐角三角函数》综合经典习题(含答案解析)

四川成都市九年级数学下册第二十八章《锐角三角函数》综合经典习题(含答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若32BE EC=,则AC是⊙O的切线2.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.2 tan2α=C.该圆锥的主视图的面积为82D.圆锥的表面积为12π3.如图,为方便行人推车过天桥,市政府在10m高的天桥两端分别修建了50m长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是()A.sin0.2= B.2ndF sin0.2=C.tan0.2= D.2ndF tan0.2=4.如图,这是某市政道路的交通指示牌,BD的距离为5m,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A .53mB .52mC .()5352m -D .()535m - 5.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .1056.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8m ,坡面上的影长为4m .已知斜坡的坡角为30,同一时刻,一根长为2m 且垂直于地面放置的标杆在地面上的影长为4m ,则树的高度为( )A .10mB .12mC .(63m +D .(423m - 7.下列说法中,正确的有( )个①a 为锐角,则1sina cosa +>;②314172︒+︒=︒cos cos cos ﹔③在直角三角形中,只要已知除直角外的两个元素,就可以解这个三角形﹔④坡度越大,则坡角越大,坡越陡;⑤1302==︒sinA ; ⑥当Rt ABC ∆的三边长扩大为2倍时,则sinA 的值也相应扩大2倍. A .1 B .2 C .3 D .48.如图,以O 为圆心,任意长为半径画弧,与射线OA 交于点B ,再以B 为圆心,BO 长为半径画弧,两弧交于点,C 画射线OC ,则tan AOC ∠的值为( )A .12B .33C .32D .39.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m ︒ C .sin 35m ︒D .m·cos35° 10.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .532 11.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A .34B .43C .35D .4512.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E,作PF BC⊥于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.13.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC与DF共线,将△DEF沿CB方向平移,当EF经过AC的中点O时,直线EF交AB于点G,若BC=3,则此时OG的长度为()A 322B332C.32D3332214.如图,△ABC中,∠C=90°,BC=2AC,则cos A=()A .12B .52C .255D .55二、填空题15.如图,在边长为10的菱形ABCD 中,AC 为对角线,∠ABC =60°,M 、N 分别是边BC ,CD 上的点,BM =CN ,连接MN 交AC 于P 点,当MN 最短时,PC 长度为_____.16.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.17.如图ABC 的内接圆于O ,45C ∠=︒,4AB =,则O 的半径为______.18.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OH ⊥AB 于H .若菱形ABCD 的周长为16,∠BAD =60°,则OH =_____.19.如图,“人字梯”放在水平的地面上,AB AC =,当梯子的一边与地面所夹的锐角α为60︒时,两梯角之间的距离BC 的长为2m .周日亮亮帮助妈妈整理换季衣服,先使α为60︒,后又调整α为45︒,则梯子顶端A 离地面的高度下降了___________m .20.如图所示,菱形ABCD 的边长为8,且AE ⊥BC 于E ,AF ⊥CD 于F ,∠B=60°,则菱形的面积为____.21.如图,已知在Rt ABC 中,C 90,AC BC 2∠=︒==,点D 在边BC 上,将ABC 沿直线AD 翻折,使点C 落在点C '处,联结AC ',直线AC '与边CB 的廷长线相交于点F ,如果DAB BAF ∠∠=,那么BF =_________.22.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,BC=23,则AB=_____.23.如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BA C ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠=__________,……按此规律,写出tan n BA C ∠=__________(用含n 的代数式表示).24.如图,正方形ABCD 的边长为22,过点A 作AE ⊥AC,AE=1,连接BE ,则tanE= .25.乐乐同学的身高为166cm ,测得他站立在阳光下的影长为83cm ,紧接着他把手臂竖直举起,测得影长为103cm ,那么乐乐竖直举起的手臂超出头顶的长度约为___________cm .26.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.三、解答题27.如图,AB 为O 的直径,,C D 为O 上两点,且C 为弧BD 的中点,过点C 作AD 的垂线,交AD 的延长线于点E ,交AB 的延长线于点F ,连结AC(1)求证:EF 是O 的切线;(2)当32,sin 5BF F ==时,求AE 的长.28.(1)计算: 2127-2cos 30132-⎛⎫+-- ⎪⎝⎭(2)解方程:2216124x x x --=+- 29.计算:25864sin 453+⨯-︒ 30.如图,在平面直角坐标系中,矩形ABCO 的边6,12AB BC ==,直线32y x m =-+与y 轴交于点P ,与边BC 交于点E ,与边OA 交于点D .(1)已知矩形ABCO 为中心对称图形,对称中心(点F )为对角线AC OB ,的交点,若直线32y x m =-+恰好经过点F ,求点F 的坐标和m 的值﹒ (2)在(1)的条件下,过点P 的一条直线绕点P 顺时针旋转时,与直线BC 和x 轴分别交于点,N M 、试问是否存在ON 平分CNM ∠的情况.若存在,求线段AM 的长,若不存在,说明理由﹒(3)将矩形ABCO 落在(1)条件下的直线32y x m =-+折叠,若点О落在边CB 上,求出该点坐标,若不在边CB 上,请你说明将(1)中的直线32y x m =-+沿y 轴进行怎样的平移,使矩形ABCO 沿平移后的直线折叠,点O 恰好落在边CB 上.【参考答案】一、选择题1.C2.C3.B4.D5.B6.C7.B8.D9.D10.B11.D12.A13.A14.D二、填空题15.【分析】连接AMAN证明△AMB≌△ANC推出△AMN为等边三角形当AM⊥BC时AM 最短即MN最短在Rt△ABM中求出AM的长在Rt△AMP中求出AP的长即可解决问题【详解】解:连接AMAN∵ABC16.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故17.【分析】连接OAOB根据圆周角定理易知:∠AOB=90°即△AOB是等腰直角三角形;已知了斜边AB的长可求出直角边即半径的长【详解】解:如图连接OAOB由圆周角定理知∠AOB=2∠C=90°;∵OA18.【分析】由菱形的性质可得AB=BC=CD=ADBO=DO可证△ABD是等边三角形可得BD=4BO=2解直角三角形即可求解【详解】∵四边形ABCD是菱形∴AB=BC=CD=ADBO=DO∵菱形ABCD19.m【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD的长同理算出进而20.【分析】根据已知条件解直角三角形ABE可求出AE的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD的边长为8∴AB=BC=8∵AE⊥BC于E∠B=60°∴sinB=即∴AE∴菱形的面积故答案21.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC是由△ACD翻折22.4【解析】分析:由CE所在直线垂直平分线段AD可得出CE平分∠ACD进而可得出∠ACE=∠DCE由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB结合∠ACB=90°可求出∠ACE∠A的度23.【分析】作CH⊥BA4于H根据正方形的性质勾股定理以及三角形的面积公式求出CHA4H根据正切的概念求出tan∠BA4C总结规律解答【详解】试题24.【详解】如图延长CA使AF=AE连接BF过B点作BG⊥AC垂足为G∵四边形ABCD是正方形∴∠CAB=45°∴∠BAF=135°∵AE⊥AC∴∠BAE=135°∴∠BAF=∠BAE∵在△BAF和△B25.40【分析】如下图利用∠BCA=∠E可得对应的正切值相等转化为线段比可得BD长【详解】如下图AB为乐乐身高BD是乐乐手臂超出头顶部分AC是乐乐站立在阳光下的影长AE是乐乐举起手臂后的影长根据题意AC26.【分析】连接PMPN根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x则PB=2a -x然后利用锐角三角函数求出PM和P三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】A、连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,过O作OH⊥AC于H,根据三角函数得到OH=32AO≠OB,于是得到C选项错误;D、根据等边三角形的性质和等量代换即可得到D选项正确.【详解】A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确,不符合题意.B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确,不符合题意.C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH3≠OB,∴C 选项错误,符合题意.D 、如C 中的图,∵BE =32EC , ∴CE 23, ∵AB =BC ,BO =BE ,∴AO =CE 23OB , ∴OH 3=OB , ∴AC 是⊙O 的切线,∴D 选项正确.故选:C .【点睛】本题为圆的综合题,掌握切线的判定和性质、平行线的判定和性质以及勾股定理是解答本题的关键.2.C解析:C【分析】根据圆锥的侧面展开图的弧长等于圆锥底面周长,可知2πr =180n l π,求出r 以及圆锥的母线l 和高h 即可解决问题.【详解】解:设圆锥的底面半径为r ,高为h .A 选项,由题意:2πr =1206180π⨯⨯,解得r =2,故错误; B 选项,h 226242-=,所以tanα2442=,故错误; C 选项,圆锥的主视图的面积=12×4×4282 D 选项,表面积=4π+2π×6=16π,故错误.故选:C .本题考查圆锥的有关知识,记住圆锥的侧面展开图的弧长等于圆锥底面周长,即2πr =180n l π,圆锥的表面积=πr 2+πrl 是解决问题的关键,属于中考常考题型. 3.B解析:B【分析】 先利用正弦的定义得到10sin 0.250A ==,然后利用计算器求锐角∠A . 【详解】∵ 10sin 0.250A ==, ∴ 用计算器求值的顺序为20.2ndFsin =,故选:B .【点睛】本题考查了锐角三角函数及计算器的应用,掌握科学计算器的应用是解决本题的关键. 4.D解析:D【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°,∴BD=BC=5,设AC=x m ,则AB=(x +5)m ,在Rt △ABD 中,tan60°=AB BD ,则55x +=解得:5x =,即AC 的长度是()5m ;故选:D .【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 5.B解析:B【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决.解:连接AE 、EF ,如图所示,则AE ∥CD ,∴∠FAE=∠BOD ,∵每个小正方形的边长为1, 则222222112,2425,3332,AE AF EF =+==+==+=∴△FAE 是直角三角形,∠FEA=90°, ∴32310sin ,1025EF FAE AF ∠=== ∴310sin ,10BOD ∠=故选:B .【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键. 6.C解析:C【分析】延长AC 交BF 延长线于D 点,则BD 即为AB 的影长,然后根据物长和影长的比值计算即可.【详解】延长AC 交BF 延长线于D 点,作CE ⊥BD 于E ,则∠CFE=30°,在Rt △CFE 中,∠CFE=30°,CF=4m ,∴CE=2(m ),EF=4cos30°3m ),在Rt △CED 中,∵同一时刻,一根长为2m 、垂直于地面放置的标杆在地面上的影长为4m ,CE=2(m ),则CE :DE=2:4=1:2,AB :BD=1:2,∴DE=4(m ),∴m ),在Rt △ABD 中,AB=12BD=12m ), 故选:C .【点睛】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB 的影长. 7.B解析:B【分析】①根据三角函数的定义判断;②函数值不是简单度数相加;③至少已知一条边能解直角三角形;④根据坡度的性质即可判定④对;⑤只能说∠A=30°;⑥角度数不变,函数值就不变.【详解】①在Rt △ACB 中,设c 为斜边,∠α的对边、邻边分别为a ,b ,那么sinα+cosα=1a b c+>,所以①对; ②不对,函数值是角与边的关系,不是简单度数相加;③不对,只知道角不知道边也不能解直角三角形;④垂直高度与水平距离之比即坡度所以④对;⑤也不对,sinA=1302=︒,是明显错误; ⑥不对,角度数不变,函数值就不变.综上,①④正确,共2个,故选:B .【点睛】 本题主要考查了解直角三角形以及锐角三角函数.学生学这一部分知识时要细心去理解文字所表达的意思.关键是熟练掌握有关定义和性质.8.D解析:D【分析】由题意可以得到∠AOC 的度数,再根据特殊角的锐角三角函数值可以得解.【详解】解:如图,连结BC,则由题意可得OC=OB,CB=OB,∴OC=OB=BC,∴△BOC是等边三角形,∴∠AOC=60°,∴tan∠AOC=tan60°3故选D.【点睛】本题考查尺规作图与三角形的综合应用,由尺规作图的作法得到所作三角形是等边三角形是解题关键.9.D解析:D【分析】根据Rt△ABC中cos35ACABACm︒==,即可得到AC的长.【详解】在Rt△ABC中, AB=m,∠A=35°,cos35ACABACm︒==,∴AC=cos35m⋅︒,故选:D.【点睛】此题考查锐角三角函数的实际应用,正确掌握各三角函数对应边的比值是解题的关键. 10.B解析:B【分析】连接OC,设BC与OA交于点E,根据圆周角定理即可求出∠AOC,然后根据垂径定理可得BC=2CE,利用锐角三角函数求出CE,即可求出结论.【详解】解:连接OC,设BC与OA交于点E∵30ADC ∠=︒∴∠AOC=2∠ADC=60°∵OA BC ⊥∴BC=2CE ,在Rt △OCE 中,CE=OC·sin ∠AOC=532∴BC=53故选B .【点睛】此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键. 11.D解析:D【分析】根据锐角三角函数的定义得出cosα=BC AB进而求出即可. 【详解】解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB =. 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键.12.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==, ∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴2222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())4sin 4542CE PE x x ==-︒=-,∴四边形CEPF 的面积为()22144822x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.13.A解析:A【分析】分别过O 作OH ⊥BC ,过G 作GI ⊥OH ,由O 是中点,根据平行线等分线段定理,可得H为BC 的中点,则可得BH=32,再由三个角都是直角的四边形是矩形,可得GI=BH=32,在等腰直角三角形OGI 中,即可求解.【详解】解:过O 作OH ⊥BC 于H ,过G 作GI ⊥OH 于I ∵∠ABC=90°,∴AB ⊥BC ,∴OH ∥AB ,又O 为中点,∴H 为BC 的中点,∴BH=12BC=32∵GI ⊥OH ,∴四边形BHIG 为矩形,∴GI ∥BH ,GI=BH=32, 又∠F=45°,∴∠OGI=45°,∴在Rt △OGI 中,cos GI OG OGI ==∠故选:A【点睛】本题考查了解直角三角形及平行线等分线段定理,构造合适的辅助线是解题关键. 14.D解析:D【分析】此题根据已知可设AC =x ,则BC =2x ,根据三角函数的定义即可得到结论.【详解】解:∵BC =2AC ,∴设AC =a ,则BC =2a ,∵∠C =90°,∴AB 225AC BC a +=, ∴cosA =555AC AB a==, 故选:D .【点睛】此题考查的知识点是锐角三角函数的定义,勾股定理,关键是熟练掌握锐角三角函数的定义.二、填空题15.【分析】连接AMAN 证明△AMB ≌△ANC 推出△AMN 为等边三角形当AM ⊥BC 时AM 最短即MN 最短在Rt △ABM 中求出AM 的长在Rt △AMP 中求出AP 的长即可解决问题【详解】解:连接AMAN ∵ABC 解析:52【分析】连接AM ,AN ,证明△AMB ≌△ANC ,推出△AMN 为等边三角形,当AM ⊥BC 时,AM 最短,即MN 最短,在Rt △ABM 中求出AM 的长,在Rt △AMP 中求出AP 的长,即可解决问题.【详解】解:连接AM ,AN ,∵ABCD 是菱形,∠ABC=60°,∴△ABC 为等边三角形,∴∠BAC=60°,AB=AC=10,同理可证∠ACN=60°,在△AMB 和△ANC 中,AB AC B ACN BM NC =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△ANC ,∴AM=AN ,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN 为等边三角形,∴MN=AM ,∠MAN=60°,当AM ⊥BC 时,AM 最短,即MN 最短,∵sinB=AM AB , ∴AM=sin60°×10=53.∵∠ABC=60°,∴∠BAM=30°,∴∠MAC=30°,∴∠NAC=30°,∴AP ⊥MN .∵sin ∠AMN=AP AM, ∴AP=sin60°×53=152, ∴CP=10-152=52. 故答案为:52.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,以及锐角三角函数的知识,熟练掌握各知识点是解答本题的关键.16.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.17.【分析】连接OAOB根据圆周角定理易知:∠AOB=90°即△AOB是等腰直角三角形;已知了斜边AB的长可求出直角边即半径的长【详解】解:如图连接OAOB由圆周角定理知∠AOB=2∠C=90°;∵OA解析:2【分析】连接OA、OB,根据圆周角定理,易知:∠AOB=90°,即△AOB是等腰直角三角形;已知了斜边AB的长,可求出直角边即半径的长.【详解】解:如图,连接OA、OB,由圆周角定理知,∠AOB=2∠C=90°;∵OA=OB,∴△AOB是等腰直角三角形;则2sin454222OA AB=⋅=⨯=故答案为:2【点睛】本题主要考查了等腰直角三角形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.【分析】由菱形的性质可得AB=BC=CD=ADBO=DO可证△ABD是等边三角形可得BD=4BO=2解直角三角形即可求解【详解】∵四边形ABCD是菱形∴AB=BC=CD=ADBO=DO∵菱形ABCD3【分析】由菱形的性质可得AB=BC=CD=AD,BO=DO,可证△ABD是等边三角形,可得BD=4,BO=2,解直角三角形即可求解.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD, BO=DO,∵菱形ABCD的周长为16,∴AB=AD=4,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=4,∠ABD=60°,∴BO=DO=2,在Rt△OBH中,∠ABD=60°,BO =2,∴sin60OH︒=,OB∴OH=233=3【点睛】本题考查了菱形的性质,等边三角形的判定和性质,解直角三角形等知识,求出BO的长是解题的关键.19.m【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD的长同理算出进而解析:32m.【分析】根据有一个角是60︒的等腰三角形是等边三角形判断出ABC 是等边三角形,根据等边三角形的三边相等得出BC=AB=AC=2米,在Rt ABD 中根据正弦函数的定义及特殊锐角三角函数值,由AD=AB?sin60︒即可求出AD 的长,同理算出11A D ,进而根据AD-11A D 即可得出答案.【详解】解:如图1,由题意可得:∵∠B=∠C=60︒,AB=AC∴ABC 是等边三角形BC=AB=AC=2米 在Rt ABD 中:23AD 2sin603=︒== 如图2,由题意可得:∵∠B 1=∠C 1=45︒,A 1B 1=A 1C 1=2m在111Rt A B D 中:11222sin4522A D =︒== ∴(1132AD A D -=m . 故答案为:(32m . 【点睛】此题主要考查锐角三角函数定义、等腰三角形的性质、等边三角形的判定和性质、特殊角的三角函数值,正确理解锐角三角函数定义是解题关键. 20.【分析】根据已知条件解直角三角形ABE 可求出AE 的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD 的边长为8∴AB=BC=8∵AE ⊥BC 于E ∠B=60°∴sinB=即∴AE ∴菱形的面积故答案 解析:323【分析】根据已知条件解直角三角形ABE 可求出AE 的长,再由菱形的面积等于底×高计算即可.【详解】∵菱形ABCD 的边长为8,∴AB=BC=8,∵AE ⊥BC 于E ,∠B=60°,∴sinB=AE AB ,即328AE =, ∴AE 43=,∴菱形的面积843323=⨯=,故答案为:323.【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.21.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD 的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC 是由△ACD 翻折解析:232-【分析】首先根据题意画出图形,再根据折叠的性质和DAB BAF ∠∠=,可求出各角的度数,再利用解直角三角形的知识分别求出CD ,DF ,BD 的长度,最后根据线段之间的和差关系即可求出结果.【详解】解:如图所示:∵△ADC’是由△ACD 翻折得到,∴DAC 'DAC ∠∠=,∵DAB BAF ∠∠=,∴DAC 2DAB ∠∠=.∵AC 45B ∠=︒,∴DAB BAF=15∠∠=︒.∴30CAD ∠=︒.在Rt △ACD 中,AC=2∴tan 30CD AC =⋅︒=,cos30AC AD ==︒ . ∵'ADC F DAC ∠=∠+∠∴'30F DAC ∠=∠=︒ .∴3DF AD ==.22BF CD DF BC∴=+-=-=故答案为2.【点睛】本题考查了翻折的性质和解 直角三角形的知识,根据题意画出图形是解题的关键. 22.4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD 进而可得出∠ACE=∠DCE 由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB 结合∠ACB=90°可求出∠ACE ∠A 的度解析:4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD ,进而可得出∠ACE=∠DCE ,由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB ,结合∠ACB=90°可求出∠ACE 、∠A 的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB 的长度. 详解:∵CE 所在直线垂直平分线段AD ,∴CE 平分∠ACD ,∴∠ACE=∠DCE .∵CD 平分∠BCE ,∴∠DCE=∠DCB .∵∠ACB=90°,∴∠ACE=13∠ACB=30°, ∴∠A=60°, ∴AB=602BC sin =︒=4.故答案为4.点睛:本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出∠A=60°是解题的关键.23.【分析】作CH ⊥BA4于H 根据正方形的性质勾股定理以及三角形的面积公式求出CHA4H 根据正切的概念求出tan ∠BA4C 总结规律解答【详解】试题 解析:113, 211n n -+. 【分析】 作CH ⊥BA 4于H ,根据正方形的性质、勾股定理以及三角形的面积公式求出CH 、A 4H ,根据正切的概念求出tan ∠BA 4C ,总结规律解答.【详解】试题 作CH ⊥BA 4于H ,由勾股定理得,BA 42241=17+A 410, △BA 4C 的面积=4-2-32=12, ∴121712, 解得,CH=1717, 则A 4223A C CH -1717, ∴tan ∠BA 4C=4CH A H =113, 1tan 1,BAC ∠= 1=12-1+1, 21tan 3BA C ∠=,3=22-2+1, 31tan 7BA C ∠=,7=32-3+1, ∴tan ∠BA n C=211n n -+. 故答案为: 113, 211n n -+. 【点睛】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.24.【详解】如图延长CA使AF=AE连接BF过B点作BG⊥AC垂足为G∵四边形ABCD是正方形∴∠CAB=45°∴∠BAF=135°∵AE⊥AC∴∠BAE=135°∴∠BAF=∠BAE∵在△BAF和△B解析:2 3【详解】如图,延长CA使AF=AE,连接BF,过B点作BG⊥AC,垂足为G,∵四边形ABCD是正方形,∴∠CAB=45°.∴∠BAF=135°.∵AE⊥AC,∴∠BAE=135°.∴∠BAF=∠BAE.∵在△BAF和△BAE中,BA BA{BAF BAEAE AF∠∠===,∴△BAF≌△BAE(SAS).∴∠E=∠F.∵四边形ABCD是正方形,BG⊥AC,∴G是AC的中点.∴BG=AG=2.在Rt△BGF中,BG2tanFFG3==,即tanE=23.考点:正方形的性质,全等三角形的判定和性质,锐角三角函数的定义,25.40【分析】如下图利用∠BCA=∠E可得对应的正切值相等转化为线段比可得BD长【详解】如下图AB为乐乐身高BD是乐乐手臂超出头顶部分AC是乐乐站立在阳光下的影长AE是乐乐举起手臂后的影长根据题意AC解析:40【分析】如下图,利用∠BCA=∠E,可得对应的正切值相等,转化为线段比可得BD长.【详解】如下图,AB 为乐乐身高,BD 是乐乐手臂超出头顶部分,AC 是乐乐站立在阳光下的影长,AE 是乐乐举起手臂后的影长根据题意,AC=83cm ,AB=166cm ,AE=103cm∵是阳光照射的影长,∴CB ∥ED∴∠BCA=∠E∴tan ∠BCA=tan ∠E ,即:166********BD += 解得:BD=40故答案为:40【点睛】本题考查三角函数的运用,解题关键是将题干抽象成数学模型,然后再利用三角函数的特点求解. 26.【分析】连接PMPN 根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x 则PB=2a -x 然后利用锐角三角函数求出PM 和P 3 【分析】连接PM 、PN ,根据菱形的性质求出∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x ,则PB=2a -x ,然后利用锐角三角函数求出PM 和PN ,然后利用勾股定理求出MN 2与x 的函数关系式,化为顶点式即可求出MN 2的最小值,从而求出结论.【详解】解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30° ∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x ∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠32a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2 ∴MN 的最小值为32a 3. 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.三、解答题27.245【分析】(1)连接OC ,如图,由弧BC=弧CD 得到∠BAC=∠DAC ,加上∠OCA=∠OAC .则∠OCA=∠DAC ,所以OC ∥AE ,从而得到OC ⊥FE ,然后根据切线的判定定理得到结论; (2)设半径OB=OC=3x ,则OF=5x=3x+2,列方程得到OC=3,OD=5,求得AF=8,根据三角函数的定义即可得到结论.【详解】(1)证明:连接OC ,如图,∵点C 为弧BD 的中点,∴弧BC=弧CD .∴∠BAC=∠DAC ,∵OA=OC ,∴∠OCA=∠OAC .∴∠OCA=∠DAC ,∴OC ∥AE ,∵AE ⊥FE ,∴OC ⊥FE .∴FE 是⊙O 的切线;(2)∵3in 5OC s F OF==, ∴设OB=OC=3x ,OF=5x ,∵OF=OB+BF ,BF=2∴5x=3x+2,∴x=1,∴OC=3,OF=5,∴AF=8, ∵3in 58AE AE s F AF ===, ∴245AE =. 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.28.(13+5;(2)原方程无解.【分析】(1)本题涉及绝对值、负整数指数幂、特殊角的三角函数值、开方运算四个知识点,在计算时,需要针对每个知识点根据实数的运算法则进行运算,最后求解即可.(2)观察方程可得最简公分母是:(x +2)(x−2),两边同时乘最简公分母可把分式方程化为整式方程来解答,并进行检验.【详解】解:(1)原式=+-+41, (2)去分母得(x−2)2−(x +2)(x−2)=16, 整理得:-4x =8,解得x =−2,检验:当x =−2时,(x +2)(x−2)=0,则x =−2为原方程的增根,所以原方程无解.【点睛】本题主要考查了实数的综合运算能力及解分式方程的能力.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式等知识点的运算;解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,特别注意分式方程一定要验根. 29.【分析】先代入特殊角三角函数值和进行二次根式的混合运算,再进行合并即可得到结果.【详解】4sin 45︒=42⨯==【点睛】此题考查了二次根式的混合运算以及特殊角三角函数值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式再运算.30.(1)F (6,3),m=12;(2)存在,12+或12-3)不在,需将直线3122y x =-+沿y 轴向下平移94个单位长度. 【分析】(1)由题意得矩形的中心F 坐标为(6,3),代入32y x m =-+,得m=12; (2)分,M N 在y 轴左、右两侧两种情况,证明MON ∆是等边三角形即可得到结论; (3)假设沿直线3122y x =-+将矩形ABCO 折叠,点O 落在边AB 上O′处.连接PO′,OO′.则有PO′=OP ,由(1)得AB 垂直平分OP ,所以PO′=OO′,则△OPO′为等边三角。

