第二章导数与微分自测题B

合集下载

导数与微分习题及答案

导数与微分习题及答案

导数与微分习题及答案第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。

C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 ? 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x )C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.10. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i=f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。

导数与微分习题及答案

导数与微分习题及答案

第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。

大学高等数学导数与微分 自测自检题 含参考解答

大学高等数学导数与微分  自测自检题  含参考解答

第二章 导数与微分自测自检题参考解答一、填空题1、设()(1)(2)()f x x x x x n =+++ ,则()0f '= 解法一:由定义000()(0)(1)(2)()0(0)limlim0lim(1)(2)()!x x x f x f x x x x n f x x x x x n n →→→-+++-'==-=+++= 解法二:由于()(1)(2)()()f x x x x n x '=++++ ,因此()0f '=!n .2、设()01f x '=-,则()()00lim2h hf x h f x h →---=解:()()()()()()()()()()()()()()()()()()()()()()()()()0000000000000000000000000200lim21lim 21lim21lim 2(2)212lim(2)lim 212(2)lim lim2h h h h h h h h hf x h f x h f x h f x h hf x h f x f x f x h hf x h f x f x h f x h hf x h f x f x h f x h hf x h f x f x h f x h →→→→→→-→-→---=---=--+--=+--+---⋅+--=+--+---⋅+--=+--+---+-()()()000121hf x f x -=''-+=3、设()y y x =由方程cos()0x y e xy +-=所确定,则0d x y==解:对方程两边直接求微分,得到()d cos()0x y e xy +-=,即()()()d d sin d d 0x y e x y xy y x x y +++⋅+=,解出()()sin d d sin x y x ye y xy y x e x xy +++=-+. 在方程cos()0x y e xy +-=中,当0x =时,0y =,因此()()0sin d d d sin x y x y x x y e y xy y x x e x xy ++===+=-=-+.4、曲线arctan y x =在1x =处的切线方程是 ,法线方程是 解:由于(1)4y π=,()21111(1)arctan 12x x y x x ==''===+,因此曲线arctan y x =在1x =处的切线方程为()1142y x π-=-,法线方程为()214y x π-=--,即曲线的切线方程为2420x y π-+-=,法线方程为8480x y π+--=.5、设()f x 在0x 可导,0x x x ∆=-,()()0y f x f x ∆=-,则0lim x y ∆→∆=解:()f x 在0x 可导,则()f x 在0x 连续,由连续的定义,0lim x y ∆→∆=0.二、选择题1、设可导函数()f x 是奇函数,则()f x '是( )A 偶函数B 奇函数C 非奇非偶函数D 不能确定解:因为()f x 是奇函数,因此()()f x f x -=-,即()()f x f x =--,所以()f x '=()()()()()1f x f x f x '''--=---=-,亦即,()()f x f x ''-=,()f x '是偶函数。

高等数学第二章导数与微分习题

高等数学第二章导数与微分习题

h0
h
lim f ( x) f ( x x) f ( x) .
x0
x
lim f ( x x) f ( x x)
x0
x
lim f ( x x) f ( x) f ( x) f ( x x)
x0
x
lim f ( x x) f ( x) lim f ( x) f ( x x)
习题课
f (a) lim f ( x) f (a) lim ( x a)F ( x) 0
xa x a
xa
xa
1
lim ( x a)F ( x) 0
x a 0
xa
g
(a
)
x
lim
a 0
g(
x) x
g(a a
)
2
例2.
研究函数
f
(
x
)
1 x 1 x
解 . lim f ( x) lim
x0
x
x0
x
14
例16 .
f
(
x)
ln x
(1
x)
x0 x0
求 f ( x) .
)[
f (0 0) f (0) ln(1 x) x0 0 ,
0
f (0 0) lim x 0 , f ( x) 在 x 0 处连续 .
x 0
f (0)
ln(1
x)
x
0
1
1
x
1
x0
f (0)
lim
(n)
(1)n n! ( x 1)n1
,
23
例24 . 试从 d x 1 导出: d y y
1.
d d
2x y2

(完整版)第二章导数与微分(答案)

(完整版)第二章导数与微分(答案)

x 第二章导数与微分(一)f X 0 X f X 0Ix 0X3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A )5. 若函数f x 在点a 连续,则f x 在点a ( D )C . a6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C .-1 D .不存在7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A )A . 8B . 12C . -6D . 68.设y e f x 且fx 二阶可导,则y ( D )A . e f xB f X r e ff X££fX丄2x C . e f x f x D . ef x9.若 f x axe , x 0在x 0处可导,则a , b 的值应为 b sin2x,(A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到X ox 时,相应函数的改变量f x 0 x B .f x 0 x C . f x 0X f X 0 f X 。

x2 .设f x 在x o 处可,则limf X 0 B .X oC . f X 0D . 2 f X 0A .必要不充分条件B . 充分不必要条件C .充分必要条件既不充分也不必要条件4.设函数y f u 是可导的,且ux2,则 dy ( C )x 2 B . xf x 2C .2 22xf x D . x f xD .有定义10•若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A )A •一定都没有导数B •—定都有导数C .恰有一个有导数D •至少一个有导数11.函数fx 与g x 在x 0处都没有导数,则Fxg x 在 x o 处(D )13 . y arctg 1,贝U yxA .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12.已知F xf g x ,在 X X 。

自测题(1-7章附参考答案)-高等数学上册.

自测题(1-7章附参考答案)-高等数学上册.

第一章函数与极限一、选择题:1.函数的定义域是()(A; (B; (C;(D.2.函数的定义域是()(A;(B;(C;(D.3、函数是()(A偶函数; (B奇函数;(C非奇非偶函数;(D奇偶函数.4、函数的最小正周期是()(A2; (B; (C 4 ; (D .5、函数在定义域为()(A有上界无下界; (B有下界无上界;(C有界,且;(D有界,且.6、与等价的函数是()(A ; (B ; (C ; (D .7、当时,下列函数哪一个是其它三个的高阶无穷小()(A);(B);(C);(D).8、设则当()时有.(A; (B;(C; (D任意取 .9、设,则((A-1 ; (B1 ; (C0 ; (D不存在 .10、()(A1; (B-1;(C0; (D不存在.二、求下列函数的定义域:2、 .三、设(1)试确定的值使;(2)求的表达式 .四、求的反函数.五、求极限:1、;2、;3、;4、;5、当时,;6、 .六、设有函数试确定的值使在连续 .七、讨论函数的连续性,并判断其间断点的类型 .八、证明奇次多项式:至少存在一个实根 .第二章导数与微分一、选择题:1、函数在点的导数定义为()(A);(B);(C);(D);2、若函数在点处的导数,则曲线在点(处的法线()(A)与轴相平行;(B)与轴垂直;(C)与轴相垂直;(D)与轴即不平行也不垂直:3、若函数在点不连续,则在 ((A)必不可导;(B)必定可导;(C)不一定可导;(D)必无定义.4、如果=(),那么.(A ;(B ;(C ;(D .5、如果处处可导,那末()(A);(B);(C);(D).6、已知函数具有任意阶导数,且,则当为大于2的正整数时,的n阶导数是()(A);(B);(C);(D).7、若函数,对可导且,又的反函数存在且可导,则=()(A);(B);(C);(D).8、若函数为可微函数,则()(A)与无关;(B)为的线性函数;(C)当时为的高阶无穷小;(D)与为等价无穷小.9、设函数在点处可导,当自变量由增加到时,记为的增量,为的微分,等于()(A)-1;(B)0;(C)1;(D).10、设函数在点处可导,且,则等于().(A)0;(B)-1;(C)1;(D) .二、求下列函数的导数:1、;2、();3、;4、;5、设为的函数是由方程确定的;6、设,,求.三、证明,满足方程.四、已知其中有二阶连续导数,且,1、确定的值,使在点连续;2、求五、设求.六、计算的近似值 .七、一人走过一桥之速率为4公里/小时,同时一船在此人底下以8公里/小时之速率划过,此桥比船高200米,问3分钟后人与船相离之速率为多少?第三章微分中值定理一、选择题:1、一元函数微分学的三个中值定理的结论都有一个共同点,即()(A)它们都给出了ξ点的求法 .(B)它们都肯定了ξ点一定存在,且给出了求ξ的方法。