2024年人教版九年级数学中考专题训练:锐角三角函数(含解析)

2024年人教版九年级数学中考专题训练:锐角三角函数(含解析)

2024年人教版九年级数学中考专题训练:锐角三角函数1.如图,在数学综合实践活动课上,两名同学要测量小河对岸大树BC 的高度,甲同学在点A 测得大树顶端B 的仰角为45°,乙同学从A 点出发沿斜坡走米到达斜坡上点D ,在此处测得树顶端点B 的仰角为26.7°,且斜坡AF 的坡度为1:2.(1)求乙同学从点A 到点D 的过程中上升的高度;(2)依据他们测量的数据求出大树BC 的高度.(参考数据:sin26.7°≈0.45,cos26.7°≈0.89,tan26.7°≈0.50)2.如图,在中,D 是上一点,,以为直径的经过点C ,交于点E ,过点E 作的切线交于点F.(1)求证:.(2)若,,求的长.3.如图1,在△ABC 中,AD ⊥BC 于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,BC=a ,AD=h .(1)求正方形PQMN 的边长(用a 和h 的代数式表示);ABC BC BD AD =AD O AB O BD EF BC ⊥5CD =2tan 3B =DF(2)如图2,在△ABC 中,在AB 上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC 内,连接BN 并延长交AC 于点N ,画NM BC 于点M ,画NP ⊥NM 交AB 于点P ,再画PQ ⊥BC 于点Q ,得到四边形PQMN ,证明四边形PQMN 是正方形;(3)在(2)中的线段BN 该线上截取NE=NM 连接EQ ,EM (如图3),当∠QEM=90°时,求线段BN 的长(用a ,h 表示)4.如图,在直角坐标系中有,O 为坐标原点,,,将此三角形绕原点O 顺时针旋转,得到,二次函数的图象刚好经过A ,B ,C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线与二次函数图象相交于M ,N 两点.①若,求k 的值;②证明:无论k 为何值,恒为直角三角形.5.如图,四边形ABCD 内接于,的半径为4,,对角线AC 、BD 相交于点P.过点P 分别作于点E ,于点F.(1)求证:四边形为正方形;(2)若,求正方形的边长;(3)设PC 的长为x ,图中阴影部分的面积为y ,求y 与x 之间的函数关系式,并写出y 的最大值.6.如图,已知一次函数的图象经过,两点,且与轴交于点,二次函数的图象经过点,,连接.Rt AOB ()03A ,()10B -,90︒Rt COD 2y ax bx c =++3l y kx k =-+:2PMN S = PMN O O 90ADC AB BC ∠=︒=,PE AD ⊥PF CD ⊥DEPF 2AD CD=DEPF 1y kx m =+()15A --,()04B -,x C 224y ax bx =++A C OA(1)求一次函数和二次函数的解析式.(2)求的正弦值.(3)在点右侧的轴上是否存在一点,使得与相似?若存在,求出点的坐标;若不存在,请说明理由.7.如图1,在四边形ABCD 中,AC 交BD 于点E ,△ADE 为等边三角形.(1)若点E 为BD 的中点,AD =4,CD =5,求△BCE 的面积;(2)如图2,若BC =CD ,点F 为CD 的中点,求证:AB =2AF ;(3)如图3,若AB ∥CD ,∠BAD =90°,点P 为四边形ABCD 内一点,且∠APD =90°,连接BP ,取BP 的中点Q ,连接CQ.当AB =,AD =,tan ∠ABC =2时,求CQ 的最小值.8.如图1,在矩形中,,.P ,Q 分别是,上的动点,且满足,E 是射线上一点,,设,.OAB ∠C x D BCD OAB D ABCD 4AB =30ACB ∠=︒AC CD 35DQ CP =AD AP EP =DQ x =AP y =(1)求y 关于x 的函数表达式.(2)当中有一条边与垂直时,求的长.(3)如图2,当点Q 运动到点C 时,点P 运动到点F.连结,以,为边作.①当所在直线经过点D 时,求的面积;②当点G 在的内部(不含边界)时,直接写出x 的取值范围.9.等边中,是中线,一个以点D 为顶点的30°角绕点D 旋转,使角的两边分别与,的延长线相交于点E ,F .交于点M ,交于点N .(1)如图①,若,求证:.(2)如图②,在绕点D 旋转的过程中:①探究三条线段,,之间的数量关系,并说明理由;②若,,求的长.10. 在平面直角坐标系中,对于和点不与点重合给出如下定义:若边,上分别存在点,点,使得点与点关于直线对称,则称点为的“翻折点”.(1)已知,若点与点重合,点与点重合,直接写出的“翻折点”的坐标;是线段上一动点,当是的“翻折点”时,求长的取值范围;PQE AC DQ FQ FQ PQ PQFG GF PQFG ABC ABC CD AC BC DF AC DE BC CE CF =DE DF =EDF ∠CD CE CF 6CE =2CF =DM xOy OAB (P O )OA OB M N O P MN P OAB ()30A,(0.B ①M A N B OAB P ②AB P OAB AP(2)直线与轴,轴分别交于,两点,若存在以直线为对称轴,且斜边长为的等腰直角三角形,使得该三角形边上任意一点都为的“翻折点”,直接写出的取值范围.11. 如图,在中,边绕点顺时针旋转得到线段,边绕点逆时针旋转得到线段,连接,点是的中点.(1)以点为对称中心,作点关于点的对称点,连接,.依题意补全图形,并证明;求证:;(2)若,且于,直接写出用等式表示的与的数量关系.12.如图1,菱形的边长为,,,分别在边,上,,,点从点出发,沿折线以的速度向点匀速运动不与点 C 重合 ;的外接圆与相交于点,连接交于点设点的运动时间为ts.(1) ;(2)若与相切,判断与的位置关系;求的长;(3)如图3,当点在上运动时,求的最大值,并判断此时与的位置关系; (4)若点在的内部,直接写出的取值范围.13.如图,已知菱形ABCD , E 为对角线AC 上一点.3(0)4y x b b =-+>x y A B AB 2OAB b ABC AB B α(0α180)︒<<︒BD AC C 180α︒-CE DE F DE F C F G BG DG ①AC DG =②DGB ACB ∠=∠α60=︒FH BC ⊥H FH BC ABCD 12cm B 60∠=︒M N AB CD.AM 3cm =DN 4cm =P M MB BC -1cm /s C ()APC O CD E PE AC F.P APE ∠=︒O AD ①O CD ② APCP BC CF PE AC N O t(1)[建立模型]如图1,连结BE,DE.求证:∠EBC=∠EDC.(2)[模型应用]如图2,F是DE延长线上一点,∠EBF=∠ABC,EF交AB于点G.①判断△FBG的形状,并说明理由.②若G为AB的中点,且AB=4,∠ABC=60°,求AF的长.(3)[模型迁移]F是DE延长线上一点,∠EBF=∠ABC,EF交射线AB于点G,且sin∠BAC=,BF//AC.求的值. 14.小明家住在某小区一楼,购房时开发商赠送了一个露天活动场所,现小明在活动场所正对的墙上安装了一个遮阳棚,经测量,安装遮阳棚的那面墙高,安装的遮阳棚展开后可以使正午时刻房前能有宽的阴影处以供纳凉.已知正午时刻太阳光与水平地面的夹角为,安装好的遮阳篷与水平面的夹角为,如下右图为侧面示意图.(参考数据:,,,,,)(1)据研究,当一个人从遮阳棚进出时,如果遮阳棚外端(即图中点C)到地面的距离小于时,则人进出时总会觉得没有安全感,就会不自觉的低下头或者用手护着头,请你通过计算,判断此遮阳棚是否使得人进出时具有安全感?(2)请计算此遮阳棚延展后的长度(即的长度).(结果精确到)15.数学兴趣小组在探究圆中图形的性质时,用到了半径是6的若干圆形纸片.45ABBG BC AB3m2m()AD63.4︒BC10︒100.17sin︒≈100.98cos︒≈100.18tan︒≈63.40.89sin︒≈63.40.45cos︒≈63.4 2.00tan︒≈2.3mBC0.1m(1)如图1,一张圆形纸片,圆心为O ,圆上有一点A ,折叠圆形纸片使得A 点落在圆心O 上,折痕交于B 、C 两点,求的度数.(2)把一张圆形纸片对折再对折后得到如图扇形,点M 是弧上一动点.①如图2,当点M 是弧中点时,在线段、上各找一点E 、F ,使得是等边三角形.试用尺规作出,不证明,但简要说明作法,保留作图痕迹.②在①的条件下,取的内心N ,则 .③如图3,当M 在弧上三等分点S 、T 之间(包括S 、T 两点)运动时,经过兴趣小组探究都可以作出一个是等边三角形,取的内心N ,请问的长度是否变化.如变化,请说明理由;如不变,请求出的长度.16.已知二次函数的图像与轴交于点,且经过点和点.(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为.①求的最大值;②若中有一个内角是的两倍,求点的横坐标.17.如图1,在平面直角坐标系中,Rt △OAB 的直角边OA 在y 轴的正半轴上,且OA =6,斜边OB =10,点P 为线段AB 上一动点.O BAC ∠PQ PQ OP OQ EFM EFM EFM ON =PQ EFM EFM ONON )2y x bx c =++yA (4B(C -b c BC y DE )2y x bx c =++AB E AB F EF AEF ABC ∠E(1)请直接写出点B 的坐标;(2)若动点P 满足∠POB =45°,求此时点P 的坐标;(3)如图2,若点E 为线段OB 的中点,连接PE ,以PE 为折痕,在平面内将△APE 折叠,点A 的对应点为A′,当PA′⊥OB 时,求此时点P 的坐标;18.如图,在菱形中,对角线相交于点O ,,.动点P 从点A 出发,沿方向匀速运动,速度为;同时,动点Q 从点A 出发,沿方向匀速运动,速度为.以为邻边的平行四边形的边与交于点E .设运动时间为,解答下列问题:(1)当点M 在上时,求t 的值;(2)连接.设的面积为,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在的平分线上?若存在,求出t 的值;若不存在,请说明理由.19.在矩形中,点E 为射线上一动点,连接.ABCD AC BD ,10cm AB=BD =AB 1cm /s AD 2cm /s AP AQ ,APMQ PM AC ()()s 05t t <≤BD BE PEB ()2cm S PEC ∠ABCD BC AE(1)当点E 在边上时,将沿翻折,使点B 恰好落在对角线上点F 处,交于点G .①如图1,若,求的度数;②如图2,当,且时,求的长.(2)在②所得矩形中,将矩形沿进行翻折,点C 的对应点为C ′,当点E ,C ′,D 三点共线时,求的长.20.如图,在矩形ABCD 中,AB=2,BC=4,点E 在直线AB 上,连结DE ,过点A 作AF ⊥DE 交直线BC 于点F ,以AE 、AF 为邻边作平行四边形AEGF.直线DG 交直线AB 于点H.(1)当点E 在线段AB 上时,求证:△ABF ∽△DAE.(2)当AE=2时,求EH 的长.(3)在点E 的运动过程中,是否存在某一位置,使得△EGH 为等腰三角形.若存在,求AE 的长.21.如图1,等边三角形纸片中,,点D 在边上(不与点B 、C 重合),,点E 在边上,将沿折叠得到(其中点C ′是点C 的对应点).BC ABE AE BD AEBD BC =AFD ∠=4AB EF EC =BC ABCD ABCD AE BE ABC 12AB =BC 4CD =AC CDE DE 'C DE(1)当点C ′落在上时,依题意补全图2,并指出C ′D 与的位置关系;(2)如图3,当点C ′落到的平分线上时,判断四边形CDC ′E 的形状并说明理由;(3)当点C ′到的距离最小时,求的长;(4)当A ,C ′,D 三点共线时,直接写出∠AEC ′的余弦值.22.如图,四边形是菱形,其中,点E 在对角线上,点F 在射线上运动,连接,作,交直线于点G.(1)在线段上取一点T ,使,①求证:;②求证:;(2)图中,.①点F 在线段上,求周长的最大值和最小值;②记点F 关于直线的轴对称点为点N.若点N 落在的内部(不含边界),求的取值范围.AC AB ACB ∠AB CE ABCD 60ABC ∠=︒AC CB EF 60FEG ∠=︒DC BC CE CT =FET GEC ∠=∠FT CG =7AB =1AE =BC EFG AB EDC ∠CF答案解析部分1.【答案】(1)解:作DH ⊥AE 于H ,如图所示:在Rt △ADH中,∵,∴AH =2DH ,∵AH 2+DH2=AD 2,∴(2DH )2+DH 2=()2,∴DH =6(米).答:乙同学从点A 到点D 的过程中,他上升的高度为6米;(2)解:如图所示:过点D 作DG ⊥BC 于点G ,设BC =x 米,在Rt △ABC 中,∠BAC =45°,∴AC =BC =x ,由(1)得AH =2DH =12,在矩形DGCH 中,DH =CG =6,DG =CH =AH+AC =x+12,在Rt △BDG 中,BG =BC-CG =BC-DH =x-6,∵tan ∠BDG =,∴,解得:x≈24,12DH AH =BG DG626.70.512x tan x -=︒≈+答:大树的高度约为24米.【解析】【分析】(1)作DH ⊥AE 于H ,利用勾股定理可得AH 2+DH 2=AD 2,再结合AH =2DH ,可得(2DH )2+DH 2=(2,最后求出DH=6即可;(2)过点D 作DG ⊥BC 于点G ,设BC =x 米,则DH =CG =6,DG =CH =AH+AC =x+12,BG =BC-CG =BC-DH =x-6,再结合tan ∠BDG =, 可得,最后求出x 的值即可。