《微积分》第2章 导数与微分 单元测试题

《微积分》第2章 导数与微分 单元测试题

第二章 导数与微分 单元测试题考试时间:120分钟 满分:100分 一、选择题(每小题2分,共40分)1.两曲线21y y ax b x ==+,在点1(2)2,处相切,则( ) A .13164a b =-=, B .11164a b ==,C .912a b =-=,D .712a b ==-,2.设(0)0f =,则()f x 在0x =可导的充要条件为( )A .201lim(1cos )h f h h →-存在 B .01lim (1)h h f e h→-存在 C .201lim (sin )h f h h h →-存在 D .[]01lim (2)()h f h f h h→-存在3.设函数()f x 在区间()δδ-,内有定义,若当()x δδ∈-,时恒有2()f x x ≤,则0x =必是()f x 的( )A .间断点B .连续而不可导的点C .可导的点,且(0)0f '=D .可导的点,且(0)0f '≠4.设函数()y f x =在0x 点处可导,x y ,分别为自变量和函数的增量,dy 为其微分且0()0f x '≠,则0limx dy yy→-=( )A .-1B .1C .0D .∞5.设()f x 具有任意阶导数,且[]2()()f x f x '=,则()()n f x =( )A .[]1()n n f x + B .[]1!()n n f x + C .[]1(1)()n n f x ++ D .[]1(1)!()n n f x ++6.已知函数 0() 0x x f x a b x x x ≤⎧⎪=⎨>⎪⎩+cos 在0x =处可导,则( )A .22a b =-=,B .22a b ==-,C .11a b =-=,D .11a b ==-,7.设函数32()3f x x x x =+,则使()(0)n f不存在的最小正整数n 必为( )A .1B .2C .3D .4 8.若()f x 是奇函数且(0)f '存在,则0x =是函数()()f x F x x=的( )A .无穷型间断点B .可去间断点C .连续点D .振荡间断点 9.设周期函数()f x 在()-∞+∞,内可导,周期为4,又0(1)(1)lim12x f f x x→--=-,则曲线()y f x =在点(5(5))f ,处的切线的斜率为( )A .12B .0C .1-D .2- 10.设()f x 处处可导,则( )A .当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞B .当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞C .当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞D .当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞11.若()sin f x x x =,则( )A .(0)f ''存在B .(0)0f ''=C .(0)f ''=∞D .(0)f π''=12.若2()max{2},(04)f x x x x =∈,,,且知()f a '不存在,(04)a ∈,,则必有( )A .1a =B .2a =C .3a =D .12a =13.若函数sin 2 0() 10xx x f x x x ⎧+≠⎪=⎨⎪=⎩,, 则使()f x '在点0x =处( )A .存在但不连续B .不存在C .不仅存在而且连续D .无穷大14.设n1cos 0() 0 0x x f x xx ⎧≠⎪=⎨⎪=⎩ 则使()f x '在点0x =点处连续的最小自然数为( )A .1n =B .2n =C .3n =D .4n =15.若函数()f x 对任意实数x 1,x 2均满足关系式1212()()()f x x f x f x +=,且(0)2f '=,则必有( )A .(0)0f =B .(0)2f =C .(0)1f =D . (0)1f =- 16.若()f x 是在()-∞+∞,内可导的以l 为周期的周期函数,则()f ax b '+(0a a b≠,、为常数)的周期为( )A .lB .l b -C .laD . l a17.函数23()(2)f x x x x x =-- -不可导的点的个数为( ) A .3 B .2 C .1 D . 018.设220()()0x x f x x g x x ⎧>= ≤⎩ 其中()g x 是有界函数,则()f x 在0x =处( ) A .极限不存在 B .极限存在但不连续 C .连续但不可导 D .可导 19.设()f x 在0x =的一个领域内有定义,且(0)0f =,若21cos 1lim()2(1)x x x f x x e →-=-,则()f x 在0x =处( )A .不连续B .连续但不可导C .可导且(0)0f '=D .可导且(0)1f '=20.设()()()f x f x x =--∈-∞+∞,,,且在(0)+∞,内()0()0f x f x '''><,,则在(0)-∞,内( )A .()0()0f x f x '''>>,B .()0()0f x f x '''><,C .()0()0f x f x '''<>,D .()0()0f x f x '''<<,二、填空题(每小题3分,共60分)1.设 1() 1ax b x f x x x 2+≤⎧=⎨ >⎩ 在1x =处可导,则a =____________,b =____________。

导数与微分自测题及答案

导数与微分自测题及答案

2.设 x y 2 y, u x 2 x 2 ,则
3
二、选择题(共 1ቤተ መጻሕፍቲ ባይዱ 分,每小题 3 分) 1.下列条件与 f ( x) 在 x x0 处可导的定义等价的是( (A) lim

f x0 h f x0 h ; h 0 2h f x0 2h f x0 h (B) lim ; h 0 h f x0 f x0 h (C) lim ; h 0 2h 1 (D) lim n f ( x0 ) f ( x0 ) . h 0 n 2.设函数 g ( x) 可微, h( x) e1 g ( x ) , h(1) 1, g (1) 2 ,则 g (1) 等于( ( A) ln 3 1 ;(B). ln 3 1 ; (C) ln 2 1 ; (D) ln 2 1 .
n 3n
,则 f ( x) 在 , 内(

( A)处处可导 ; (C) 恰好有两个不可导点
(B) 恰好有一个不可导点 ; ; (D)至少有三个不可导点.
lim f ( x) 5. 设 f ( x) 在 x x0 处连续,则 x x0 存在且等于 A 是 f ( x0 ) 存在且等于 A
xf ( x) f ( x) ; x0 2 x 九、 由导数定义 g ( x) 。 1 f (0); x0 2
4 , x 1 七、(10 分)设 f ( x) ,试确定 a 与 b ,使 f ( x) 在 x 1 可导。 x 2 ax bx c, x 1
八、(10 分). 试确定 A, B, C 的值,使 e 1 Bx Cx
x

2

导数与微分测试题

导数与微分测试题
从而, 从而,f ′(1) = 2 .
由于 f ( x + 5) = f (5) , 所以 f (6) = f (1) = 0 , f ′(6) = f ′(1) = 2 .
故所求切线方程为 y = 2( x − 6) .
测 验题
(第一、二章 ) 第一、
每题3分 一、填空题 (每题 分,共12分) 每题 分
f (1 + sin x ) − 3 f (1 − sin x ) 即 lim x →0 sin x
f (1 − sin x ) − f (1) f (1 + sin x ) − f (1) = lim +3 x →0 sin x − sin x
= f ′(1) + 3 f ′(1) = 4 f ′(1) = 8 .
二、设曲线 y = x n 在点 (1,1) 处的切线与 x 轴的交点 为 (ξ n ,0), 求 lim f (ξ n ).
n→ ∞
1 c 满足关系式: 三、设 f ( x ) 满足关系式:af ( x ) + bf ( ) = (| a |≠| b |) . x x 求 f ′( x ) . x −1 ( x + 1)2 ; | x |≤ 1 四、设 f ( x ) = 4 | x |> 1 | x | −1 .
易知 , f ( x ) 在 | x |= 1 处连续 . 在 x = −1 处 , f ( x ) − f ( −1) − x −1 = −1 , ′ (−1) = lim− f− − = lim− x → −1 x → −1 x − ( −1) x +1
f +′ (−1) = lim f ( x ) − f ( −1) − x → −1+ x − ( −1)

导数与微分习题及答案

导数与微分习题及答案

第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。

C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 • 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x ) C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.210. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在 x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i= f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。

第二章导数与微分习题

第二章导数与微分习题

第二章-导数与微分习题第二章 导数与微分【内容提要】1.导数的概念设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ∆=+∆-.若0→∆x 时,极限xyx ∆∆→∆0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数,记为)(0x f '或)(0x y '或|x x y ='或0|d d x x xy=或0|d d x x xf=+→∆0x 时,改变量比值的极限xyx ∆∆+→∆0lim 称f(x)在x 0处的右导数,记为)(0x f +'。

-→∆0x 时,改变量比值的极限xy x ∆∆-→∆0lim 称f(x)在x 0处的左导数,记为)(0x f -'。

2.导数的意义导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。

导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。

以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。

3.可导与连续的关系定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。

此定理的逆命题不成立,即连续未必可导。

4.导数的运算定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则v u v u '±'='±)(定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则v u v u uv '+'=')(定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则2v v u v u v u '-'='⎪⎭⎫ ⎝⎛定理4 若函数)(x g u =在点x 处可导,且)(u f y =在其相应点u 处可导,则复合函数)]([x g f y =在x 处可导,且xu x u y y '⋅'=' 或d d d d d d y y u x u x=⋅5.基本初等函数求导公式本节中我们已求出了所有基本初等函数的导数,整理所下:)(='C1)(-='μμμx xaa a x x ln )(=' xx e )e (='ax x a ln 1)(log =' xx 1)(ln ='xx cos )(sin =' xx sin )(cos -=' xx 2sec )(tan =' xx 2csc )(cot -=' xx x tan sec )(sec =' xx x cot csc )(csc -= 211)(arcsin x x -='211)(arccos x x --='211)(arctan xx +=' 211)cot arc (x+-='这些基本导数公式必须熟记,与各种求导法则、求导方法配合,可求初等函数的导数。

高等数学题库第02章(导数与微分)

高等数学题库第02章(导数与微分)