2023年中考数学高频考点训练——锐角三角函数(有答案)

2023年中考数学高频考点训练——锐角三角函数(有答案)

2023年中考数学高频考点训练——锐角三角函数一、综合题1.如图, AB 是O 的直径,点C 、G 为圆上的两点,当点C 是弧 BG 的中点时, CD 垂直直线AG ,垂足为D ,直线 DC 与 AB 的延长线相交于点P ,弦 CE 平分 ACB ∠ ,交 AB 于点F ,连接BE .(1)求证: DC 与 O 相切;(2)求证: PC PF = ; (3)若 1tan 3E =, 5BE =,求线段 PF 的长. 2.如图,AB 是⊙O 的直径,AC 交⊙O 于点D ,点E 时弧AD 的中点,BE 交AC 于点F ,BC =FC.(1)求证:BC 是⊙O 的切线; (2)若BF =3EF ,求tan⊙ACE 的值.3.如图,ABC 内接于,O D 是O 的直径 AB 的延长线上一点, DCB OAC ∠=∠ .过圆心 O作 BC 的平行线交 DC 的延长线于点 E .(1)求证: CD 是 O 的切线;(2)若 4,6CD CE == ,求O 的半径及 tan OCB ∠ 的值;4.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点D 是AC 的中点,连接OD ,交AC 于点E ,作BFCD ,交DO 的延长线于点F.(1)求证:四边形BCDF 是平行四边形. (2)若AC=8,连接BD ,tan⊙DBF=34,求直径AB 的长及四边形ABCD 的周长. 5.如图,已知 AB 是O 的直径,弦 CD AB ⊥ 于点 E , 42AC =, 2BC = .(1)求 sin ABC ∠ ; (2)求CD 的长.6.如图,点 O 在 ABC ∆ 的 BC 边上,O 经过点 A 、 C ,且与 BC 相交于点 D .点 E 是下半圆弧的中点,连接 AE 交 BC 于点 F ,已知 AB BF = .(1)求证: AB 是O 的切线;(2)若 3OC = , 1OF = ,求 cos B 的值.7.如图,在Rt ΔABC 中,9068C AC BC ∠=︒==,,,AD平分ABC 的外角BAM ∠,AD BD ⊥于点D ,过D 点作DE 平行BC 交AM 于点E.点P 在线段AB 上,点Q 在直线AC 上,且22CQ BP t ==,连接PQ ,作P 点关于直线DE 的对称点P ',连接PP P Q '',.(1)当P 在AB 中点时,t = ;连接DP ,则此时DP 与EC 位置关系为 (2)①求线段AD 的长:②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上,求点A 到对应点A '的距离;(3)如图,当PP Q '的一边与ABD 的AD 或BD 边平行时,求所有满足条件的t 的值.8.如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3过点A(﹣3,0),B(1,0),与y 轴交于点C ,顶点为点D ,连接AC ,BC.(1)求抛物线的解析式;(2)在直线CD 上是否存在点P ,使⊙PBC =⊙BCO ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点M 为抛物线对称轴l 上一点,点N 为抛物线上一点,当直线AC 垂直平分线段MN 时,请直接写出点M 和点N 的坐标.9.如图,点F 是正方形ABCD 边AB 上一点,过F 作FG⊙BC ,交CD 于G ,连接FC ,H 是FC 的中点,过H 作EH⊙FC 交BD 于点E .(1)连接EF ,EA ,求证:EF =AE .(2)若BFk BA= , ①若CD =2, 13k = ,求HE 的长;②连接CE ,求tan⊙DCE 的值.(用含k 的代数式表示)10.如图,在 Rt ABC 中, 90,6,8ACB BC AC ∠=︒== ,D 是边AB 的中点,动点P 在线段BA 上且不与点A ,B ,D 重合,以PD 为边构造 Rt PDQ ,使 PDQ A ∠=∠ , 90DPQ ∠=︒ ,且点Q 与点C 在直线AB 同侧,设 BP x = ,PDQ 与 ABC 重叠部分图形的面积为S .(1)当点Q 在边BC 上时,求BP 的长; (2)当 7x ≤ 时,求S 关于x 的函数关系式.11.如图,在⊙ABC中,⊙ABC =90°,过点B 作BD⊙AC 于点D .(1)尺规作图,作边BC 的垂直平分线,交边AC 于点E . (2)若AD :BD =3:4,求sinC 的值.(3)已知BC =10,BD =6.若点P 为平面内任意一动点,且保持⊙BPC =90°,求线段AP 的最大值.12.【学习概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.(1)【理解运用】如图1,对余四边形中,AB = 5,BC = 6,CD = 4,连接AC ,若AC = AB ,则cos⊙ABC= , sin⊙CAD= .(2)如图2,凸四边形中,AD = BD ,AD⊙BD ,当2CD 2 + CB 2 = CA 2时,判断四边形ABCD 是否为对余四边形,证明你的结论.(3)【拓展提升】在平面直角坐标中,A (-1,0),B (3,0),C (1,2),四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于⊙ABC 内部,⊙AEC = 90° + ⊙ABC.设AEBE= u ,点D 的纵坐标为t ,请在下方横线上直接写出u 与t 的函数表达,并注明t 的取值范围 .13.如图,在梯形ABCD 中,AD⊙BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF=5.AE 的延长线交边BC 于点G ,AF 交BD 于点N 、其延长线交BC 的延长线于点H .(1)求证:BG =CH ;(2)设AD =x ,⊙ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)联结FG ,当⊙HFG 与⊙ADN 相似时,求AD 的长.14.(1)【问题提出】如图1,在四边形ABCD 中,60A ∠=︒,90ABC ADC ∠=∠=︒,点E 为AB 延长线上一点,连接EC 并延长,交AD 的延长线于点F ,则BCE DCF ∠+∠的度数为 °;(2)【问题探究】如图2,在Rt⊙ABC 中,90ABC ∠=︒,点D 、E 在直线BC 上,连接AD 、AE ,若60DAE ∠=︒,6AB =,求⊙ADE 面积的最小值;(3)【问题解决】近日,教育部印发了《义务教育课程方案和课程标准(2022年版)》,此次修订中增加的跨学科主题学习活动,突破学科边界,鼓励教师开展跨学科教研,设计出主题鲜明、问题真实的跨学科学习活动.为此,某校欲将校园内一片三角形空地ABC (如图3所示)进行扩建后作为跨学科主题学习活动中心,在AB 的延长线上取一点D ,连接DC 并延长到点E ,连接AE ,已知AE BC ,40AB BC ==米,90ABC ∠=︒,为节约修建成本,需使修建后⊙ADE 的面积尽可能小,问⊙ADE 的面积是否存在最小值?若存在,求出其最小面积;若不存在,请说明理由.15.抛物线y =﹣x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,且B (﹣1,0),C (0,3).(1)求抛物线的解析式;(2) 如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,且DD'=2CD ,点M 是平移后所得抛物线上位于D'左侧的一点,连结CN.当5D'N+CN 的值最小时16.在 Rt ABC 中, 90ACB ∠=︒ , 3AC = , 4BC = .将 Rt ABC 绕点B 顺时针旋转()060αα︒<<︒ 得到 Rt DEB ,直线DE , AC 交于点P.(1)如图1,当 BD BC ⊥ 时,连接BP. ①求BDP 的面积;②求 tan CBP ∠ 的值;(2)如图2,连接AD ,若F 为AD 中点,求证;C ,E ,F 三点共线.17.如图,抛物线与x 轴交于A (5,0),B ( 1- ,0),与y 轴的正半轴交于点C ,连接BC ,AC ,已知2sin 2BAC ∠=.(1)求抛物线的解析式;(2)直线 y kx = ( 0k > )交线段AC 于点M ,当以A 、O 、M 为顶点的三角形与⊙ABC 相似时,求k 的值,并求出此时点M 的坐标;(3)P 为第一象限内抛物线上一点,连接BP 交AC 于点Q ,请判断: PQQB是否有最大值,如有请求出这个最大值,如没有请说明理由.18.如图1,已知 Rt ABC ∆ 中, 90ACB ∠= , 2AC = , 23BC = ,它在平面直角坐标系中位置如图所示,点 ,A C 在 x 轴的负半轴上(点 C 在点 A 的右侧),顶点 B 在第二象限,将 ABC ∆ 沿AB 所在的直线翻折,点 C 落在点 D 位置(1)若点 C 坐标为 ()1,0- 时,求点 D 的坐标;(2)若点 B 和点 D 在同一个反比例函数的图象上,求点 C 坐标;(3)如图2,将四边形 BCAD 向左平移,平移后的四边形记作四边形 1111B C A D ,过点 1D 的反比例函数 (0)ky k x=≠ 的图象与 CB 的延长线交于点 E ,则在平移过程中,是否存在这样的 k ,使得以点 1,,E B D 为顶点的三角形是直角三角形且点 11,,D BE 在同一条直线上?若存在,求出 k 的值;若不存在,请说明理由答案解析部分1.【答案】(1)证明:CD AD ⊥,90D ∴∠=︒ ,∴⊙DAC+⊙DCA=90°, 点c 是弧 BG 的中点, ∴CG BC =DAC BAC ∴∠=∠ , OA OC = , OCA BAC ∴∠=∠ , OCA DAC ∴∠=∠ , //AD OC ∴ ,∴⊙D=⊙OCP=90°,OC 是圆O 的半径, DC ∴ 与O 相切,(2)证明:AB 是O 的直径,90ACB ∴∠=︒ ,90PCB ACD ∴∠+∠=︒ ,由(1)得: 90DAC DCA ∠+∠=︒ ,PCB DAC ∴∠=∠ , DAC BAC ∠=∠ , PCB BAC ∴∠=∠ , CE 平分 ACB ∠ , ACF BCF ∴∠=∠ ,∵⊙PFC=⊙BAC+⊙ACF ,⊙PCF=⊙PCB+⊙BCF ,PFC PCF ∴∠=∠ , PC PF ∴= ;(3)解:连接 AE ,CE 平分 ACB ∠ ,∴ AE BE = ,AE BE ∴= , AB 是O 的直径,90AEB ∴∠=︒ ,AEB ∴∆ 为等腰直角三角形,∵AB=210BE = ,∴OB=OC= 10∵1tan 3E =∴1tan 3BC CAB AC ∠== , ∵⊙PCB=⊙BAC ,⊙P=⊙P , ∴⊙PCB⊙⊙PAC , ∴13BC PB AC PC == , ∴ 设 PB x = , 3PC x = ,在 Rt OCP ∆ 中, 222OC PC OP += , ∴2221010(3))22x x +=+ , ∴10x =或x=0(舍去), ∴PC=310,∴PF=310.2.【答案】(1)证明:连接AE ,如图,∵AB 是⊙O 的直径, ∴⊙AEB =90°.∴⊙EAF+⊙AFE =⊙EAB+⊙ABE =90°. ∵点E 是弧AD 的中点, ∴AE DE = . ∴⊙EAD =⊙ABE. ∴⊙AFE+⊙ABE =90°. ∵⊙AFE =⊙BFC ,∴⊙ABE+⊙CFB =90°. ∵BC =FC , ∴⊙CFB =⊙CBF. ∴⊙CBF+⊙ABE =90°. ∴⊙ABC =90°, ∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线. (2)解:连接OE ,BD ,∵点E 是弧AD 的中点,∴OH⊙AD ,AH =HD = 12AD . ∵AB 是⊙O 的直径, ∴BD⊙AD.∴BD⊙OE. ∴EH EFBD BF = . ∵BF =3EF ,∴13EH BD = . 设EH =2a ,则BD =6a. ∵OE⊙BD ,OA =OB , ∴OF =12BD =3a. ∴OA =OE =OH+HE =5a. ∴AB =2OA =10a. ∴AD =228AB BD a -= .∴HD =12AD =4a. ∵⊙ABC =90°,BD⊙AC , ∴⊙ABD⊙⊙BCD. ∴AD BDBD CD= . ∴CD = 292BD a AD = .∴CH =HD+CD =172a . 在Rt⊙EHC 中,tan⊙ACE = 2417172EH a CH a ==.3.【答案】(1)证明:如图,,OA OC =OAC OCA ∴∠=∠ ,DCB OAC ∠=∠ , OCA DCB ∴∠=∠ ,AB 是O 的直径,90ACB ∴∠=︒ ,90OCA OCB ∴∠+∠=︒ ,90DCB OCB ∴∠+∠=︒ ,即 90OCD ∠=︒ , OC DC ∴⊥ ,又OC 是 O 的半径,CD ∴ 是O 的切线.(2)解:,BC OEBD CD OB CE ∴= ,即 4263BD OB == , ∴设 2BD x = ,则 3,5OB OC x OD OB BD x ===+= ,,OC DC ⊥222OC CD OD ∴+=222(3)4(5)x x ∴+= ,解得, 1x = ,33OC x ∴== .即O 的半径为3,,BC OEOCB EOC ∴∠=∠ ,在 Rt OCE 中, 6tan 23EC EOC OC ∠=== , tan tan 2OCB EOC ∴∠=∠=4.【答案】(1)证明:∵AB 是⊙O 的直径,∴⊙C=90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD=DC , ∴CA⊙DF ,AE=EC , ∴⊙AEO=90°,∴BC DF , ∵BF CD ,∴四边形BCDE 是平行四边形; (2)∵BC DF , ∴⊙DBF=⊙CDB ,又∵根据圆周角定理有⊙CDB=⊙BAC , ∴⊙DBF=⊙BAC , 即tan⊙BAC=34, ∵AC=8, ∴CB=6,则在Rt⊙ACB 中,利用勾股定理可得AB=10,即AO=5=OD , ∵AE=EC=12AC , ∴AE=EC=4,在Rt⊙AEO 中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt⊙AED 中,利用勾股定理,得55 ∴四边形ABCD 的周长5555.【答案】(1)解:∵AB 是O 的直径, 42AC =, 2BC = ,∴90ACB ∠=︒ , 22236AB AC BC =+= , ∴6AB = , 2sin 3ABC ∠=(2)解:∵CD AB ⊥ ,∴CE DE = , 由三角形的面积公式得:1122AC BC AB CE ⨯⨯=⨯⨯ , ∴423CE =, ∴822CD CE ==. 6.【答案】(1)证明:连接 OA 、 OE ,∵点 E 是下半圆弧的中点, OE 过 O , ∴OE DC ⊥ , ∴90FOE ∠=︒ , ∴90E OFE ∠+∠=︒ , ∵OA OE = , AB BF = ,∴BAF BFA ∠=∠ , E OAE ∠=∠ , ∵AFB OFE ∠=∠ , ∴90OAE BAF ∠+∠=︒ , 即 OA AB ⊥ , ∵OA 为半径, ∴AB 是O 的切线(2)解:设 AB x = ,则 BF x = , 1OB x =+ , ∵3OA OC == ,由勾股定理得: 222OB AB OA =+ , ∴()22213x x +=+ , 解得: 4x = ,∴4cos 5AB B OB == 7.【答案】(1)5;平行(2)解:①P 在AB 中点时,连接DP 并延长交BC 于点F ,由(1):DP CE ,∴1BF BPFC AP==, ∴142BF FC BC ===,∴132PF AC ==,11822DF DP PF AB AC =+=+=,∵90DEA BCE PDE ∠=∠=∠=︒, ∴四边形DECF 是矩形, ∴84CE DF DE CF ====,, ∴2AE CE AC =-=, ∴22222425AD AE DE =+=+=②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上, ∴AA '与DD '垂直平分,两条线段的交点O 即为旋转中心,如图所示:则:OD AB ⊥,∵902510ADB AD AB ∠=︒==,,, ∴()2222102545BD AB AD =-=-=∵1122ABD S AD BD AB DO ∆=⋅=⋅, ∴254510DO =, ∴4OD =, ∴222AO AD OD =-=,∴24AA OA '==;(3)解:当P Q AD '时;如图:延长P P '交BC 于点G ,过点P P ',分别作PH AC P T CQ '⊥⊥,,垂足为:H T ,,则:四边形CGP T '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PG BP sin ABC t BG BP cos ABC t =⋅∠==⋅∠=,,∴34855CH PG t P T CG BC BG t ====-=-',,∴385HE CE CH t =-=-,∵P ,P '关于直线DE 对称 ∴385ET EH t ==-,∴3138821655t QT CT CQ CE ET CQ t t =-=+-=+--=-,∵P Q AD ', ∴P QT DAE ∠=∠',∴2DEtan P QT tan DAE AE∠='∠==, ∴2P T TQ '=,即:413821655t t ⎛⎫-=- ⎪⎝⎭, 解得:6011t =; 当PQ BD 时,延长BD 交CQ 于点K ,∵PQ BD ,∴APQ ABD AQP AKB ∠=∠∠=∠,,∵90ADB ADK DAB KAD ∠=∠=︒∠=∠,(角平分线), ∴ABD AKB ∠=∠, ∴APQ AQP ∠=∠, ∴AP AQ =,∵1026AP AB BP t AQ CQ AC t =-=-=-=-,, ∴1026t t -=-, 解得:163t =; 当P Q BD '时,如图:延长P P '交BC 于点G ,过点P P ',分别作PO AC P R CQ '⊥⊥,,垂足为:OR,,延长BD ,交CM 于点S ,则:四边形CNP R '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PN BP sin ABC t BN BP cos ABC t =⋅∠==⋅∠=,,∴34855CO PN t P R CN BC BN t ====-=-',,∴385OE CE CO t =-=-,∵P ,P '关于直线DE 对称 ∴385ER OE t ==-,∴3132881655t QR CQ CR CQ CE ER t t =-=-+=--+=-; ∵AD BD ⊥,90AED ∠=︒,∴90ADE EDS ADE DAE ∠+∠=∠+∠=︒ ∴EDS DAE ∠=∠, ∵P Q BD ',∴QP R EDS DAE ∠=∠=∠', ∴2DEtan QP R tan DAE AE∠='∠==, ∴2QR P R =', 即:413281655t t ⎛⎫-=- ⎪⎝⎭,解得:8011t =; 综上:当PP Q '的一边与ABD 的AD 或BD 边平行时,6011t =或163t =或8011t =. 8.【答案】(1)解:根据二次函数交点式为 ()()()120y a x x x x a =--≠ ,抛物线过A(﹣3,0),B(1,0)两点,∴设 ()()2331y ax bx a x x =+-=+- ,∵x=0时,y =ax 2+bx ﹣3=-3,∴将 ()0,3- 代入 ()()31y a x x =+- ∴﹣3a =﹣3, ∴a =1,故抛物线的表达式为:y =x 2+2x ﹣3.(2)解:由抛物线的表达式知,点C 、D 的坐标分别为(0,﹣3)、(﹣1,﹣4), 由点C 、D 的坐标知,直线CD 的表达式为:y =x ﹣3①,1tan 3BCO ∠= ,则 cos 10BCO ∠= ,当点P (P′)在点C 的右侧时,如图所示:∵⊙P'BC =⊙BCO ,故P′B⊙y 轴,则点P′(1,﹣2), 当点P 在点C 的左侧时,设直线PB 交y 轴于点H ,过点H 作HN⊙BC 于点N , ∵⊙P'BC =⊙BCO , ∴⊙BCH 为等腰三角形,则 222cos 23110BC CH BCO CH =⋅∠=⨯=+, 解得: 53CH =,则 433OH CH =-= ,故点 4(0,)3H = , 由点B 、H 的坐标得,直线BH的表达式为: 4433y x =-②,联立①②并解得:58xy=-⎧⎨=-⎩,故点P的坐标为(﹣5,﹣8),综上所述,满足条件的点P坐标为(1,﹣2)或(﹣5,﹣8).(3)M(﹣1,2﹣2),N(﹣1﹣2,﹣2)或M'(﹣1,﹣2﹣2),N'(﹣1+ 2,﹣2) 9.【答案】(1)证明:如图,连接EF,EA,EC,∵ EH⊙FC,H是FC的中点,∴EF=EC,∵AD=CD,⊙ADE=⊙CDE=45°,DE=DE,∴⊙ADE⊙⊙CDE,∴AE=EC,∴EF=AE;(2)解:如图,①∵CD=2,13 BFBA=,∴BF=23,AF=43,∴FC=22210 3BC BF+=,过点E作EM⊙AB于点M,∵EF=AE,∴EM垂直平分FA,∴FM=AM=23,∴BM=ME=43,∴2253FM ME+=,∵H是FC的中点,∴10,∴2210EF FH-=②设AB=2a,∵BFkBA=,∴BF=2ak,∴FM=MA=a-ka,BM=a+ak=ME,∵⊙ADE⊙⊙CDE,∴⊙DCE=⊙DAE=⊙FEM,∴tan⊙DCE=tan⊙FEM=11FM kME k-=+. 10.【答案】(1)解:在Rt ABC中,90,6,8 ACB BC AC∠=︒==,22226810 AB AC BC∴+=+=.4tan3ACBBC==,3tan4BCAAC==, ∵D是边AB的中点,∴5BD=如图,当点Q落在BC上时,BP x = ,4tan 3PQ BP B x ==, ∵PDQ A ∠=∠ , 90DPQ ∠=︒ ,16tan 9QP PD x A == , 5BD PD BP =+= ,1659xx += , 解得, 95x = ,95BP ∴= ;(2)解:如图,当 905x < 时,设PQ 、DQ 与BC 交于点M 、N ,∵D 是边AB 的中点,∴5BD = , 4ND = , 3BN = ,4tan 3PM BP B x == , 211423462233BNDPBMS SSx x x =-=⨯⨯-⨯=- ; 当955x << 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 当 57x <≤ 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 故 PDQ 与 ABC 重叠部分图形的面积关系式为: 2222960353157595848531575(57)848x x S x x x x x x ⎧⎛⎫-< ⎪⎪⎝⎭⎪⎪⎛⎫=-+<<⎨ ⎪⎝⎭⎪⎪-+<⎪⎩ . 11.【答案】(1)解:作图如下:(2)解:∵⊙ABC=⊙BDC=90°, ∴⊙ABD +⊙CBD=90°,⊙CBD +⊙C=90°,∴⊙ABD=⊙C ,在Rt⊙ABD 中,AD :BD =3:4, ∴AB⊙AD=3⊙5,∴sinC=sin⊙ABD=35AD AB =. (3)解:如图,点P 在BC 为直径的圆上,O 为圆心,当A 、P 、O 三点共线时,AP 最大,∵BC =10,BD =6,∴CD=8,∵⊙ABD⊙⊙BCD ,∴2BD AD CD =⋅,26=8AD ,解得9=2AD , 在Rt⊙ABD 中,AB=152,∵BC=10, ∴BO=OP=5, 在Rt⊙ABO 中,22513AO AB OB =+=, ∴AP=AO +513, 故答案为:5132.. 12.【答案】(1)35;1225(2)解:如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM⊙DC ,使得DM =DC ,连接CM. ∵四边形ABCD 中,AD =BD ,AD⊙BD ,∴⊙DAB =⊙DBA =45°, ∵⊙DCM =⊙DMC =45°, ∴⊙CDM =⊙ADB =90°, ∴⊙ADC =⊙BDM , ∵AD =DB ,CD =DM , ∴⊙ADC⊙⊙BDM (SAS ), ∴AC =BM ,∵2CD 2+CB 2=CA 2,CM 2=DM 2+CD 2=2CD 2,∴CM 2+CB 2=BM 2, ∴⊙BCM =90°,∴⊙DCB =45°, ∴⊙DAB+⊙DCB =90°, ∴四边形ABCD 是对余四边形. (3)4)2tu t =<< 13.【答案】(1)解:∵AD⊙BC ,∴AD DE BG EB = , AD DFCH FC= . ∵DB =DC =15,DE =DF =5,∴12DE DF EB FC == , ∴AD ADBG CH= . ∴BG =CH .(2)解:过点D 作DP⊙BC ,过点N 作NQ⊙AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP =CP =9,DP =12.∵12AD DE BG EB == , ∴BG =CH =2x , ∴BH =18+2x . ∵AD⊙BC ,∴AD DNBH NB = , ∴182x DNx NB=+ , ∴18215xDN DNx x NB DN ==+++ ,∴56xDNx=+.∵AD⊙BC,∴⊙ADN=⊙DBC,∴sin⊙ADN=sin⊙DBC,∴NQ PD DN BD=,∴46xNQx=+.∴211422266x xy AD NQ xx x=⋅=⋅=++(0<x≤9).(3)解:∵AD⊙BC,∴⊙DAN=⊙FHG.(i)当⊙ADN=⊙FGH时,∵⊙ADN=⊙DBC,∴⊙DBC=⊙FGH,∴BD⊙FG,∴BG DF BC DC=,∴5 1815 BG=,∴BG=6,∴AD=3.(ii)当⊙ADN=⊙GFH时,∵⊙ADN=⊙DBC=⊙DCB,又∵⊙AND=⊙FGH,∴⊙ADN⊙⊙FCG.∴AD FC DN CG=,∴5(182)106xx xx⋅-=⨯+,整理得x2﹣3x﹣29=0,解得3552x+=,或3552x-=(舍去).综上所述,当⊙HFG与⊙ADN相似时,AD的长为3或3552x+=.14.【答案】(1)60(2)解:S⊙ADE=12DE·AB=3DE,∴当DE取最小值时,⊙ADE面积取最小值.作⊙ADE的外接圆,圆心为O,连接OD、OE、OA,过O作OH⊙DE于H,则⊙DOE=2⊙DAE=120°,由OD=OE知,⊙ODH=30°,∴OD=2OH,∵OA+OH≥AB,∴OA+12OA≥6,即OA≥4,OH≥2,由垂径定理得:3OH≥3此时,A、O、H共线,AD=AE,∴⊙ADE面积的最小值为:3×433(3)解:过C作CH⊙AE于H,如图所示,设BD=x,EF=y,∵⊙ABC=90°,AE⊙BC,∴四边形ABCF 为矩形, ∵AB=BC=40∴四边形ABCF 为正方形, 由tan⊙E=tan⊙BCD 知,CF BDEF BC=, 即4040x y =, ∴y=1600x, 即xy=1600, ∵22220x x y y x y-+=≥,∴2x y xy +≥,当x=y 时取等号,即x+y 的最小值为80,又⊙ADE 的面积=正方形ABCF 面积+三角形BCD 面积+三角形CEF 面积, 即⊙ADE 的面积=1600+20(x+y )≥1600+20×80=3200, 综上所述,⊙ADE 的面积的最小值为3200 m 2.15.【答案】(1)解:∵y =﹣x 2+bx+c 经过B (﹣1,6),3),∴340c b c =⎧⎨-++=⎩ , 解得 25b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+7(2)解:如图1中,过点B 作BT⊙y 轴交AC 于T.设P(m ,﹣m 2+2m+3),对于抛物线y =﹣x 2+5x+3,令y =0,∴A(2,0), ∵C(0,8),∴直线AC 的解析式为y =﹣x+3, ∵B(﹣1,2), ∴T(﹣1,4), ∴BT =3, ∵PQ⊙OC , ∴Q(m ,﹣m+3),∴PQ =﹣m 2+2m+3﹣(﹣m+3)=﹣m 3+3m , ∵PQ⊙BT , ∴PQ BT = PE BC = 15, ∴﹣m 2+3m =4,解得m =1或2,∴P(4,4)或2.(3)解:如图8中,连接AD ,过点C 作CT⊙AD 于T.∵抛物线y=﹣x2+2x+6=﹣(x﹣1)2+3,∴顶点D(1,4),∵C(8,3),∴直线CD的解析式为y=x+3,CD=7,∵DD′=2CD,∵DD′=2 4,CD′=3 2,∴D′(4,6),∵A(3,2),∴AD′⊙x轴,∴OD′=22OA D A+'=2256+=3 5,∴sin⊙OD′A=OAOD'=45,∵CT⊙AD′,∴CT=3,∵NJ⊙AD′,∴NJ=ND′•sin⊙OD′A=7D′N,5D'N+CN=CN+NJ,∵CN+NJ≥CT,∴55D'N+CN≥7,5D'N+CN的最小值为8.16.【答案】(1)解:①过点P作PH BD⊥于H.BD BC⊥,PH BD⊥,90CBH PHB C∴∠=∠=∠=︒,∴四边形BCPH 是矩形,4PH BC∴==,在Rt ACB中,2222345AB AC BC++=,由旋转的旋转可知,5BD BA==,11541022PBDS BD PH∆∴=⋅⋅=⨯⨯=.②由旋转的性质可知,4BE BC==,12PBDS PD BE∆=⋅⋅,2054PD∴==,90PHD∠=︒,2222543DH PD PH∴=-=-=,2PC BH∴==,90C∠=︒,21tan42PCPBCBC∴∠===.(2)证明:如图2中,连接BF,取BD的中点T,连接FT,ET.BC BE = , BA BD = ,BCE BEC ∴∠=∠ , BAD BDA ∠=∠ ,BDE ∆ 是由 BAC ∆ 旋转得到, BCE ABD ∴∠=∠ , BEC ADB ∴∠=∠ ,BA BD = , AF DF = , BF AD ∴⊥ , 90AFD ∴∠=︒ ,90BED AFD ∠=∠=︒ , DT TB = ,12ET BD ∴=, 12FT BD = , ET FT DT TB ∴=== , E ∴ ,F ,D ,B 四点共圆, 1DBF ∴∠=∠ ,90DBF BDF ∠+∠=︒ , 190BEC ∴∠+∠=︒ ,1180BEC BED ∴∠+∠+∠=︒ , C ∴ 、E 、F 三点共线.17.【答案】(1)解:由 ()50A ,可知 5OA = , 在Rt⊙AOC 中, 2sin 2BAC ∠= , ∴45BAC ∠=︒ ,∴5OA OC == ,即点C (0,5),由题意可设 ()()51y a x x =-+ ,把点C 代入得: 55a -= , 解得: 1a =- ,∴抛物线解析式为 ()()25145y x x x x =--+=-++ ;(2)解:由(1)可得:C (0,5), ()50A ,,设直线AC 的解析式为 1y k x b =+ ,把点A 、C 坐标代入得:{b =55k 1+b =0 ,解得: {b =5k 1=−1, ∴直线AC 的解析式为 5y x =-+ ,∵直线 y kx = ( 0k > )交线段AC 于点M ,则设 ()5M m m -+,, ∴5m k m-+=, 由(1)可知 5OA OC == , 1OB = , ∴()()22055052AC =-+-=, 6AB = ,由题意可分:①当 AOM ABC ∽ 时,∴56AO AM AB AC == , ∴525266AM AC ==, ∴由两点距离公式可得: ()()226255518m m -+-= , 解得: 1255566m m ==, , ∵05m ≤≤ , ∴56m =, ∴55525655666M k -+⎛⎫== ⎪⎝⎭,, ; ②当 AOM ACB ∽ 时,∴2252AO AM AC AB ===,∴232AM AB ==,∴由两点距离公式可得: ()()225518m m -+-= , 解得: 1228m m ==, (不符合题意,舍去),∴()2532322M k -+==,, ; (3)解:过点B 作BF⊙x 轴,交AC 的延长线于点F ,过点P 作PD⊙x 轴于点D ,交AC 于点H ,如图所示:∴BF⊙PH ,∴BQF PQH ∽ ,∴PQ PHBQ BF= , 由(2)知,直线AC 的解析式为 5y x =-+ ,点 ()10B -, , ∴点 ()16F -, ,即 6BF = , 设点 ()245P a a a -++,,则有 ()5H a a -+, , ∴()224555PH a a a a a =-++--+=-+ ,∴225152566224PQ a a a BQ -+⎛⎫==--+⎪⎝⎭ , ∵106-< , ∴当 52a =时, PQ BQ 的值最大,最大值为 2524.18.【答案】(1)解:如图,过点 D 作 DM x ⊥ 轴于点 M∵90ACB ∠=︒ , ∴3tan 32BC CAB AC ∠===∴60CAB ∠=由题意可知 2DA AC == , 60DAB CAB ∠=∠=︒ . ∴180180606060DAM DAB CAB ∠=︒-∠-∠=︒-︒-︒=︒ . ∴906030ADM ∠=︒-︒=︒ 在 Rt ADM ∆ 中, 2DA = , ∴1AM = , 3DM =.∵点 C 坐标为 (10)-,, ∴1214OM OC AC AM =++=++= . ∴点 D 的坐标是 (3)-(2)解:设点 C 坐标为 (,0)a ( 0a < ),则点 B 的坐标是 (,3)a , 由(1)可知:点 D 的坐标是 (3)a - ∵点 B 和点 D 在同一个反比例函数的图象上, ∴33(3)a a =- .解得 3a =- . ∴点 C 坐标为 (3,0)-(3)解:存在这样的 k ,使得以点 E, 1B , D 为顶点的三角形是直角三角形①当 190EDB ∠= 时.如图所示,连接 ED , 1B B , 1B D , 1B B 与 ED 相交于点 N .则 190EBN NDB ∠=∠=︒ , 1BNE DNB ∠=∠ , 130DBN NB E ∠=∠= .∴BNE ∆ ⊙ 1DNB ∆∴1BN ENDN B N= ∴1BN DNEN B N= 又∵1BND ENB ∠=∠ , ∴BND ∆ ⊙ 1ENB ∆ .∴130NEB NBD ∠=∠= , 130NDB NB E ∠=∠= , ∴30BED BDE ∠=∠=︒ . ∴23BE BD == , 16tan 30BEBB ==设 (43)E m , ( 0m < ),则 1(3)D m - , ∵E , 1D 在同一反比例函数图象上, ∴433(9)m m =- .解得: 3m =- . ∴(343)E -,∴343123k =-⨯=-②当 190EB D ∠= 时.如图所示,连接 ED , 1B B , 1B D ,∵1//BD ED ,∴1118090BDB EB D ∠=︒-∠=︒ .在 1Rt BDB ∆ 中,∵130DBB ∠=︒ , 3BD =, ∴14cos30BDBB == .在 1Rt EBB ∆ 中, ∵130BB E ∠=︒ ,∴143tan 30EB BB =︒=. ∴1033EC BC EB =+=设 3(,)3E m ( 0m < ),则 1(13)D m - ∵E , 1D 在同一反比例函数图象上,1033(7)m=-.解得:3m=-,∴103 (3,3 E-∴3333k=-⨯=-21/ 21。