第二章 导数与微分习题一一、选择题1.设)(x f 在a x =处可导,则=+--→hh a f h a f h )()(lim( )A.)(2'a fB. )('a fC. )(2'a f -D.0 2.设0)0(=f ,则下述所论极限存在,则=→xx f x )(lim( ) A. )0(f B. )0('f C. )('x f D.03.函数⎪⎩⎪⎨⎧=≠=000,1arctan )(x x xx x f ,,则)(x f 在点0=x 处( ) A.间断 B.连续,但不可导 C.可导 D.可导且2)0('π=f4.在3=x 处可导,则常数a 和b 的一组值为( )A.6和9B.-6和-9C.6和-9D.-6和95.已知)4)(3)(2)(1()(----=x x x x x f ,且!3)('=k f ,则=k ( ) A.4 B.3 C.2 D.16. 设)(x f 是偶函数,且在0=x 处可导,则)0('f =( ) A.1 B.-1 C.0 D.以上都不对7.设曲线21x e y -=与直线1-=x 的焦点为p ,则曲线在点p 处的切线方程是( ) A.022=+-y x B. 012=++y x C. 032=-+y x D. 032=+-y x8. 已知曲线L 的参数方程是⎪⎩⎪⎨⎧==2sin cos ty tx ,则曲线L 上3π=t 出法线方程是( ) A. 0142=+-y x B. 0124=--y x C. 0342=-+y x D. 0324=-+y x 二.填空题1.设函数)()()(22x g a x x f -=,其中)(x g 在点a x =处连续=)('a f .2.设函数)(x f 在()+∞∞-,可导,)1()1()(22x f x f x F -+-=,则=)1('F .3.设x x x f +=sin )(ln ,则=)('x f .4.设)0(1>=x xy x ,则='y . 5.设x z x y ∙=2,则=dy .6.设π<<x 0,则=∙+)cot 1(x x d )(cot x d7.已知)(2)(x fa x =ϕ,且)(2)('x x ϕϕ=,则=)('x f .8.)(2b x f y +=,则=''y .9.设)(x y y =由y y x =+)(ϕ确定,若)('y ϕ存在且1)('≠y ϕ,则=dxdy. 三.下列各题中均假定)(0'x f 存在,按照导数定义,求出下列各题中的A 值( ) (1)=∆-∆-→∆x x f x x f x )()(lim 000A(2)=→xx f x )(limA 设存在且)0(,0)0('f f = (3)=-+→hx f h x f h )()3(lim000A(4)=--+→hh x f h x f h )()2(lim000A四.设函数()⎩⎨⎧>+≤+=2212x b x x ax x f 在2=x 处可导,求常数a 和b 的值.五.设函数()⎩⎨⎧≥-<=0202x bx x ae x f x 在点0=x 处可导,求常数a 和b 的值.习题二一、选择题1. 2)('=a f ,则=--+→xx a f x a f x )()(lim0( ) A.2 B.-2 C.4 D.-42.设函数)(x f 和)(x g 在0=x 处可导,0)0()0(==g f ,且0)0('≠g ,则=→)()(limx g x f x ( )A.)0()0(''g fB. )()(''x g x f C. )0()0('g f D. )()('x g x f3.下列函数中,在0=x 处既连续又可导的是( ) A.x xx f =)( B. ⎩⎨⎧≤>-=0sin 0,1)(x x x x x f , C. ⎩⎨⎧≥+<=0)1ln(0,)(x x x x x f , D.x y sin =4.满足)()()('''b f a f b a f +=+的函数)(x f =( ) A.2x B.3x C.x e D.x ln5.设)100()4)(3)(2)(1()(++-+-=x x x x x x x f ,则=)1('f ( ) A.!101 B.100!101-C. !100-D. 99!100 6.设a 是实数,函数⎪⎩⎪⎨⎧≤>-∙-=101,11c o s )1(1)(x x x x x f a ,则)(x f 在1=x 处可导时,必有( )A.1-≤aB.01<<-aC.10<≤aD.1≥a7.若)(x f 的一阶导数与二阶导数都存在,且均不等于零,其反函数为)(y x ϕ=,则=)(''y ϕ( )A.)(1''x f B.[]2''')()(x f x f C. []2''')()(x f x f - D. []3''')()(x f x f - 二.填空题1.若对任意实数x ,函数)(x f 满足)()(x f x f -=-,且0)(0'≠=-k x f , 则=)(0'x f .2.已知)(x f e y =,其中f 二阶可导,则=''y .3.设xx x f +=⎪⎭⎫ ⎝⎛11,则=)('x f .4.设抛物线2ax y =与曲线x y ln =相切,则a = .5.设)1ln(2-+=x x y ,则='y .6.设曲线ax x y +=3与曲线c bx y +=2在点()0,1-处相切,其中c b a ,,为常数, 则a = ,b = , c = . 三.求下列函数的一阶导数:1.2ln 222+-=a x x y2.211xx y -+=3.21ln xxy += 4.x x y 2ln +=5.()x x y 32cos 3sin ∙=6.x y arcsin ln 3=7.x x y 2sec arctan ∙=8.xxx y tan 1sin +=9.()22sin sin xxy = 10.xx y ln 2=11.()x x y ln arcsin = 12.()x x y cos cos -=习题三一、选择题1.下列函数中,在0=x 处不可导的是( ) A.x y sin = B. x y cos = C.2ln =y D.x y =2. 下列函数中,在0=x 处可导的是( )A. x y ln =B. x y cos =C. x y sin =D. ⎩⎨⎧≥<=00,2x x x x y ,3.若函数⎩⎨⎧≥-<=0,0,)(2x bx a x e x f x 在0=x 处可导,则b a 、的值必为( )A.1-==b aB. 2,1=-=b aC. 2,1-==b aD. 2==b a4.设函数)(x f 在1=x 处可导,且21)1()31(lim=∆-∆-→∆x f x f x ,则=)1('f ( )A.31B. 61C. 61- D. 31- 5.曲线x e x y +=在0=x 处的切线方程是( )A.012=+-y xB. 022=+-y xC. 01=+-y xD. 02=+-y x 6.曲线1213123+++=bx x x y 在点(0,1)处的切线与x 轴交点的坐标是( ) A.(-1,0) B.⎪⎭⎫ ⎝⎛-0,61 C.(1,0) D. ⎪⎭⎫⎝⎛0,617.设xey 2sin =,则=dy ( )A.)(sin 2x d e xB. )(sin 2sin 2x d e x C. )(sin 2sin 2sin x xd e x∙ D. )(sin 2sin x d e x8.若函数)(x f y =有21)(0'=x f ,则当0→∆x 时,)(x f 在点0x 处的微分是( ) A.与x ∆等价的无穷小量 B.与x ∆同阶,但不等价的无穷小量 C.比x ∆高阶的无穷小量 D. 比x ∆低阶的无穷小量 二.填空题1设函数)(x f 在2=x 处可导,且2)1('=f ,则=+-+→h nh f mh f h )2()2(lim0 。

第二章导数与微分练习题无答案

第二章导数与微分练习题无答案

第二章导数与微分一、选择题1、设函数y=/(x),当自变量X由%改变到与+Δx时,相应函数的该变量Ay=()。

A/(⅞+-)A/U o)+∆x C./(x0+∆x)-∕(x o)D./(X0)ΔΛ^2、若函数F(X)在点与处可导,则Iim/(1-Ay)-/("二()oΔκ->O ∖χA-Γ(x0)B.f(-x0)Cr(Xo)D2f(x0)∖-x i,x<∖3、设∕*)=13 ,则/(x)在X=I处的( )。

[x2,x>∖A.左、右导数都存在B.左导数存在、右导数不存在C.左导数不存在、右导数存在D.左、右导数都不存在4、函数/(x)在点/连续,是/(外在点与可导的( )oA必要不充分条件 B.充分不必要条件C充分必要条件 D.既不充分也不必要条件5、曲线y=2x3-5X2+4%一5在点(2,-1)处切线的斜率是( )。