备战中考数学综合题专题复习【锐角三角函数】专题解析附答案解析

备战中考数学综合题专题复习【锐角三角函数】专题解析附答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 1=15-+,x 2=15--(负值,舍去),则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++ 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.6.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ), ∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°, ∴GH 33236,∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.7.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在C A′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos∠A'CB3'BCA C==∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB3=32=,依据tan∠Q=tan∠A32=BQ=BC3=2,进而得出PQ=PB+BQ72=;(3)依据S四边形PA'B'Q=S△PCQ﹣S△A'CB'=S△PCQ3-S四边形PA'B'Q最小,即S△PCQ最小,而S△PCQ12=PQ×BC3=,利用几何法即可得到S△PCQ的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=,AC =2,∴BC 3=. ∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.在Rt △ABC 中,∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果∠A =30°,①如图1,∠DCB 等于多少度;②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且∠A =α(0°<α<90°),连结DP ,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB=∠CDP,在△DCP和△DBF中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.9.如图,正方形ABCD+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC2,∵BC2+1,∴x+x2+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan ∠EAB =1221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •(2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.10.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。

中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案一、锐角三角函数1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=22-=26(分米),EF FK∴BE=10−2−26=(8−26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=22-(2)=26,63∴B′E′=10−(26−2)=12−26,∴B′E′−BE=4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B 港口之间的距离CB 的长为海里.考点:解直角三角形的应用-方向角问题.3.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可.4.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定5.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.6.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数7.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值.【答案】解:(1)过作轴于,,,,,点的坐标为.(2)①当与相切时(如图1),切点为,此时,,,.②当与,即与轴相切时(如图2),则切点为,,过作于,则,,.③当与所在直线相切时(如图3),设切点为,交于,则,,.过作轴于,则,,化简,得,解得,,.所求的值是,和.【解析】(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标⊙P 与菱形OABC 的边所在直线相切,则可与OC 相切;或与OA 相切;或与AB 相切,应分三种情况探讨:①当圆P 与OC 相切时,如图1所示,由切线的性质得到PC 垂直于OC ,再由OA=+t ,根据菱形的边长相等得到OC=1+t ,由∠AOC 的度数求出∠POC 为30°,在直角三角形POC 中,利用锐角三角函数定义表示出cos30°=oc/op ,表示出OC ,等于1+t 列出关于t 的方程,求出方程的解即可得到t 的值;②当圆P 与OA ,即与x 轴相切时,过P 作PE 垂直于OC ,又PC=PO ,利用三线合一得到E 为OC 的中点,OE 为OC 的一半,而OE=OPcos30°,列出关于t 的方程,求出方程的解即可得到t 的值;③当圆P 与AB 所在的直线相切时,设切点为F ,PF 与OC 交于点G ,由切线的性质得到PF 垂直于AB ,则PF 垂直于OC ,由CD=FG ,在直角三角形OCD 中,利用锐角三角函数定义由OC 表示出CD ,即为FG ,在直角三角形OPG 中,利用OP 表示出PG ,用PG+GF 表示出PF ,根据PF=PC ,表示出PC ,过C 作CH 垂直于y 轴,在直角三角形PHC 中,利用勾股定理列出关于t 的方程,求出方程的解即可得到t 的值,综上,得到所有满足题意的t 的值.8.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .①求证BDE DBA ∆≅∆;②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒.【解析】【分析】 (Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==.∵四边形OABC 是矩形,∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的∴3AD AO ==.在Rt OAB ∆中,225OB OA AB =+=, 过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5= ∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,∴OA AD 3,ADE 90,DE AB 4∠===︒==.∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒∴ABD BDE ∠∠=. 又∵BD BD =,∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅.∴DH=BH ,设AH x =,则DH BH 4x ==-,在Rt ΔADH 中,222AH AD DH =+,即()222x 34x =+-,得25x 8=, ∴25AH 8=. ∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心,∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,∵FA=FB ,FO ⊥AB ,∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°,当180°<α<360°时, 同理解得:∠BAF′=60°,∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒.【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.9.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴¶¶AD AC=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG5 6 =,GD23 =,∴PD=PG+GD【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG ∽△EDG 是解题的关键.10.阅读下面材料:观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =AD b ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即sin sin b c B C = .同理有:sin sin c a C A =,sin sin a b A B=,所以sin sin sin a b c A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB .(3)在(2)的条件下,试求75°的正弦值.(结果保留根号)【答案】(1)6;(2)6海里;(36+2 【解析】【分析】(1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB的值.(2)此题可先由速度和时间求出BC的距离,再由各方向角得出∠A的角度,过B作BM⊥AC于M,求出∠MBC=30°,求出MC,由勾股定理求出BM,求出AM、BM的长,由勾股定理求出AB即可;(3)在三角形ABC中,∠A=45,∠ABC=75,∠ACB=60,过点C作AC的垂线BD,构造直角三角形ABD,BCD,在直角三角形ABD中可求出AD的长,进而可求出sin75°的值.【详解】解:(1)在△ABC中,∠B=75°,∠C=45°,BC=60,则∠A=60°,∵ABsinC =sinBCA,∴45ABsin o=60sin60o,即2 =3,解得:AB=206.(2)如图,依题意:BC=60×0.5=30(海里)∵CD∥BE,∴∠DCB+∠CBE=180°∵∠DCB=30°,∴∠CBE=150°∵∠ABE=75°.∴∠ABC=75°,∴∠A=45°,在△ABC中,sin AB ACB∠=BCsin A∠即60?ABsin=3045?sin,解之得:AB=156.答:货轮距灯塔的距离AB=156海里.(3)过点B作AC的垂线BM,垂足为M.在直角三角形ABM中,∠A=45°,6,所以3BDC中,∠BCM=60°,BC=30°,可求得CM=15,所以3,15315+156sin75°6+2.【点睛】本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.11.如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的¶BD 交y轴正半轴于点D,¶BD与BC有交点时,交点为E,P为¶BD上一点.(1)若c=3,①BC=,¶DE的长为;②当CP=2时,判断CP与⊙A的位置关系,井加以证明;(2)若c=10,求点P与BC距离的最大值;(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)【答案】(1)①12,π;②详见解析;(2)①65;②65(3)答案见详解 【解析】【分析】 (1)①先求出AB ,AC ,进而求出BC 和∠ABC ,最后用弧长公式即可得出结论;②判断出△APC 是直角三角形,即可得出结论;(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;(3)画图图形,同(2)的方法即可得出结论.【详解】 (1)①如图1,∵c =3+2,∴OC =3,∴AC =3﹣2=3∵AB =6,在Rt △BAC 中,根据勾股定理得,BC =12,tan ∠ABC =AC AB3 ∴∠ABC =60°,∵AE =AB ,∴△ABE 是等边三角形,∴∠BAE =60°,∴∠DAE =30°, ∴»DE的长为306180π⨯=π, 故答案为12,π;②CP 与⊙A 相切.证明:∵AP =AB =6,AC =OC ﹣OA =63, ∴AP 2+CP 2=108,又AC 2=(63)2=108,∴AP 2+PC 2=AC 2.∴∠APC =90°,即:CP ⊥AP .而AP 是半径,∴CP 与⊙A 相切.(2)若c =10,即AC =10﹣2=8,则BC =10.①若点P 在»BE上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F , 则PF 的长就是最大距离,如图2,S △ABC =12AB ×AC =12BC ×AF , ∴AF =AB AC BC ⋅=245, ∴PF =AP ﹣AF =65; ②如图3,若点P 在»DE 上,作PG ⊥BC 于点G ,当点P 与点D 重合时,PG 最大.此时,sin ∠ACB =PG AB CP BC =, 即PG =AB CP BC ⋅=65∴若c =10,点P 与BC 距离的最大值是65; (3)当c =1时,如图4,过点P 作PM ⊥BC ,sin ∠BCP =AB PMBC CD= ∴PM =67423737AB CD BC ⋅⨯===423737; 当c =6时,如图5,同c =10的①情况,PF =6﹣1213=1213613-,当c =9时,如图6,同c =10的①情况,PF =4285685-,当c =11时,如图7,点P 和点D 重合时,点P 到BC 的距离最大,同c =10时②情况,DG 18117. 【点睛】此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.12.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠,//OC DB ∴. CE DB ⊥Q , OC CF ∴⊥.又OC Q 为O e 的半径, CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==, 226810AB ∴=+=,5OB OC ==. OC CF Q ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.13.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC =5,CE =32,则CH =5,即可求解;(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣14×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣14x 2+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,C 、D 的坐标分别为:(0,﹣3)、(4,1), 直线CD 的表达式为:y =x ﹣3,则点E (3,0), tan ∠OBC =3162OC OB ==,则sin ∠OBC 5,则EH=EB•sin∠OBC=5,CE=32,则CH=5,则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=35,∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF22GF CG+5=15,故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.14.如图,在ABC △中,10AC BC ==,3cos5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q e 与P e 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409;(2))25880010x x x y x -+=<<;(3)105- 【解析】 【分析】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解; (2)PD ∥BE ,则EB PD =BFPF,即:2248805x x x y xy--+=,即可求解;(3)证明四边形PDBE 为平行四边形,则AG=GP=BD ,即:5求解. 【详解】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=35, sinC=HP CP =R 10R -=45,解得:R=409; (2)在△ABC 中,AC=BC=10,cosC=35, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,则BH=ACsinC=8, 同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x ,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5,EB=BDcosβ=(45-25x)×5=4-25x,∴PD∥BE,∴EBPD=BFPF,即:2248805x x x yx y--+-=,整理得:y=()25x x8x800x10-+<<;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴5设圆的半径为r,在△ADG中,55AG=2r,5551+,则:55相交所得的公共弦的长为5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.15.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =35,AK =10,求CN 的长.【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3201013【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43CH AH =, ∵CA ∥FE ,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK =3,AK=2210AH HK a+=,∵AK=10,∴1010a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=513,∴CN=22PN CP+=410b⋅=2010 13.。

初中数学中考复习:25锐角三角函数综合复习(含答案)

初中数学中考复习:25锐角三角函数综合复习(含答案)

中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1. 在△ABC中,∠C=90°,cosA=,则tan A等于( )A.B.C.D.2.在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( )A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( )A.B.C.D.4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.5.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα等于( )A.B.C.D.第5题第6题6.如图所示,在数轴上点A所表示的数x的范围是( )A. B.C. D.;二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是 .三、解答题13.如图所示,某拦河坝截面的原设计方案为AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m 为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=.故选D.2.【答案】D;【解析】根据锐角三角函数的定义,得A、tanA•cotA==1,关系式成立;B、sinA=,tanA•cosA=,关系式成立;C、cosA=,cotA•sinA=,关系式成立;D、tan2A+cot2A=()2+()2≠1,关系式不成立.故选D.3.【答案】B;【解析】连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在Rt△CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得,∴tan∠CBE.5.【答案】A;【解析】∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.6.【答案】D;【解析】由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=()2,∴sinθ=,∴θ=30°.8.【答案】;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.9.【答案】;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<α<90°,∴cosα>0.∴原式==1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】2或;【解析】此题有两种可能:(1)当点P在线段CD上时,∵BC=2,DP=1,CP=1,∠C=90°,∴tan∠BPC==2;(2)当点P在CD延长线上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=.故答案为:2或.三、解答题13.【答案与解析】解:如图所示,过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.在Rt△ABE中,,∴AE=ABsin∠ABE=6sin 74°≈5.77(cm);,∴BE=ABcos∠ABE=6cos 74°≈1.65(m).∵AH∥BC,∴DF=AE≈5.77m.在Rt△BDF中,,∴(m).∴AD=EF=BF-BE=4.04-1.65≈2.4(m).14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴,=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵,∴,即.∵BD=BC+CD,∴.∴CD=AB-AB=180-180×=(180-60)米.答:小岛C、D间的距离为(180-)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。

全国中考数学锐角三角函数的综合中考真题汇总附详细答案

全国中考数学锐角三角函数的综合中考真题汇总附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:(1)当 t 为何值时,点 E 在 BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG=,由此构建方程即可解决问题.【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴22108-=6(cm ),∵OD 垂直平分线段AC ,∴OC=OA=3(cm ),∠DOC=90°,∵CD ∥AB ,∴∠BAC=∠DCO ,∵∠DOC=∠ACB ,∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ),∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t , 当点E 在∠BAC 的平分线上时,∵EP ⊥AB ,EC ⊥AC ,∴PE=EC ,∴34t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.(2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )=1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在. ∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=52时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴EC GQOC OG=,∴358544345ttt -=-,整理得:5t2-66t+160=0,解得165t=或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.2.如图,在△ABC中,AB=7.5,AC=9,S△ABC=814.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM (P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cosA的值;(2)当△PQM与△QCN的面积满足S△PQM=95S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【答案】(1)coaA=45;(2)当t=35时,满足S△PQM=95S△QCN;(3)当273326-或273326+时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【解析】分析:(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题;(2)如图2中,作PH ⊥AC 于H .利用S △PQM =95S △QCN 构建方程即可解决问题; (3)分两种情形①如图3中,当点M 落在QN 上时,作PH ⊥AC 于H .②如图4中,当点M 在CQ 上时,作PH ⊥AC 于H .分别构建方程求解即可; 详解:(1)如图1中,作BE ⊥AC 于E .∵S △ABC =12•AC•BE=814, ∴BE=92, 在Rt △ABE 中,AE=22=6AB BE -, ∴coaA=647.55AE AB ==. (2)如图2中,作PH ⊥AC 于H .∵PA=5t ,PH=3t ,AH=4t ,HQ=AC-AH-CQ=9-9t ,∴PQ 2=PH 2+HQ 2=9t 2+(9-9t )2,∵S △PQM =95S △QCN , ∴32=9352, ∴9t 2+(9-9t )2=95×(5t )2, 整理得:5t 2-18t+9=0,解得t=3(舍弃)或35.∴当t=35时,满足S△PQM=95S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=3HQ,∴3t=3(9-9t),∴t=273326-.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得3,∴39t-9),∴27+33综上所述,当2733-s27+33时,△PQM的某个顶点(Q点除外)落在△QCN 的边上.点睛:本题考查三角形综合题、等边三角形的性质、勾股定理锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.3.如图,等腰△ABC 中,AB=AC ,∠BAC=36°,BC=1,点D 在边AC 上且BD 平分∠ABC ,设CD=x .(1)求证:△ABC ∽△BCD ;(2)求x 的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+ 【解析】 试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似;(2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可;(3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°,∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C ,∴△ABC ∽△BCD ;(2)∵∠A=∠ABD=36°,∴AD=BD ,∵BD=BC ,∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1,∵△ABC ∽△BCD , ∴AB BC BD CD =,即111x x+=, 整理得:x 2+x-1=0, 解得:x 1=152-+,x 2=152-(负值,舍去),则x=152-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=15151441512AE AB -+++==-++, 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=514+=-154-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,AP BP =,求PD 的长.【答案】(1)证明见解析;(2 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到AD AC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由AP BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径,∴AD AC =,∴∠ACD =∠B =∠ADC ,∵∠FPC =∠B ,∴∠ACD =∠FPC ,∴∠APC =∠ACF ,∵∠FAC =∠CAF ,∴△PAC ∽△CAF ;(2)连接OP ,则OA =OB =OP =1522AB =, ∵AP BP =,∴OP ⊥AB ,∠OPG =∠PDC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =2BC ,∴tan ∠CAB =tan ∠DCB =BC AC, ∴12CE BE AE CE ==, ∴AE =4BE ,∵AE+BE =AB =5, ∴AE =4,BE =1,CE =2,∴OE =OB ﹣BE =2.5﹣1=1.5,∵∠OPG =∠PDC ,∠OGP =∠DGE ,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG=225OP OG6+=,GD=222 3DE GE+=,∴PD=PG+GD=3102.【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.5.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC的面积(π取3.14,结果精确到1cm)【答案】(1)半径OA的长约为24.5cm;(2)扇形BOC的面积约为2822cm.【解析】【分析】(1)在Rt△ODE中,DE=15,∠ODE=67°,根据∠ODE的余弦值,即可求得OD长,减去AD即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒,∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.6.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO )的距离为120米的点P 处.这时,一辆小轿车由西向东匀速行驶,测得此车从A 处行驶到B 处所用的时间为5秒且∠APO =60°,∠BPO =45°.(1)求A 、B 之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).【答案】【小题1】73.2【小题2】超过限制速度.【解析】解:(1)100(31)AB =-73.2 (米).…6分 (2) 此车制速度v==18.3米/秒7.在Rt △ABC 中,∠ACB=90°,AB=7,AC=2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A′B′C(点A ,B 的对应点分别为A',B′),射线CA′,CB′分別交直线m 于点P ,Q .(1)如图1,当P 与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P ,Q 分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q 的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ =72;(3)存在,S 四边形PA 'B ′Q =33【解析】【分析】 (1)由旋转可得:AC =A 'C =2,进而得到BC 3=∠A 'BC =90°,可得cos ∠A 'CB 3'BC A C ==∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 3=32=,依据tan ∠Q =tan ∠A 3=BQ =BC 3=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 32=PQ ,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=AC =2,∴BC 3=∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 32=,∴PB 32=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 32=,∴BQ =BC 23⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 32=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.如图,AB 为⊙O 的直径,P 是BA 延长线上一点,CG 是⊙O 的弦∠PCA =∠ABC ,CG ⊥AB ,垂足为D(1)求证:PC 是⊙O 的切线;(2)求证:PA AD PC CD=; (3)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,连接BE ,若sin ∠P =35,CF =5,求BE 的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.9.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【答案】拦截点D处到公路的距离是(500+500)米.【解析】试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.考点:解直角三角形的应用-方向角问题.10.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD=,解得OD=1,∴22PO PD OD+,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.。

中考数学专题复习之锐角三角函数(共20题)

中考数学专题复习之锐角三角函数(共20题)

中考数学专题复习之锐角三角函数(共20题)一.选择题(共10小题)1.如图,一个长方体木箱沿斜面滑至如图位置时,AB=2m,木箱高BE=1m,斜面坡角为α,则木箱端点E距地面AC的高度表示为()m.A.+2sinαB.2cosα+sinαC.cosα+2sinαD.tanα+2sinα2.为了疫情防控工作的需要,某学校在学校门口的大门上方安装了一个人体体外测温摄像头,学校大门高ME=7.5米,学生身高BD=1.5米,当学生准备进入识别区域时,在点B时测得摄像头M的仰角为30°,当学生刚好离开识别区域时,在点A时测得摄像头M 的仰角为60°,则体温监测有效识别区域AB的长()A.米B.米C.5米D.6米3.某网红地惊现震撼的裸眼3D超清LED巨幕,成功吸引了广大游客前来打卡.小丽想了解该LED屏AB的高度,进行了实地测量,她从大楼底部C点沿水平直线步行30米到达台阶底端D点,在D点测得屏幕下端点B的仰角为27°,然后她再沿着i=4:3长度为35米的自动扶梯到达扶梯顶端E点,又沿水平直线行走了45米到达F点,在F点测得屏幕上端点A的仰角为50°(A,B,C,D,E,F,G在同一个平面内,且E、F和C、D、G分别在同一水平线上),则该LED屏AB的高度约为()(结果精确到0.1,参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin50°≈0.77,tan50°≈1.19)A.86.2米B.114.2米C.126.9米D.142.2米4.如图,旗杆AB竖立在斜坡CB的顶端,斜坡CB长为65米,坡度为i=.小明从与点C相距115米的点D处向上爬12米到达建筑物DE的顶端点E,在此测得旗杆顶端点A的仰角为39°,则旗杆的高度AB约为()米.(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.12.9B.22.2C.24.9D.63.15.我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中所有点在同一平面内≈1.41,≈1.73)A.60分钟B.70分钟C.80分钟D.90分钟6.李白笔下“孤帆一片日边来”描述了在喷薄而出的红日映衬下,远远望见一叶帆船驶来的壮美河山之境.聪明的小芬同学利用几何图形,构造出了此意境!如图,半径为5的⊙O在线段AB上方,且圆心O在线段AB的中垂线上,到AB的距离为,AB=20,线段PQ在边AB上(AP<AQ),PQ=6,以PQ中点C为顶点向上作Rt△CDE,其中∠D=90°,CD=3,sin∠DCE=sin∠DCQ=,设AP=m,当边DE与⊙O有交点时,m的取值范围是()A.B.C.D.7.勾股定理有着悠久的历史,它曾引起很多人的兴趣.英国佩里加(H.Perigal,1801﹣1898)用“水车翼轮法”(图1)证明了勾股定理.该证法是用线段QX,ST,将正方形BIJC分割成四个全等的四边形,再将这四个四边形和正方形ACYZ拼成大正方形AEFB (图2).若AD=,tan∠AON=,则正方形MNUV的周长为()A.B.18C.16D.8.如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.B.C.D.9.已知α,β均为锐角,若tanα=,tanβ=,则α+β=()A.45°B.30°C.60°D.90°10.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.二.填空题(共5小题)11.如图1是一张双挡位可调节靠背椅,挡位调节示意图如图2.两脚AB,AC以及靠背DE,座位FG,其中D,F分别为AC,DE上固定连接点,GF在点A上移动实现靠背的调节,DC=4AD,EF=4DF,已知AB=AC=DE=50分米,tan∠ABC=2.(1)当GF∥BC时,点E离水平地面BC的高度为分米.(2)当靠背DE′⊥AC时,有G′E′∥BC,则GF的长为分米.12.如图1为温州乐园的游乐设施一摩天轮与飞天梭.当摩天轮一座舱A与飞天梭高度相同时(如图2),另一座舱B恰好位于摩天轮最低点;当座舱A顺时针旋转至与飞天梭相同高度的A′点时,座舱B旋转至点B'.此时地面某观测点P与点A',圆心O恰好在同一条直线上,且sin∠A'PC=,已知摩天轮的半径为32米,则点B,B'间的距离为米;现又测得∠APC=∠B'PC,则点B'距离地面的高度为米.13.如图,已知A、B两点的坐标分别为(﹣8,0)、(0,8),点C、F分别是直线x=5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE的面积取得最小值时,tan∠BAD=.14.如图是一款利用杠杆原理设计的平衡灯,灯管AB与支架AD,砝码杆AC均成120°角,且AB=40cm,AC=18cm,AD=6cm,底座是半径为2cm的圆柱体,点P是杠杆的支点.如图1,若砝码E在端点C时,当杠杆平衡时,支架AD垂直于桌面,则此时垂直光线照射到最远点M到支点P的距离PM为cm.由于特殊设计,灯管的重力集中在端点B,砝码杆重力集中在砝码E上,支架AD的重力忽略不计,由杠杆原理可知,平衡时重力保持垂直水平桌面向下,且G1•h2=G2•h1,如图2.为了使得平衡时砝码杆与桌面平行,则砝码E到离A点的距离为cm.15.小君家购入如图1的划船机一台,如图2是划船机的部分示意图.阻尼轮⊙O由支架AD和AC支撑,点A处于点O的正下方,AD与⊙O相切,脚踏板点E和圆心O在连杆CE上,CD部分隐藏在阻尼轮内部,测量发现点E到地面的高度EF为35cm,E、A两点间的水平距离AF为72cm,tan∠DAC=,则CD的长为cm.三.解答题(共5小题)16.某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?17.如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.18.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E 点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).19.【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个觇标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山顶觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P首次到达最高点?(2)浮出水面3.4秒后,盛水筒P距离水面多高?(3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.(参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)。

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。

备考2019年中考数学专题专项突破训练:锐角三角函数的综合(特训篇)(附解析)

备考2019年中考数学专题专项突破训练:锐角三角函数的综合(特训篇)(附解析)

中考数学专题训练:锐角三角函数的综合(特训篇)一.选择题1.(2019•郓城县一模)一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°==1.类似地,可以求得sin15°的值是()A.B.C.D.2.(2019•东阿县三模)如图,P是∠β的边OA上一点,且点P的坐标为(,1),则tanβ等于()A.B.C.D.3.(2019•西湖区一模)已知△ABC是锐角三角形,若AB>AC,则()A.sin A<sin B B.sin B<sin C C.sin A<sin C D.sin C<sin A 4.(2019•苏州一模)如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.米C.60米D.米5.(2019•大渡口区模拟)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN 和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).则AB的长度约为()(结果精确到0.1米,参考数据:()A.9.4米B.10.6米C.11.4米D.12.6米6.(2019春•宿豫区期中)若2sin A=,则锐角A的度数为()A.30°B.45°C.60°D.75°7.(2019•安丘市一模)已知抛物线y=3x2+1与直线y=4cosα•x只有一个交点,则锐角α等于()A.60°B.45°C.30°D.15°8.(2019•福田区一模)如图,一科珍贵的乌稔树被台风“山竹”吹歪了,处于对它的保护,需要测量它的高度.现采取以下措施:在地面选取一点C,测得∠BCA=45°,AC=20米,∠BAC=60°,则这棵乌稔树的高AB约为()(参考数据: 1.4,≈1.7)A.7米B.14米C.20米D.40米9.(2019•海宁市一模)如图,一块直角三角板和一张光盘竖放在桌面上,其中A是光盘与桌面的切点,∠BAC=60°,光盘的直径是80cm,则斜边AB被光盘截得的线段AD长为()A.20cm B.40cm C.80cm D.80cm 10.(2019•涪城区模拟)如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B. m C. m D.4m 11.(2019•藁城区一模)如图,传送带和地面所成斜坡AB的坡比为1:2,物体沿传送带上升到点B时,距离地面的高度为3米,那么斜坡AB的长度为()A.3米B.5米C.米D.6米12.(2019•河南模拟)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有旗杆BC,旗杆顶端B点与A点之间有一条彩带相连.若AB=13米,则旗杆BC的高度为()A.(+1)米B.5米C.9.5米D.12米二.填空题13.(2019•东阿县二模)如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86nmile 的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时B处与灯塔P的距离为nmile.(结果保留根号)14.(2019•如皋市一模)如图,为了开发利用海洋资源,某勘测飞机测量一岛屿两端A,B 的距离,飞机在距海平面垂直高度为100m的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500m,在点D测得端点B的俯角为45°,则岛屿两端A,B 的距离为m(结果保留根号).15.(2019•张家港市模拟)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏东60°方向行驶12千米至B地,再沿北偏西45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,则B,C两地的距离为千米.(结果保留根号)16.(2019•荔湾区一模)如图,在4×4的正方形网格图中有△ABC,则∠ABC的余弦值为.17.(2019•涪城区模拟)如图,△ABC中,∠A=90°,∠ABD=∠ACB,AD=AC,sin∠ABD =.18.(2019•镇海区一模)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的角为60°,此时航拍无人机与该建筑物的水平距离AD为80m,那么该建筑物的高度BC为m(结果保留根号).19.(2019•淮安区模拟)如图,点A(3,m)在第一象限,OA与x轴所夹的锐角为∠1,tan ∠1=,则m的值是.20.(2019•绿园区一模)如图,海面上B、C两岛分别位于A岛的正东和正北方向,A岛与C 岛之间的距离约为36海里,B岛在C岛的南偏东43°,A、B两岛之间的距离约为海里(结果精确到0.1海里)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】三.解答题21.(2019•温岭市一模)某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆;两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计, EF长度远大于车辆宽度),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,该地下车库出口的车辆限高标志牌设置如图4是否合理?请通过计算说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(2019•沈北新区一模)在升旗结束后,小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好至C处且与地面成60°角,小明从绳子末端C处拿起绳子放在头顶,后退至E点,此时绳子末端D与旗杆的顶端A 成45°仰角,已知小明身高DE=1.5m.求旗杆AB的高度.(结果保留到根号)23.(2019•潮阳区一模)如图,小明站在河岸上的G点,利用测角仪器DG测量小船C到岸边的距离,此时,测得小船C的俯角是∠FDC=30°,若测角仪器DG的高度是2米,BG =1米,BG平行于AC所在的直线,迎水坡AB的坡度i=4:3,坡高BE=8米,求小船C 到岸边的距离CA的长?(结果保留根号)24.(2019•河南模拟)郑东新区是中国河南省郑州市规划建设中的一个城市新区,在2019年春节期间,小明一家人前去观看郑东新区“大玉米”灯光秀.小明想利用刚学过的知识测量大屏幕“新”字的高度:如图,小明先在如意湖湖边A处,测得“新”字底端D 的仰角为58°,再沿着坡面AB向上走到B处,测得“新”字顶端C的仰角为45°,坡面AB的坡度,AB=50m,AE=75m(假设A、B、C、D、E在同一平面内).(1)求点B到水平面的距离BF;(2)求“新”字的高度CD.(结果精确到0.1m,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,,)25.(2019•邛崃市模拟)某市开展一项全民健身跑步运动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向上,C地在A地北偏东75°方向上,且BC=CD=10km,问:沿上述线路从A地到D 地的路程大约是多少?(结果保留1位小数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,,)26.(2019•东阿县三模)一幢楼的楼顶端挂着一幅长10米的宣传条幅AB,某数学兴趣小组在一次活动中,准备测量该楼的高度,但被建筑物FGHM挡住,不能直接到达楼的底部,他们在点D处测得条幅顶端A的仰角∠CDA=45°,向后退8米到E点,测得条幅底端B 的仰角∠CEB=30°(点C,D,E在同一直线上,EC⊥AC).请你根据以上数据,帮助该兴趣小组计算楼高AC(结果精确到0.01米,参考数据:≈1.732,≈1.414).27.(2019•贵池区二模)如图,甲楼AB高20米,乙楼CD高10米,两栋楼之间的水平距离BD=30m,为了测量某电视塔EF的高度,小明在甲楼楼顶A处观测电视塔塔顶E,测得仰角为37°,小明在乙楼楼顶C处观测电视塔塔顶E,测得仰角为45°,求该电视塔的高度EF.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,)28.(2019•浦东新区二模)如图1,一辆吊车工作时的吊臂AB最长为20米,吊臂与水平线的夹角∠ABC最大为70°,旋转中心点B离地面的距离BD为2米.(1)如图2,求这辆吊车工作时点A离地面的最大距离AH(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75);(2)一天,王师傅接到紧急通知,要求将这辆吊车立即开到40千米远的某工地,因此王师傅以每小时比平时快20千米的速度匀速行驶,结果提前20分钟到达,求这次王师傅所开的吊车速度.29.(2019•海陵区一模)如图,某大楼的顶部竖有一块宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为63°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:3,AB=10米,CD=2米.(1)求点B距地面的高度;(2)求大楼DE的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据tan63°≈2,≈1.732)30.(2019•洪泽区一模)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)参考答案一.选择题1.解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=,故选:A.2.解:∵P(,1),∴tanβ==,故选:C.3.解:△ABC是锐角三角形,若AB>AC,则∠C>∠B,则sin B<sin C.故选:B.4.解:设CE=x米,在Rt△ACE中,tan∠CAE=,则AE==x,在Rt△BCE中,tan∠CBE=,则BE==x,由题意得, x﹣x=120,解得,x=60,即CE=60,则AC=2CE=120(米)故选:B.5.解:延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65≈11.4(米).故选:C.6.解:∵2sin A=∴sin A=∴∠A=45°,故选:B.7.解:根据题意得:3x2+1=4cosα•x,即3x2﹣4cosα•x+1=0,则△=16cos2α﹣4×3×1=0,解得:cosα=,所以α=30°.故选:C.8.解:如图,作BH⊥AC于H.∵∠BCH=45°,∠BHC=90°,∴∠HCB=∠HBC=45°,∴HC=HB,设HC=BH=xm,∵∠A=60°,∴AH=x,∴x+x=20,∴x=10(3﹣),∴AB=2AH=2××10(3﹣)≈14(m)故选:B.9.解:连接DO,AO,过O作OE⊥AD交AD于点E,∵∠BAC=60°,A是光盘与桌面的切点,∴∠OAC=90°,∴∠OAE=30°,∵OA=OD,∴E是AD的中点,在Rt△AEO中,AO=80cm∴AE=40cm,∴AD=80cm;故选:D.10.解:∵sin∠CAB==,∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°==,解得:B′C′=3.故选:B.11.解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,∵BC=3m,∴AC=6m,∴AB==3(m),故选:A.12.解:设CD=x米,∵斜面AC的坡度为1:2,∴AD=2x,由勾股定理得,x2+(2x)2=()2,解得,x=,∴CD=x=,AD=2x=5,在Rt△ABD中,BD==12,∴BC=BD﹣CD=9.5(米),故选:C.二.填空题(共8小题)13.解:作PC⊥AB于C,在Rt△APC中,cos∠APC=,则PC=PA•cos∠APC=86×=43,在Rt△BCP中,cos∠BPC=,则PB==43(nmile),故答案为:43.14.解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=100米,CD=500米.在Rt△AEC中,∠C=60°,AE=100米.∴CE===(米).在Rt△BFD中,∠BDF=45°,BF=100米.∴DF==100(米).∴AB=EF=CD+DF﹣CE=500+100﹣=600﹣(米).答:岛屿两端A、B的距离为(600﹣)米.故答案为:(600﹣).15.解:作BD⊥AC于D,在Rt△ABD中,sin∠DAB=,∴BD=AB•sin∠DAB=6,在Rt△CBD中,cos∠CBD=,∴BC==6(千米),故答案为:6.16.解:设小正方形的边长为1,∵AC==,BC==5,AB==2,∵AB2+AC2=(2)2+()2=25,BC2=52=25,∴AB2+AC2=BC2,∴∠CAB=90°,∴cos∠ABC==;故答案为:.17.解:∵∠A=90°,∠ABD=∠ACB,∴△ABD∽△ACB,∴,∵AD=AC,∴AB=,∴BD=,∴sin∠ABD=,故答案为:.18.解:∵在Rt△ABD中,AD=80,∠BAD=45°,∴BD=AD=80(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=80×=80(m),∴BC=BD+CD=(80+80)(m)答:该建筑物的高度BC约为=(80+80)米.故答案为:(80+80).19.解:解:作AB⊥x轴于点B.∵A的坐标是(3,m),∴OB=3,AB=m.又∵tan∠1==,即,∴m=5故答案为:520.解:由题意得,AC=36海里,∠ACB=43°.在Rt△ABC中,∵∠A=90°,∴AB=AC•tan∠ACB=36×0.93≈33.5海里.故A、B两岛之间的距离约为33.5海里.故答案为:33.5.三.解答题(共10小题)21.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF﹣∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB=1.2米,∴AB+EH≈1.2+0.72=1.92>1.9米.∴该地下车库出口的车辆限高标志牌设置如图4合理.22.解:过点D作DFEB交AB于点F,则BF=DE=1.5.设AB=x.在Rt△ABC中,∠ABC=90°,AC===,在Rt△ADF中,∠AFD=90°,AF=x﹣1.5,AD==(x﹣),又AD=AC,∴=(x﹣),解得:x=,即旗杆AB的高为m.23.解:∵坡AB的坡度i=4:3,坡高BE=8,∴AE=6,由题意得,四边形BEHG为矩形,∴GH=BE=8,EH=BG=2,∴DH=DGDG+GH=9,在Rt△DCH中,tan C=,则CH==9,∴AC=CH﹣AE﹣EH=9﹣8,答:小船C到岸边的距离CA的长为(9﹣8)米.24.解:作BH⊥CE于H,∵坡面AB的坡度,∴tan∠BAF=,∴∠BAF=30°,∴BF=AB=25;(2)由勾股定理得,AF==25,在Rt△DAE中,tan∠DAE=,则DE=AE•tan∠DAE≈75,∴BH=FE=25+75,∵∠CBH=45°,∴CH=BH=25+75,∴CD=CH+H E﹣DE=25+75+25﹣120=25﹣20=23.25≈≈23.5(米)25.解:过D作DM⊥AC于M,则∠DAM=45°,∠DCM=60°,∴△BCD为等边三角形,∴BD=BC=CD=10,∵DM⊥AC,∴CM=BM=5,∴AM=DM=CD•cos∠DCM=10×sin60°≈8.5,∴AM+MC+CD=8.5+5+10=23.5答:从A地到D地的路程大约是23.5km.26.解:设AC=x米,则BC=(x﹣10)米,在Rt△ACD中,∠CDA=∠CAD=45°,所以CD=AC=x,在Rt△ECB中,CE=CD+DE=x+8.所以tan∠CEB=,即=tan30°=.解得,x=≈34.59.答:楼高AC约为34.59米.27.解:分别过A、C作AM、CN垂直于EF,垂足为M、N,设EM为xm,则EN为(10+x)m.在Rt△CEN中,tan45°=,∴CN=10+x,∴AM=40+x,在Rt△AEM中,tan37°=,即,解得,x=120,则EF=x+20=140(m)答:电视踏高度EF为140m.28.解:(1)根据题意,得AB =20,∠ABC =70°,CH =BD =2, 在Rt △ACB 中,∵∠ACB =90°,∴AC =AB •sin70°=20×0.94=18.8,∴AH =20.8.答:这辆吊车工作时点A 离地面的最大距离AH 为20.8米;(2)设这次王师傅所开的吊车的速度为每小时x 千米,由题意,得,解得,x 1=60,x 2=﹣40,经检验:x 1=60,x 2=﹣40都是原方程的解,但x 2=﹣40符合题意,舍去, 答:这次王师傅所开的吊车的速度为每小时60千米.29.解:(1)作BG ⊥AE 于点G ,由山坡AB 的坡度i =1:,AB =10,得:BG =5.; (2)可求得AG =,作BF ⊥DE 与点F ,设DE =x 米,在Rt △ADE 中∵tan ∠DAE =, ∴AE =≈x∴EF =BG =5,BF =AG +AE =+x , ∵∠CBF =45°,∴CF =BF ,∴CD +DE ﹣EF =BF ,∴2+x ﹣5=+x , 解得:x =≈23.3(米)答:大楼DE 的高度约为23.3米.30.解:由题意得,∠ABD=30°,∠ACD=45°,BC=60m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=,∴x=(x+60),∴x=30(+1)米,答:山高AD为30(+1)米.。

中考数学《锐角三角函数的综合》专项训练含详细答案

中考数学《锐角三角函数的综合》专项训练含详细答案

中考数学《锐角三角函数的综合》专项训练含详细答案一、锐角三角函数1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.3.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②12或33.【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形;(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意;当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°, ∴tan ∠DBF′=33.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.4.如图,矩形OABC 中,A(6,0)、C(0,3、D(0,3),射线l 过点D 且与x 轴平行,点P 、Q 分别是l 和x 轴的正半轴上的动点,满足∠PQO =60º.(1)点B的坐标是,∠CAO= º,当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.【答案】(1)(6,23). 30.(3,33)(2)()()()()243x430x3331333x x3x5S{23x1235x93543x9+≤≤-+-<≤=-+<≤>【解析】解:(1)(6,23). 30.(3,33).(2)当0≤x≤3时,如图1,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,可得EF PE DC31==OQ PO DO333==,∴EF=13(3+x),此时重叠部分是梯形,其面积为:EFQO14343S S EF OQ OC 3x x 43233==+⋅=+=+梯形()() 当3<x≤5时,如图2,()HAQ EFQO EFQO 221S S S S AH AQ 243331333 x 43x 3=x x 32232∆=-=-⋅⋅=+---+-梯形梯形。

中考数学复习《锐角三角函数》专项练习题-附带有答案

中考数学复习《锐角三角函数》专项练习题-附带有答案

中考数学复习《锐角三角函数》专项练习题-附带有答案一、选择题1.已知α是锐角,若sinα=12,则α的度数是()A.30°B.45°C.60°D.75°2.如图,在Rt△ABC中,BC=3,斜边AC=5,则下列等式正确的是()A.sinC=35B.cosC=43C.tanA=34D.sinA=453.在Rt△ABC中,∠C=90°,sinA= 513,则tanB的值为()A.1213B.512C.1312D.1254.如图所示,河堤横断面迎水坡AB的坡比是1:2,堤高BC=4m,则坡面AB的长度是()mA.8 B.16 C.4√5D.4√35.如图所示,△ABC的顶点是正方形网格的格点,则sin∠A的值为()A.12B.√1010C.√55D.2√556.如图,点A到点C的距离为100米,要测量河对岸B点到河岸AD的距离.小明在A点测得B在北偏东60°的方向上,在C点测得B在北偏东30°的方向上,则B点到河岸AD的距离为()A.100米B.50米C.200√33米D.50√3米7.图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若 AB=BC=1,∠AOB=α,则 OC2的值为()A.sin2α+1B.1sin2α+1C.cos2α+1D.1cos2α+18.如图所示,正方形ABCD中AB=4,点E为BC中点,BF⊥AE于点G,交CD边于点F,连接DG,则DG长为()A.95√5B.4 C.165D.85√5二、填空题9.已知∠A是锐角tanA=√32,则sinA=.10.平放在地面上的直角三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B 为36°,边AB的长为2m,BC边上露出部分BD的长为0.9m,则铁板BC边被掩埋部分CD的长是m.(参考数据:sin54°≈0.8,cos54°≈0.6,tan54°≈1.4).11.如图,在⊙O中,弦AB的长为12√3,圆心到弦AB的距离为6,则∠BOC的度数为.12.如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,√3),且∠ABC=90°,∠A=30°,则顶点A的坐标是.13.如图,正方形AFEB和正方形BEDC的边长相等,点A、B、C在同一条直线上.连接AD、BD,那么cos ∠ADB的值为.三、解答题14.计算:2sin30°+cos30°•tan60°.15.先化简,再求值:xx2−1÷(1−1x+1),其中x=√2sin45°+2tan60°.16.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)17.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB 由A 向B 移动,已知点C 为一海港,在A 处测得C 港在北偏东45°方向上,在B 处测得C 港在北偏西60°方向上,且 AB =400+400√3 千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据 √2≈1.41 √3≈1.73 √5≈2.24 )18.如图所示,已知BC 是⊙O 的直径,A 、D 是⊙O 上的两点,连接AD 、AC 、CD ,线段AD 与直径BC 相交于点E.(1)若∠ACB =60°,求sin∠ADC 的值.(2)当CD ⌢=12AC ⌢时 ①若CE =√2,BC⋅CE AB =2求∠COD 的度数.②若CD =1,CB =4求线段CE 的长.参考答案1.A2.C3.D4.C5.C6.D7.B8.B9.√217 10.0.711.60°12.(4,√3)13.3√101014.解:原式=2× 12 + √32× √3 =1+ 32= 5215.解: x x 2−1÷(1−1x+1)=x (x+1)(x−1)÷x+1−1x+1 =x (x+1)(x−1)⋅x+1x=1x −1 当x =√2sin45°+2tan60°=√2×√22+2×√3=1+2√3时 1x −1=11+2√3−1=12√3=√36原式=√36. 16.解:延长DC 交EA 的延长线于点F ,则CF ⊥EF∵山坡AC上坡度i=1:2.4∴令CF=km,则AF=2.4km在Rt△ACF中,由勾股定理得CF2+AF2=AC2∴k2+(2.4k)2=262解得k=10∴AF=24m,CF=10m∴EF=30m在Rt△DEF中,tanE=DFEF∴DF=EF•tanE=30×tan48°=30×1.11=33.3(m)∴CD=DF﹣CF=23.3m因此,古树CD的高度约为23.3m.17.(1)解:如下图,过点C作CH⊥AB交AB于点H设CH=x在Rt△ACH中在Rt△BCH中∴AB=(√3+1)x=400+400√3∴x=400,∴CH=400∵400<600,海港C受台风影响(2)解:如下图,以CP=600千米为半径画弧交AB于P、Q两点,此时台风在PQ之间时,海港受到影响在 Rt △PCH 中∴PH =√CP 2−CH 2=200√5∴PQ =2PH =400√5则时间: t =400√520=20√5≈45 (小时)答:台风影响该海港持续的时间有45小时.18.(1)解:∵BC 是⊙O 的直径∴∠BAC =90°∵∠ACB =60°∴∠B =30°∵AC ⌢=AC ⌢∴∠ADC =∠B =30°∴sin∠ADC =sin30°=12所以sin∠ADC 的值为12;(2)解:①∵CE =√2 BC⋅CE AB =2∴BC AB =√2∵∠BAC =90°∴cos∠B =AB BC =√22∴∠B =45°∵CD ⌢=12AC ⌢∴∠CAD =12∠B =22.5°∴∠COD =2∠CAD =45°即∠COD 的度数为45°;②∵CD ⌢=12AC ⌢∵∠ADC=∠COD,∠OCD=∠DCE ∴△OCD∽△DCE∴CDOC =CECD∵BC=4∴OC=2∴12=CE1∴CE=12∴线段CE的长为12.。