A8 8.12C.-6 D.6'e ax x<06、若/(%)=《' " 在X=O处可导,则a/的值应为( )。

Z?+sin2x,x≥0A.a=2,b=↑B.a=l,b=2C.a=-2,b=XD.a=2,b=-∖7、若/(L)=X,贝∣J∕'(x)=()oXA-B.-- C.∖ D.--VXXX X8、设函数)=/(〃)是可导的,且〃=/,则◎=()。

dxA∕,(X2) B.√,(X2) C.2xf∖X1) D.x2f,(x2)9、若y=cosx,则yW )。

A.cos(x -------- )B.COS(X+——)C.cos( ------- x)2 2 210、曲线卜二sm∕在/=工处的切线方程为( )。

y=cos2, 4A2^^x-y-2=0 B.√2x-4γ-l=0C.2√2x+y-2=0D.√2x+4y-l=011、设函数y=y(x)由方程孙-e'+"=O所确定,则y'(0)=(AO B.1C.2D312、函数/(幻在某一点。

第2章 导数与微分(题库)(1)

第2章 导数与微分(题库)(1)

第2章 导数与微分本章知识点1. 函数()f x 在点0x x =导数()0f x '= . 左导数()0f x -'= ;右导数()0f x +'= . 2. 导数存在的判别定理: .3. 导数几何意义:函数()f x 在点()()00,x f x 处的切线斜率k = . 切线方程为: ;法线方程为 .4. 函数()f x 在点0x x =处可导是连续的_____________条件;可微是可导的_____________条件;连续是可微的_____________条件.5. 复合函数()y f g x =⎡⎤⎣⎦的导数d d yx = . 6. 隐函数(),0F x y =的求导步骤为:将y 视为函数()y x ,⑴在(),0F x y =_________________________;⑵利用“解方程”的思想,_________________________.7. 对数求导法适用形式: ;求导方法: .8. 由参数方程()()x t y t ϕψ=⎧⎪⎨=⎪⎩确定得函数()y y x =的导数d d y x = .9. 函数()y f x =的微分计算公式为d y = . 10. 导数运算法则(和、差、积、商):()()f x g x '±=⎡⎤⎣⎦ ; ()()f x g x '⋅=⎡⎤⎣⎦ ;()()f x g x '⎡⎤=⎢⎥⎣⎦.2.1 导数概念A 组1. 函数()f x 在点0x 可导是()f x 在点0x 连续的( )条件.A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要 2. ()f x 在点0x 可导是()f x 在点0x 可微的( )条件.A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要 3. 设()0f x '存在,则()()0003limh f x h f x h→+-=( ).A. ()0f x 'B. ()03f x 'C. ()03f x '-D. 3 4. 如果函数()f x 在点x 处可导,则()f x '=( ).A. ()()0limx f x x f x x ∆→-∆-∆ B. ()()0lim 2x f x x f x x ∆→-∆-∆C. ()()0limx f x x f x x ∆→-∆--∆ D. ()()0lim x f x x f x x x∆→+∆--∆∆5. 设()322,13,1x x f x x x ⎧≤⎪=⎨⎪>⎩,则()f x 在1x =处( ).A. 左、右导数都存在B. 左导数存在,但右导数不存在C. 左导数不存在,但右导数存在D. 左.右导数都不存在6. 已知()03f x '=,则()()000limx f x x f x x∆→-∆-=∆______________________.7. 曲线x y cos =在点⎪⎭⎫⎝⎛02,π处的切线方程为______________________. 8. 曲线e x y =在()0,1处的切线方程为______________________.9. 曲线x y 1=在点1,22⎛⎫⎪⎝⎭处的切线方程为______________________. 10. 曲线x y 1=在点1,22⎛⎫⎪⎝⎭处的法线方程为______________________. 11. 曲线2sin 2x x y +=上横坐标为0=x 的点处的切线方程为________________.12. 曲线2sin 2x x y +=上横坐标为0=x 的点处的法线方程为________________.B 组13. 设函数()2,1,, 1.x x f x ax b x ⎧≤=⎨+>⎩为了使函数()f x 在1=x 处连续且可导,b a 、应取什么值?2.2 函数的求导法则A 组1. 设x y -=2,则='y ( ).A. x -2B. x --2C. 2ln 2x --D. 2ln 2x -2. 