人教中考数学专题训练---锐角三角函数的综合题分类含答案

人教中考数学专题训练---锐角三角函数的综合题分类含答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)【答案】AB 的长约为0.6m . 【解析】 【分析】作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】解:作BF CE ⊥于F ,在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,3.85CF BC cos BCF ⋅∠≈=,在Rt ADE ∆E 中,3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN , ∠NPE=900—∠BMN ,∴∠MBN=∠NPE . ∴△BMN ≌△PEN (ASA ).∴BM=PE .∵∠BPE=12∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=12BM . ∴BF=12PE , 即BF 1PE 2=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .∴BM BNPE PN=. 在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF=tan PEα. ∴BF 1=tan PE 2α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BNtan =PNα即可求得BF 1=tan PE 2α.3.已知Rt △ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D ,且AD=DC ,延长CB 交⊙O 于点E .(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.4.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.5.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43.理由见解析. 【解析】 【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴EH FH FHAB BE CH==; 在Rt △FEH 中,tan ∠FCN =8463FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43. 【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.6.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC =5,CE =32,则CH =5,即可求解;(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣14×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣14x 2+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,C 、D 的坐标分别为:(0,﹣3)、(4,1), 直线CD 的表达式为:y =x ﹣3,则点E (3,0), tan ∠OBC =3162OC OB ==,则sin ∠OBC 5,则EH =EB•sin ∠OBC 5CE=32,则CH=5,则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=35,∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF22GF CG+5=15,故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.7.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =35,AK =10,求CN 的长.【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3201013【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH ,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK =3,AK=2210AH HK a+=,∵AK=10,∴1010a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=513,∴CN=22PN CP+=410b⋅=2010 13.8.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:PA AD PC CD;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.9.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)【答案】AE 的长为(123)+ 【解析】 【分析】在Rt ACF 中求AF 的长, 在Rt CEF 中求EF 的长,即可求解. 【详解】过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AFACF CF∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒ tan EFECF CF∴∠= 3123EF ∴=43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.10.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题: (发现)(1)MN 的长度为多少;(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.【答案】【发现】(1)MN 的长度为π3;(23P 的坐标为10(,);或230)或230();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.【解析】 【分析】发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现](1)∵P (4,0),∴OP =4. ∵OA =3,∴AP =1,∴MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°3=∴S 重叠部分=S △APQ 12=PQ ×AQ 3= 即重叠部分的面积为38. [探究]①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1; ∴点P 的坐标为(1,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123303cos ==︒,∴点P 的坐标为(233,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 233=; ∴点P 的坐标为(233-,0);[拓展]t 的取值范围是2<t ≤3,4≤t <5,理由:如图5,当点N 运动到与点A 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 411-==3,MN 与Rt △ABO 的边有两个公共点,∴2<t ≤3.如图6,当⊙P 运动到PM 与OB 重合时,MN 与Rt △ABO 的边有两个公共点,此时t =4; 直到⊙P 运动到点N 与点O 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =5; ∴4≤t <5,即:t 的取值范围是2<t ≤3,4≤t <5.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.。

中考数学专题复习之锐角三角函数综合训练

中考数学专题复习之锐角三角函数综合训练

中考数学专题复习之锐角三角函数综合训练1.如图为某区域部分交通线路图,其中直线l1∥l2∥l3,直线l与直线l1、l2、l3都垂直,垂足分别为点A、点B和点C,(高速路右侧边缘),l2上的点M位于点A的北偏东30°方向上,且BM=千米,l3上的点N位于点M的北偏东α方向上,且cosα=,MN=2千米,点A和点N是城际线L上的两个相邻的站点.(1)求l2和l3之间的距离;(2)若城际火车平均时速为150千米/小时,求市民小强乘坐城际火车从站点A到站点N 需要多少小时?(结果用分数表示)2.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为30°,求平台DE的长;(结果保留根号)(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M的仰角为26.5°,他沿坡面DA走到坡脚A处,然后向大楼方向继续行走10米来到P处,测得广告底部N的仰角为53°,此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、Q在同一条直线上,求广告MN的长度.(参考数据:sin26.5≈0.45,tan26.5≈0.50,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)3.(1)如图1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD =AB.①求∠D的度数;②求tan75°的值.(2)如图2,点M的坐标为(2,0),直线MN与y轴的正半轴交于点N,∠OMN=75°.求直线MN的函数表达式.4.在Rt△ABC中,∠ACB=90°,AB=5,,D是斜边AB上一点,过点A 作AE⊥CD,垂足为E,AE交直线BC于点F.(1)当时,求线段BF的长;(2)当点F在边BC上时,设AD=x,BF=y,求y关于x的函数解析式,及其定义域;(3)当时,求线段AD的长.5.阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则sin B=,sin C=,即AD=c sin B,AD=b sin C,于是c sin B=b sin C,即.同理有,.所以…(*)即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:第一步:由条件a、b、∠A∠B;第二步:由条件∠A、∠B∠C;第三步:由条件c.(2)如图,已知:∠A=60°,∠C=75°,a=6,运用上述结论(*)试求b.6.(2020秋•衢江区期末)阅读材料:关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ,tan(α+β)=.利用这些公式可以将两角和的三角函数值转化成两个三角函数值的和(差),如tan75°=tan(30°+45°)==2+.问题解决:根据以上阅读材料,请选择适当的公式解答下列问题.(1)求sin75°;(2)如图,边长为2的正△ABC沿直线滚动,设当△ABC滚动240°时,C点的位置在C′,当△ABC滚动480°时,A点的位置在A′.①求tan∠CAC′的值;②试确定∠CAC′+∠CAA′的度数.7.阅读下面材料:小敏遇到这一个问题:已知α为锐角,且tanα=,求tan2α的值.小敏根据锐角三角函数及三角形有关的学习经验,先画出一个含锐角α的直角三角形:如图1,在Rt△ABC中,∠C=90°,∠B=α.她通过独立思考及与同学进行交流、讨论后,形成了构造2α角的几种方法:方法1:如图2,作线段AB的垂直平分线交BC于点D,连接AD.方法2:如图3,以直线BC为对称轴,作出△ABC的轴对称图形△ABC.方法3:如图4,以直线AB为对称轴,作出△ABC的轴对称图形△ABC.…请你参考上面的想法,根据勾股定理及三角函数等知识帮助小敏求tan2α的值.(一种方法即可)8.如图在等腰三角形ABC中,AB=AC,点D、E分别是AB、BC的中点,过点B作BF⊥AC于点F,BF与DE交于点G.(1)求证:DE⊥BF;(2)连结EF,若S△CEF=S△BDG,求cos∠CEF的值.9.数学老师布置了这样一个问题:如果α,β都为锐角.且tanα=,tanβ=.求α+β的度数.甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图1和图2.(1)请你分别利用图1,图2求出α+β的度数,并说明理由;(2)请参考以上思考问题的方法,选择一种方法解决下面问题:如果α,β都为锐角,当tanα=5,tanβ=时,在图3的正方形网格中,利用已作出的锐角α,画出∠MON,使得∠MON=α﹣β.求出α﹣β的度数,并说明理由.10.如图,已知BC是⊙O的直径,CA平分∠BCE,延长EC交⊙O于点D,连接DO并延长交AB于点F.(1)求证:AO⊥BD;(2)已知tan∠ACE=,求tan∠AFO.。

2023年中考九年级数学高频考点专题训练--锐角三角函数

2023年中考九年级数学高频考点专题训练--锐角三角函数

2023年中考九年级数学高频考点专题训练--锐角三角函数一、综合题1.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交∠O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为∠O切线;(2)若sin∠BAC=35,求tan∠AFO的值.2.如图,一个正方体木箱沿斜面下滑,正方体木箱的边长BE为2m,斜面AB的坡角为∠BAC,且tan∠BAC= 3 4.(1)当木箱滑到如图所示的位置时,AB=3m,求此时点B离开地面AC的距离;(2)当点E离开地面AC的距离是3.1m时,求AB的长.3.如图,在∠ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与∠ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.4.如图,以∠ABC的一边AB为直径的半圆O与边AC,BC的交点分别为点E,点D,且D是BE⌢的中点.(1)若∠A=80°,求∠DBE的度数.(2)求证:AB=AC.(3)若∠O 的半径为5cm,BC=12cm,求线段BE的长.5.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且∠DAM和∠BCE相似,求点M坐标.6.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC∠OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD∠OF于点D.(1)当AC的长度为多少时,∠AMC和∠BOD相似;(2)当点M恰好是线段AB中点时,试判断∠AOB的形状,并说明理由;(3)连结BC.当S∠AMC=S∠BOC时,求AC的长.7.如图1,在∠ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A 重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F,D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;,其他条件不(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= √6+√22变,求线段AM的长.8.(1)【基础巩固】如图1,在∠ABC中,D,E,F分别为AB,AC,BC上的点,DE∠BC,BF=CF,AF交DE于点G,求证:DG= EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG∠DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在∠ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∠BD交AD于点G,EF∠EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.9.在锐角∠ABC中,AB=4,BC=5,∠ACB=45°,将∠ABC绕点B按逆时针方向旋转,得到∠DBE.(1)当旋转成如图①,点E在线段CA的延长线上时,则∠CED的度数是度;(2)当旋转成如图②,连接AD、CE,若∠ABD的面积为4,求∠CBE的面积;(3)点M为线段AB的中点,点P是线段AC上一动点,在∠ABC绕点B按逆时针方向旋转过程中,点P的对应点P′,连接MP′,如图③,直接写出线段MP′长度的最大值和最小值.10.如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.(1)当BE=2时,求BD,EG的长.(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么tan∠1tan∠2的值是否会变化?若不变,求出该比值;若变化,请说明理由.(3)在整个运动过程中,当∠DCG为等腰三角形时,求BE长.11.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=75°,∠D=85°,则∠C =.(2)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3.求对角线AC的长.(3)已知:如图2,在平面直角坐标系xOy中,四边形ABCD是“等对角四边形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣√3),点D在y轴上,抛物线y=ax2+bx+c(a<0)过点A、D,且当﹣2≤x≤2时,函数y=ax2+bx+c取最大值为3,求二次项系数a的值.12.如图,已知BC为∠O的直径,点D为CE⌢的中点,过点D作DG∠CE,交BC的延长线于点A,连接BD,交CE于点F.(1)求证:AD是∠O的切线;(2)若EF=3,CF=5,tan∠GDB=2,求AC的长.13.已知:如图,AB为∠O的直径,C是BA延长线上一点,CP切∠O于P,弦PD∠AB于E,过点B作BQ∠CP于Q,交∠O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3√3,求∠C的度数;(3)如图3,在(2)的条件下,PD=6 √3,连接QC交BC于点M,求QM的长.14.定义:一边上的中线与另一边的夹角为30°的三角形称作美妙三角形。

中考数学专项复习《锐角三角函数》练习题(附答案)

中考数学专项复习《锐角三角函数》练习题(附答案)

中考数学专项复习《锐角三角函数》练习题(附答案)一、单选题1.如图,在△ABC中CA=CB=4,cosC=14,则sinB的值为()A.√102B.√153C.√64D.√1042.在Rt△ABC中,△C=90°,cosA=35,那么tanB=()A.35B.45C.43D.34 3.如图,在Rt△ABC中∠ACB=90°,BC=1,AB=2则下列结论正确的是()A.sinA=√32B.tanA=12C.cosB=√32 D.tanB=√34.如图,已知△ABC内接于△O,△BAC=120°,AB=AC,BD为△O的直径,AD=6,则BC的长为()A.2√3B.6C.2√6D.3√3 5.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里6.在矩形ABCD中AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F设∠AGE=α(0°<α<90°),下列四个结论:①AE= CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=1cos2α,正确的个数是()A.1B.2C.3D.4 7.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得△PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.11−sinαB.11+sinαC.11−cosαD.11+cosα8.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,下列结论:①△ABC的形状是等腰三角形;②△ABC的周长是2√10+√2;③点C到AB边的距离是38√10;④tan∠ACB的值为2,正确的个数为()A .0个B .1个C .2个D .3个9.在Rt△ABC 中△ACB=90°,BC=1,AB=2,则下列结论正确的是( )A .sinA=√32B .cosA=√32C .tanA=12D .cotA=√3310.已知:如图,正方形网格中∠AOB 如图放置,则cos∠AOB 的值为( )A .2√55B .2C .12D .√5511.如图,菱形ABCD 的周长为20cm ,DE△AB ,垂足为E ,cosA=45,则下列结论中正确的个数为( )①DE=3cm ;②EB=1cm ;③S 菱形ABCD =15cm 2A .3个B .2个C .1个D .0个12.如图,在Rt △ABC 中 ∠ABC =90°,以其三边为边向外作正方形,连接EH ,交AC 于点P ,过点P 作PR ⊥FG 于点R.若tan∠AHE =12,EH =8√5,则PR 的值为( )A.10B.11C.4√5D.5√5二、填空题13.如图,在RtΔABC中∠B=90°,AB=3 ,BC=4 ,点M、N分别在AC、AB两边上,将ΔAMN沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当ΔDCM是直角三角形时,则tan∠AMN的值为.14.如图,在△ABC中∠ABC=60°,AB=6,BC=10将△ABC绕点B顺时针旋转得到△A1BC1(点A的对应点是点A1,点C的对应点是点C1,A1落在边BC上,连接AC1,则AC1的长为.15.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C 的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.16.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.17.如图,某高为60米的大楼AB旁边的山坡上有一个“5G”基站DE,从大楼顶端A 测得基站顶端E的俯角为45°,山坡坡长CD=10米,坡度i=1:√3,大楼底端B 到山坡底端C的距离BC=30米,则该基站的高度DE=米.18.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1,2号楼进行测高实践,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,则2号楼的高度为(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)三、综合题19.(1)已知Rt△ABC中△C=90°,△A=30°,BC= √3,解直角三角形.(2)已知△ABC中△A=45°,AB=4,BC=3,求AC的长.20.如图1,已知∠PAQ=60°.请阅读下列作图过程,并解答所提出的问题.△如图2,以点A为圆心,任意长为半径画弧,分别与AP,AQ交于B,C两点;△如图3,分别以B,C两点为圆心,以大于12BC的长为半径画弧,两弧交于点D;△如图4,作射线AD,连接BC,与AD交于点E.问题:(1)∠ABC的度数为.(2)若AB=4,求AE的长.21.如图,在△ABC中△C=60°,△O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是△O的切线;(2)若AB=2 √3,求图中阴影部分的面积.(结果保留π和根号)22.如图,物理教师为同学们演示单摆运动,单摆左右摆动中在OA的位置时俯角△EOA=30°,在OB的位置时俯角△FOB=60°,若OC△EF,点A比点B高7cm.求:(1)单摆的长度(√3≈1.7);(2)从点A摆动到点B经过的路径长(π≈3.1).23.已知:如图,AB是△O的直径,C是△O上一点,OD△BC于点D,过点C作△O 的切线,交OD的延长线于点E,连接BE.(1)求证:BE与△O相切;(2)连接AD并延长交BE于点F,若OB=9,sin△ABC= 23,求BF的长.24.如图,AB是△O的直径,OE垂直于弦BC,垂足为F,OE交△O于点D,且△CBE=2△C.(1)求证:BE与△O相切;(2)若DF=9,tanC= 34,求直径AB的长.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】A8.【答案】C9.【答案】B10.【答案】D11.【答案】A12.【答案】B13.【答案】1或214.【答案】1415.【答案】(20√3−20)16.【答案】√31817.【答案】(25﹣5 √3)18.【答案】45.8米19.【答案】(1)解:在Rt△ABC中△C=90°,△A=30°∴△B=90°-△A=60°,AB=2BC=2 √3∴AC= √AB2−BC2=√(2√3)2−(√3)2=3;(2)解:如图,过点B作BD△AC于D∵△A=45°∴△ABD=△A=45°∴AD=BD∵AB=4,AD2+BD2=AB2∴AD=BD= 2√2在Rt△BCD中BC=3∴CD=√BC2−BD2=1∴AC=AD+CD= 2√2+1.20.【答案】(1)60°(2)由作图可知AB=AC,AD平分∠PAQ∴AE⊥BC.∵∠PAQ=60°∴∠BAE=30°.在Rt△ABC中AE=AB⋅cos30°=4×√32=2√3.答:AE的长为2√3.21.【答案】(1)解:如图,连接OA;∵△C=60°∴△AOB=120°;而OA=OB∴△OAB=△OBA=30°;而AB=AP∴△P=△ABO=30°;∵△AOB=△OAP+△P∴△OAP=120°﹣30°=90°∴PA是△O的切线.(2)解:如图,过点O作OM△AB,则AM=BM= √3∵tan30°= OMAM sin30°=OMAO∴OM=1,OA=2;∴S△AOB=12·AB·OM= 12× 2√3×1= √3S扇形OAB =120π⋅22360= 4π3∴图中阴影部分的面积= 4π3−√3.22.【答案】(1)解:如图,过点A作AP△OC于点P,过点B作BQ△OC于点Q∵△EOA=30°、△FOB=60°,且OC△EF∴△AOP=60°、△BOQ=30°设OA=OB=x则在Rt△AOP中OP=OAcos△AOP= 1 2x在Rt△BOQ中OQ=OBcos△BOQ= √32x由PQ=OQ﹣OP可得√32x﹣12x=7解得:x=7+7 √3≈18.9(cm)答:单摆的长度约为18.9cm(2)解:由(1)知,△AOP=60°、△BOQ=30°,且OA=OB=7+7 √3∴△AOB=90°则从点A摆动到点B经过的路径长为90⋅π⋅(7+7√3)180≈29.295答:从点A摆动到点B经过的路径长为29.295cm 23.【答案】(1)证明:连接OC∵OD△BC∴△COE=△BOE在△OCE和△OBE中∵{OC=OB∠COE=∠BOEOE=OE∴△OCE△△OBE∴△OBE=△OCE=90°,即OB△BE∵OB 是△O 半径∴BE 与△O 相切.(2)解:过点D 作DH△AB ,连接AD 并延长交BE 于点F∵△DOH=△BOD ,△DHO=△BDO=90°∴△ODH△△OBD∴OD OB =OH OD =DH BD又∵sin△ABC= 23,OB=9 ∴OD=6易得△ABC=△ODH∴sin△ODH= 23 ,即 OH OD = 23∴OH=4∴DH= √OD 2−OH 2 =2 √5又∵△ADH△△AFB∴AH AB = DH FB 1318 = 2√5FB∴FB= 36√51324.【答案】(1)证明:∵OE 垂直于弦BC∴△BOE+△OBF=90°∵△CBE=2△C , △BOE=2△C∴△CBE=△BOE∴△CBE+△OBF=90°∴△OBE=90°∴BE 与△O 相切;(2)解:∵OE 垂直于弦BC∴△CFD=△BFO=90°,CF=BF.∵DF=9,tanC= 34∴CF=BF=12.设半径长是x,则OF=x-9在Rt△BOF中∵x2=(x-9)2+122∴x= 25 2∴直径AB=25.。

2023年中考数学一轮复习:锐角三角函数

2023年中考数学一轮复习:锐角三角函数

2023年中考数学一轮复习:锐角三角函数一、单选题1.如图,一座厂房屋顶人字架的跨度12AC =m ,上弦AB BC =,25BAC ∠=︒.若用科学计算器求上弦AB 的长,则下列按键顺序正确的是( )A .1225cos ÷=B .625cos ÷=C .625tan ÷=D .625sin ÷=2.如图,一块矩形木板ABCD 斜靠在墙边(OC⊥OB ,点A ,B ,C ,D ,O 在同一平面内) 。

已知AB=a ,AD=b ,⊥BCO=θ,则点A 到OC 的距离等于( )A .asinθ+bsinθB .acosθ+bcosθC .asinθ+bcosθD .acosθ+bsinθ3.如图,在⊥ ABC 中,⊥C =90°,以OA 为半径的半圆经过Rt ⊥ABC 的顶点B ,交直角边AC 于点E ,且B ,E 是半圆的三等分点,弧BE 的长为43π,则图中阴影部分的面积为( )A .38π B .83π C .38πD .83π二、填空题4.在 Rt ABC 中, 90ACB ∠=︒ , 6BC = , 3sin 5A =,则 AB = . 5.计算: ()0212014()2sin 6012π----︒+= .6452sin 60︒-︒= .三、综合题7.如图,在⊥ABC 中,AB=AC ,以AC 边为直径作O 交BC 边于点D ,过点D 作DE⊥AB 于点E ,ED 、AC 的延长线交于点F.(1)求证:EF 是O 的切线;(2)若EB=6,且sin⊥CFD=35,求O 的半径.8.如图,四边形ABCD 是平行四边形,延长AD 至点E ,使DE =AD ,连接BD 、CE.(1)求证:四边形BCED 是平行四边形;(2)若DA =DB =4,cosA =14,求点B 到点E 的距离. 9.(1)计算:02012460sin ⨯︒(2)求代数式的值:2222(2)42x x x x x x -÷++-+,其中12x =.10.测量计算是日常生活中常见的问题,如图,建筑物BC 的屋顶有一根旗杆AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°,观测旗杆底部B 点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2).(1)若已知CD =20米,求建筑物BC 的高度; (2)若已知旗杆的高度AB =5米,求建筑物BC 的高度.11.随着精准扶贫政策的落地实施,小亮家所在的村落进行了整村搬迁,小亮同家人一起告别了祖辈们世代居住的窑洞,搬进了宽敞明亮的新房.他家的新房全部安装的是内倒式窗户.为帮助家人确定窗边家具摆放位置,小亮想要知道开启窗扇时,窗扇顶端向屋内移动的水平距离.如图,小亮测得窗扇高度AB=80cm,开启时的最大张角⊥A=22.5°,窗扇开启后的位置为AB'.(1)请根据这些数据帮助小亮计算开启窗扇时,窗扇顶端向屋内移动的最大水平距离(不考虑窗扇的厚度,参考数据sin22.5°≈0.38,cos22.5°≈0.92,tan22.5°≈0.41);(2)小亮的爸爸说:“咱家安装窗户总共花了4800元,隔壁小明家安装的是平移式窗户,他家窗户总面积比咱家多3平方米,但他家总共才花了3680元,咱家安装的这种内倒式窗户每平方米的价格是小明家安装的平移式窗户每平方米价格的1.5倍.”请你根据以上信息求出小亮家安装的这种内倒式窗户每平方米多少元?12.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,⊥ADB=30°.(1)试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;(2)把⊥BCD 与⊥MEF 剪去,将⊥ABD绕点A顺时针旋转得⊥AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当⊥AFK 为等腰三角形时,求β的度数;(3)若将⊥AFM沿AB方向平移得到⊥A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP⊥AB时,求平移的距离.13.如图,在⊥ABC中,以BC为直径的⊥O交AC于点D,点E在⊥O上,且BD DE=,连接BE交AC于点F,已知BA=BF.(1)求证:AB是⊥O的切线;(2)若AF=6,35ABAC=,求⊥O的直径.14.如图,在⊥O中,C,D是直径AB上的两点,且AC=BD,EG⊥AB,FH⊥AB,交AB于C、D,点E,G,F,H在⊥O上.(1)若EG=8,AC=2,求⊥O半径;(2)求证:AE=BF;(3)若C,D分别为OA,OB的中点,则AE=EF=FB成立吗?请说明理由.15.如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏东60°方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M小区位于北偏东30°方向,测绘员从A处出发,沿主输气管道步行到达C 处,此时测得M小区位于北偏西60°方向.(1)求⊥AMC与⊥ACM度数.(2)现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短,且AC=2000米,求A小区与支管道连接点N的距离.16.在平面直角坐标系中,一次函数()0y ax b a=+≠的图形与反比例函数()0ky kx=≠的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH y⊥轴,垂足为H,3OH=,4tan3AOH∠=,点B的坐标为()2m-,.(1)求 AHO 的周长;(2)求该反比例函数和一次函数的解析式;(3)写出不等式 kax b x+≥ 的解集.17.(1)计算: ()(04116tan 303--+︒-- ;(2)已知 ()223400x xy y y --=≠ ,试求代数式2x yx y-+ 的值. 18.如图,ABCD 中,点E ,F 分别在BC ,AD 上,BE=DF ,连结AE ,CF 。

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。

xx 。

]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。

中考数学压轴题专题锐角三角函数的经典综合题及答案

中考数学压轴题专题锐角三角函数的经典综合题及答案

中考数学压轴题专题锐角三角函数的经典综合题及答案一、锐角三角函数1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3==米,639∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF 是平行四边形,得出BD=AF ,BF=AD ,进而判断出△FAE ∽△ACD ,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF 是平行四边形,得出BD=AF ,BF=AD ,进而判断出△ACD ∽△HEA ,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=BD ,CD=AE , ∴AF=AC . ∵∠FAC=∠C=90°, ∴△FAE ≌△ACD ,∴EF=AD=BF ,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD . ∵AD ∥BF , ∴∠EFB=90°. ∵EF=BF , ∴∠FBE=45°, ∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵3BD ,3AE , ∴3AC CDBD AE==.∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=3EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵3BD ,3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD= ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.4.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(345)米,面积是1470平方米.【解析】试题分析:先根据两个坡比求出AE和BF的长,然后利用勾股定理求出AD和BC,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC,梯形的面积公式可得出答案.试题解析:∵迎水坡坡比(DE与AE的长度之比)为1:0.6,DE=30m,∴AE=18米,在RT△ADE中,22+34DE AE∵背水坡坡比为1:2,∴BF=60米,在RT△BCF中,22CF BF+5∴周长345(345)米,面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.6.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.(1)求证:CD是⊙O的切线;(2)若AB=6,∠ABE=60°,求AD的长.【答案】(1)详见解析;(2)9 2【解析】【分析】(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.【详解】证明:如图,连接OE,∵AE平分∠DAC,∴∠OAE=∠DAE.∵OA=OE,∴∠AEO=∠OAE.∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,AE=AB·cos30°=6×32=33,在Rt△ADE中,∠DAE=∠BAE=30°,∴AD=cos30°×AE=3×33=9 2 .【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.7.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP3,EH=2PH=2x,由此FH=31,CF=33,由△BAD≌△PAE,得BD=EP3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=3tan∠EAF=23tan∠EAC=6-33【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=3∴tan∠EAF=EFAF 331+=23根据对称性可知当点E在AC的上方时,同法可得tan∠EAC 6-33.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.【答案】(1)证明见解析(2)613 【解析】【分析】 (1)根据▱ABCD 中,AC ⊥BC ,而△ABC ≌△AEC ,不难证明;(2)依据已知条件,在△ABD 或△AOC 作垂线AF 或OF ,求出相应边的长度,即可求出∠ABD 的正弦值.【详解】(1)证明:∵将△ABC 沿AC 翻折得到△AEC ,∴BC =CE ,AC ⊥CE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴AD =CE ,AD ∥CE , ∴四边形ACED 是平行四边形,∵AC ⊥CE ,∴四边形ACED 是矩形.(2)解:方法一、如图1所示,过点A 作AF ⊥BD 于点F ,∵BE =2BC =2×3=6,DE =AC =4,∴在Rt △BDE 中,2222BD BE DE 64213=+=+=∵S △BDE =12×DE•AD =12AF•BD , ∴AF 61313213=, ∵Rt △ABC 中,AB 2234+5,∴Rt △ABF 中,sin ∠ABF =sin ∠ABD =6136135AF AB ==方法二、如图2所示,过点O 作OF ⊥AB 于点F ,同理可得,OB =1132BD = ∵S △AOB =11OF AB OA BC 22⋅=⋅,∴OF =23655⨯=, ∵在Rt △BOF 中, sin ∠FBO =0661365513F OB ==, ∴sin ∠ABD =61365.【点睛】本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .9.在Rt △ABC 中,∠ACB=90°,AB=7,AC=2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A′B′C(点A ,B 的对应点分别为A',B′),射线CA′,CB′分別交直线m 于点P ,Q .(1)如图1,当P 与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P ,Q 分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q 的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ =72;(3)存在,S 四边形PA 'B ′Q =3【解析】【分析】(1)由旋转可得:AC =A 'C =2,进而得到BC =∠A 'BC =90°,可得cos ∠A 'CB 'BC A C ==∠A 'CB =30°,∠ACA '=60°;(2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB =32=,依据tan ∠Q =tan ∠A2=BQ =BC =2,进而得出PQ =PB +BQ 72=;(3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC =,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB=AC =2,∴BC =∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 'BC A C ==∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A =∴PB =32=.∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A2=,∴BQ =BC =2,∴PQ =PB +BQ 72=;(3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ ∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC =, 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min =PQ min ∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =3;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)2,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,2,设AE=CE=x,则222-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=2,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,解得:x=52,故可得sin∠BEC=35CFCE,AE=52;(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=24AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.11.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.12.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【答案】拦截点D处到公路的距离是(500+500)米.【解析】试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.考点:解直角三角形的应用-方向角问题.13.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)【答案】(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为127.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x 的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:12,设PF=5x,CF=12x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=AB BC,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+120x.在RT△AEP中,tan∠APE=1805490123 AE xEP x-≈=+,∴x=207,∴PF=5x=10014.37≈.答:此人所在P的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×207≈37.1,BC+CP=90+37.1=127.1.答:从P到点B的路程约为127.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.14.如图,半圆O的直径AB=20,弦CD∥AB,动点M在半径OD上,射线BM与弦CD 相交于点E(点E与点C、D不重合),设OM=m.(1)求DE的长(用含m的代数式表示);(2)令弦CD所对的圆心角为α,且sin4 =25α.①若△DEM的面积为S,求S关于m的函数关系式,并求出m的取值范围;②若动点N在CD上,且CN=OM,射线BM与射线ON相交于点F,当∠OMF=90°时,求DE的长.【答案】(1)DE=10010mm-;(2)①S=2360300m mm-+,(5013<m<10),②DE=5 2 .【解析】【分析】(1)由CD∥AB知△DEM∽△OBM,可得DE DMOB OM=,据此可得;(2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =12∠COD ,据此可得sin ∠DOP =sin ∠DMQ =45、sin ∠ODP =35,继而由OM =m 、OD =10得QM =DM sin ∠ODP =35(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得CD DM BO OM =,求得OM =5013,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×35=6,可得OM =8,根据(1)所求结果可得答案. 【详解】(1)∵CD ∥AB , ∴△DEM ∽△OBM ,∴DE DM OB OM =,即1010DE m m-=, ∴DE =10010m m -; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,∵OC =OD 、OP ⊥CD ,∴∠DOP =12∠COD , ∵sin 2α=45, ∴sin ∠DOP =sin ∠DMQ =45,sin ∠ODP =35, ∵OM =m 、OD =10,∴DM =10﹣m ,∴QM =DM sin ∠ODP =35(10﹣m ), 则S △DEM =12DE •MQ =12×10010m m -×35(10﹣m )=2360300m m m-+, 如图2,∵PD =OD sin ∠DOP =10×45=8, ∴CD =16,∵CD ∥AB ,∴△CDM ∽△BOM ,∴CD DM BO OM =,即1610=10OM OM-, 解得:OM =5013, ∴5013<m <10, ∴S =2360300m m m-+,(5013<m <10). ②当∠OMF =90°时,如图3,则∠BMO =90°,在Rt △BOM 中,BM =OB sin ∠BOM =10×35=6, 则OM =8,由(1)得DE =100108582-⨯=. 【点睛】本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.15.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】 【分析】(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQOC OG=,由此构建方程即可解决问题. 【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,∴∠BAC=∠DCO , ∵∠DOC=∠ACB , ∴△DOC ∽△BCA , ∴AC AB BCOC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ), ∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t ,当点E 在∠BAC 的平分线上时, ∵EP ⊥AB ,EC ⊥AC , ∴PE=EC ,∴34t=8-54t ,∴t=4.∴当t 为4秒时,点E 在∠BAC 的平分线上. (2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC ) =1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在.∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭,∴t=52时,四边形OPEG 的面积最大,最大值为683.(4)存在.如图,连接OQ . ∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴EC GQOC OG=,∴358544345ttt -=-,整理得:5t2-66t+160=0,解得165t=或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.2.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为3,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(0,3)(3)见解析【解析】【分析】(1)把点B的坐标代入抛物线解析式求得系数b的值即可;(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=12AD,MT=MD,推知MD=12AD,根据△ADT的外接圆圆心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD=12AD.根据点A、D的坐标求得点M的坐标即可;(3)如图3,作MH⊥x于点H,则AH=HT=12AT.易得H(a﹣1,0),T(2a﹣1,0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a﹣1≤x≤2a﹣1.需要分类讨论:(i)当2111(1)211aa a-⎧⎨----⎩,即413a<,根据抛物线的增减性求得y的极值.(ii)当0112111(1)211aaa a<-⎧⎪->⎨⎪--<--⎩,即43<a≤2时,根据抛物线的增减性求得y的极值.(iii)当a﹣1>1,即a>2时,根据抛物线的增减性求得y的极值.【详解】解:(1)把点B(3,0)代入y=x2+bx﹣3,得32+3b﹣3=0,解得b=﹣2,则该二次函数的解析式为:y=x2﹣2x﹣3;(2)①∠DMT的度数是定值.理由如下:如图1,连接AD .∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4. ∴抛物线的对称轴是直线x =1. 又∵点D 的纵坐标为∴D (1,由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1), ∴A (﹣1,0),B (3,0). 在Rt △AED 中,tan ∠DAE=2DE AE ==. ∴∠DAE =60°.∴∠DMT =2∠DAE =120°.∴在点T 的运动过程中,∠DMT 的度数是定值; ②如图2,∵MT =12AD .又MT =MD , ∴MD =12AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上,∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12AD . ∵A (﹣1,0),D (1,∴点M 的坐标是(0(3)如图3,作MH ⊥x 于点H ,则AH =HT =12AT . 又HT =a ,∴H (a ﹣1,0),T (2a ﹣1,0). ∵OH≤x≤OT ,又动点T 在射线EB 上运动, ∴0≤a ﹣1≤x≤2a ﹣1. ∴0≤a ﹣1≤2a ﹣1. ∴a≥1, ∴2a ﹣1≥1. (i )当2111(1)211a a a -⎧⎨----⎩,即14a 3时,当x =a ﹣1时,y 最大值=(a ﹣1)2﹣2(a ﹣1)﹣3=a 2﹣4a ; 当x =1时,y 最小值=4.(ii )当0112111(1)211a a a a <-⎧⎪->⎨⎪--<--⎩,即43<a≤2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.(iii)当a﹣1>1,即a>2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.3.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04 BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.4.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35-,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,52).连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP的表达式为:y56=-x,当x=﹣2时,y53=,即:点M坐标为(﹣2,5 3),|PM﹣OM|的最大值为:2222555(32)()2()233-++--+=61.(3)存在.∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=DC2+MD2,即:(6﹣a)2=22+a2,解得:a83=,则:MC103=,过点D作x轴的垂线交x轴于点N,交EC于点H.在Rt△DMC中,12DH•MC12=MD•DC,即:DH10833⨯=⨯2,则:DH85=,HC2265DC DH=-=,即:点D的坐标为(61855-,);设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣61010,D′坐标为(618551010,-++),而点E坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =222)+=24m +,2'ED =22248((55+=21285m +.若△A ′ED ′为直角三角形,分三种情况讨论:①当2''A D +2'A E=2'ED 时,36+24m -=21285m +,解得:m ,此时D ′(61855,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+21285m +=24m +,解得:m =D ′(61855,-)为(-6,2);③当2'A E +2'ED =2''A D 时,24m +21285m +=36,解得:m =或m,此时D ′(61855,-+)为(-6,2)或(35,195). 综上所述:D 坐标为:(0,4)或(﹣6,2)或(35,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.5.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y 轴交于点C . (1)求抛物线表达式;(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 下方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30, ①求点P 坐标;②过此二点的直线交y 轴于F, 此直线上一动点G,当最小时,求点G 坐标. (3)如图2,⊙O1过点A 、B 、C 三点,AE 为直径,点M 为 上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【解析】【分析】(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为2GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;(3)先用面积法求出sin∠ACB=1313,tan∠ACB=23,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MBBN=23,所以BN=32MB,当MB为直径时,BN的长度最大.【详解】(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),∴1412554a ba b-++⎧⎨-++⎩=,=解得16ab⎧⎨-⎩=,=∴抛物线表达式为y=x²﹣6x+4.(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),∴154k mm-+⎧⎨⎩==,解得14km=,=-⎧⎨⎩∴直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,∴S△PBC=12×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,当t=2时,y=-4当t=3时,y=-5,∴点P坐标为(2,-4)或(3,-5);②当点P为(2,-4)时,∵直线BC解析式为:y=-x+4, QP∥BC,设直线QP的解析式为:y=-x+n,将点P代入,得-4=-2+n,n=-2,∴直线QP的解析式为:y=-x-2,∴F(0,-2),∠GOR=45°,∴GB+22GF=GB+GR当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,同理可得点G的坐标为(0,-2),(3) )∵A(1,-1),B(5,-1)C(0,4),∴26,2,∵S△ABC=12AC×BCsin∠ACB=12AB×5,∴sin∠ACB=1313,tan∠ACB=23,∵AE为直径,AB=4,∴∠ABE=90°,∵sin∠AEB=sin∠ACB=21313=4AE,∴AE=213,∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,∴tanN=MBBN =23,∴BN=32MB,当MB为直径时,BN的长度最大,为313.【点睛】题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.6.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE= 2,cos∠ACD= 45,求tan∠AEC的值及CD的长.【答案】tan∠AEC=3, CD=1212 5【解析】解:在RT△ACD与RT△ABC中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos∠ABC=cos∠ACD=4 5在RT△ABC中,45BCAB令BC=4k,AB=5k 则AC=3k由35BE AB = ,BE=3k 则CE=k,且CE=2 则k=2,AC=32 ∴RT △ACE 中,tan ∠AEC=AC EC =3 ∵RT △ACD 中cos ∠ACD=45CD AC = ,,CD=12125.7.在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题:(1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;(2)当∠EMF 绕点M 旋转到如图②,图③的位置时,请分别写出线段BE ,CF ,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan ∠BEM=,AN=+1,则BM= ,CF= .【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】 (1)由等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,可得BM=MN ,∠BMN=135°,又∠EMF=135°,可证明的△BME ≌△NMF ,可得BE=NF ,NC=NM=BM 进而得出结论;(2)①如图②时,同(1)可证△BME ≌△NMF ,可得BE ﹣CF=BM ,②如图③时,同(1)可证△BME ≌△NMF ,可得CF ﹣BE=BM ;(3) 在Rt △ABM 和Rt △ANM 中,,可得Rt △ABM ≌Rt △ANM ,后分别求出AB 、 AC 、 CN 、BM 、 BE 的长,结合(1)(2)的结论对图①②③进行讨论可得CF 的长.【详解】(1)证明:∵△ABC 是等腰直角三角形,∴∠BAC=∠C=45°,∵AM 是∠BAC 的平分线,MN ⊥AC ,∴BM=MN ,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.8.问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.【答案】(1)证明见解析,直径OP=2;(2)证明见解析,MN的长为定值,该定值为2;(3)①MN=;②证明见解析;(4)MN取得最大值2.【解析】试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.试题解析:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=OP=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,∴MN=OP•sin∠MQN=2×sin60°=2×=,∴MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.考点:圆的综合题.9.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.【答案】(1)证明见解析; (2) tan∠BCO=3 9.【解析】试题分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)过O作OF⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=32OB ∵BD=DC, BF=FD,∴FC=3BF=332OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,BF=3OB,FC=3BF=33OB是解题关键.10.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=3,tan∠PDA=34,求OE的长.【答案】(1)见解析;(25.【解析】【分析】(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=34,可求出CD=2,进而求得OC=32,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.【详解】(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,∵DE⊥PO,∴∠PAO=∠E=90°,∵∠AOP=∠EOD,∴∠APO=∠EDO,∴∠EPD=∠EDO.(2)连接OC,∴PA=PC=3,∵tan∠PDA=34,∴在Rt△PAD中,AD=4,PD=22PA AD+=5,∴CD=PD-PC=5-3=2,∵tan∠PDA=34,∴在Rt△OCD中,OC=32,OD=22OC CD+=52,∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,∴PDDO =PEDE=DEOE=2,∴DE=2OE,在Rt△OED中,OE2+DE2=OD2,即5OE2=252⎛⎫⎪⎝⎭=254,∴OE=5.【点睛】本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan∠PDA=34,得线段的长是解题关键.。

相关文档
最新文档