设xxy ln =,则='y . 3. 设x y 2sin =,则='y .4. 设22x a y -=,则='y .5. 设2)(arcsin x y =,则='y .6. 设xy 1cos ln =,则='y .7. 设xxy -+=11arctan ,则='y .8. 已知物体的运动规律为()3m s t =,则该物体在()2s t =时的加速度=a __________2m /s .2.3 高阶导数A 组1. 函数x x y ln 22+=的二阶导数=''y ____________________.2. 函数21e x y -=的二阶导数=''y ____________________.3. 函数x y tan =的二阶导数=''y ____________________.4. 函数x x y cos =的二阶导数=''y ____________________.5. 求函数x a y =的n 阶导数=)(n y ____________________.6. 函数e x y =的n 阶导数=)(n y ____________________.7. 函数x y sin =的n 阶导数=)(n y ____________________.2.4 隐函数及由参数方程所确定的函数的导数A 组1. 由参数方程⎪⎩⎪⎨⎧==32bty atx 确定的函数()y y x =的导数d d y x =________________. 2. 由参数方程⎩⎨⎧-==tt t y t x cos sin cos ln 确定的函数()y y x =的导数d d yx =_____________.3. 参数方程1ee ttx y t -⎧=+⎪⎨=+⎪⎩所确定的函数()y y x =的导数d d y x =________________. 4. 参数方程e sin e cos tt x ty t ⎧=⎪⎨=⎪⎩所确定的函数()y y x =的导数4d d t y x π==_______________. 5. 设函数()y y x =是由方程 0922=+-xy y 所确定的隐函数,求d d yx.6. 设函数()y y x =是由方程 0333=-+axy y x 所确定的隐函数,求d d y x.7. 设函数()y y x =是由方程 2sin e 0x y xy +-=所确定的隐函数,求d d y x.8. 求由方程()e e sin x y xy -=所确定的隐函数()y y x =的导数xy d d .9. 求由方程0e =--y y x 所确定的隐函数()y y x =的导数xy d d .10. 求由方程1e y y x =-所确定的隐函数()y y x =的导数d d y x.11. 设函数()y y x = 是由方程 1e x y xy ++=所确定的隐函数,求0d d x y x=.12. 求由方程22e cos()y xy x y +=+所确定的函数()y y x =的导数d d yx.13. 求由方程e cos()0x y xy ++=所确定的隐函数()y y x =的导数d d y x.14. 求曲线2eettx y -⎧=⎪⎨=⎪⎩在0=t 相应的点处的切线方程及法线方程.15. 求曲线⎪⎩⎪⎨⎧=+=321ty tx 在2=t 相应的点处的切线方程及法线方程.B 组16. 设函数()y y x =由方程122=-y x 所确定的隐函数,求22d d yx.17. 求由参数方程⎪⎩⎪⎨⎧-==t y t x 122所确定的函数()y y x =的导数221d d t y x =.18. 求参数方程()()()x f t y tf t f t '=⎧⎪⎨'=-⎪⎩所确定的函数()y y x =的二阶函数导数22d d y x ,其中()f t ''存在且不为零.19. 求由参数方程⎩⎨⎧==t b y t a x sin cos 所确定的函数()y y x =的二阶导数22d d yx .20. 求由参数方程3e2ettx y -⎧=⎪⎨=⎪⎩所确定的函数()y y x =的二阶导数22d d y x .21. 用对数求导法求函数xx x y ⎪⎭⎫⎝⎛+=1的导数d d y x .第2章 导数与微分(题库) 第 页 共计11页 11 2.5函数的微分A 组1. 设3e x y =,则=y d ____________________. 2. 函数x x y 2sin =的微分=y d __________ .3. 设x y sin ln =,则=y d ____________________.4. 设e cos x y x =,则=y d ____________________.5. 函数x y ln ln = 则=y d ____ __________ .6. 设)1(ln 2x y -=,则=y d ____________________.7. 设函数22e x y x =,则=y d ______________ .B 组8. 利用微分计算三角函数的近似计算:sin 29.。

最新高等数学第二章导数与微分综合测试卷

最新高等数学第二章导数与微分综合测试卷

第二章 综合测试题A 卷一、填空题(每小题4分,共20分) 1、设函数()f x x x =, 则(0)f '= . 2、设函数()xf x xe =, 则(0)f ''= .3、设函数()f x 在0x 处可导,且0()f x =0,0()f x '=1, 则01lim ()n nf x n→∞+= .4、曲线228y x x =-+上点 处的切线平行于x 轴,点 处的切线与x 轴正向的交角为4π. 5、d = x e dx - 二、选择题(每小题4分,共20分)1、设函数10()102x x f x x ≠⎪=⎨⎪=⎪⎩ 在0x =处 [ ](A ) 不连续 (B ) 连续但不可导 (C ) 二阶可导 (D ) 仅一阶可导 2、若抛物线2y ax =与曲线ln y x =相切, 则a 等于 [ ] (A ) 1 (B )12(C ) 12e (D ) 2e3、设函数()ln 2f x x x =在0x 处可导, 且0()2f x '=, 则0()f x 等于 [ ] (A ) 1 (B )2e (C ) 2e(D ) e 4、设函数()f x 在点x a =处可导, 则0()()limx f a x f a x x→+--等于 [ ](A ) 0 (B ) ()f a ' (C ) 2()f a ' (D ) (2)f a '5、设函数()f x 可微, 则当0x ∆→时, y dy ∆-与x ∆相比是 [ ] (A )等价无穷小 (B )同阶非等价无穷小 (C )低阶无穷小 (D )高阶无穷小 三、解答题1、(7分)设函数()()(),()f x x a x x ϕϕ=-在x a =处连续, 求()f a '.2、(7分)设函数()aaxa x a f x x a a =++, 求()f x '. 3、(8分)求曲线 sin cos 2x t y t=⎧⎨=⎩ 在 6t π= 处的切线方程和法线方程.4、(7分)求由方程 1sin 02x y y -+=所确定的隐函数y 的二阶导数22d y dx .5、(7分)设函数1212()()()n a aa n y x a x a x a =---, 求 y '.6、(10分)设函数212()12x x f x ax b x ⎧≤⎪⎪=⎨⎪+>⎪⎩, 适当选择,a b 的值, 使得()f x 在12x =处可导.7、(7分)若22()()y f x xf y x +=, 其中 ()f x 为可微函数, 求dy .8、(7分)设函数()f x 在[,]a b 上连续, 且满足 ()()0,()()0f a f b f a f b +-''==⋅>, 证明:()f x 在(,)a b 内至少存在一点c ,使得 ()0f c =.综合测试A 卷答案一、填空题1、 02、 23、 14、(1,7),329(,)245 、x e --二、选择题1、(C )2、(C )3、(B )4、(C )5、(D ) 三、解答题 1、 ()()()()()limlim ()x ax a f x f a x a x f a a x a x aϕϕ→→--'===--. 2、112()ln ln aa xa aa x x a f x a xax a a a a a --'=++.3、切线方程 112()22y x -=--, 即 4230x y +-=. 法线方程 111()222y x -=-, 即 2410x y -+=. 4、2234sin (cos 2)d y ydx y =-. 5、 由对数求导法,得121112()(())()in na n i i i i n i a a a a y y x a x a x a x a x a =='=+++=-----∑∏ 6、11,4a b ==-7 两边微分得 22()()()()2yf x dy y f x dx f y dx xf y dy xdx ''+++=即 22()()2()()x y f x f y dy dx yf x xf y '--='+. 8、证明 因为 ()()0f a f b +-''⋅>, 不妨设 ()0,()0f a f b +-''>>()()()()limlim 0x ax a f x f a f x f a x a x a+→+→+-'==>--, 则存在 10δ>,当 11(,)x a a δ∈+时, 11()0f x x a>-, 又因为1x a >, 所以 1()0f x >.同理可知存在 20δ>, 当 22(,)x b b δ∈-时,22()0f x x b>-;又因为2x b <,所以 2()0f x <,取适当小的12,δδ,使得 12a b δδ+<-,则12x x <,因为()f x 在[,]a b 上连续,则()f x 在12[,]x x 上连续,且1()0f x >,2()0f x <.由零点存在定理知 至少存在一点c ,使得 ()0f c =,证毕.第二章 综合测试题B 卷一、填空题(每小题5分,共30分)1、12121n n n n y x a x a x a x a ---=+++++, 则()n y = .2、23x at y bt⎧=⎪⎨=⎪⎩, 则22d x dy = .3、()()326212y xxx =++, 则'y = .4、2222x xy y x +-=, 则dydx= .5、)1y x =>, 则y '= .6、cos x y e x =, 则()n y = .二、选择题(每小题5分,共30分) 1、若()0'3f x =-, 则()()0003limh f x h f x h h→+--= [ ].(A )3- (B )6- (C )9- (D )12-2、设()f x x x =,则()'0f = [ ]. . (A )0 (B )1 (C )1- (D )不存在3、若()f x 为可微分函数, 当0x ∆→时,则在点x 处, y dy ∆-是关于x ∆的 [ ]. (A )高阶无穷小 (B )等价无穷小 (C )低阶无穷小 (D )同阶不等价无穷小4、设()()f xx y f e e =,且()'f x 存在, 则'y = [ ].(A )()()()()'f x f x x x f e ef e e+⋅ (B )()()()''f x x f e ef x ⋅⋅(C )()()()()()''f x f x x x x f e e e f e e f x ⋅⋅+⋅ (D )()()'f xx f e e ⋅5、设()sin xye e xy -=, 则0'x y == [ ].(A )0 (B )1 (C )1- (D )26、若函数()y f x =,有()01'2f x =,则当0x ∆→时,该函数在0x x =处的微分dy 是[ ]. (A )与x ∆等价的无穷小 (B )与x ∆同阶的无穷小 (C )比x ∆低阶的无穷小 (D )比x ∆高阶的无穷小 三、计算题(每小题8分,共40分)1、设2,0()sin ,0x e b x f x ax x ⎧+≤=⎨>⎩,问b a ,为何值时)(x f 在0x =处可导.2、()()()()221arccos lnarccos ln arccos 12y x x x x ⎡⎤=-+<⎢⎥⎣⎦, 求dydx . 3、求曲线()223arctan 23ln 1x t ty t t =++⎧⎪⎨=-++⎪⎩在3x =处的切线方程.4、11xy x ⎛⎫=+ ⎪⎝⎭, 求1'2y ⎛⎫ ⎪⎝⎭.5、求()n y, 已知2132y x x =-+.综合测试题B 卷答案一、填空题1、!n2、2429a b t -3、()()322626261212x x x x x x x ⎛⎫++++ ⎪++⎝⎭4、1x y y x +-- 5、1 6、cos 4nx n e x π⎛⎫+⎪⎝⎭二、选择题1、(D)2、(A)3、(A)4、(C)5、(B)6、(B) 三、计算题 1、当⎩⎨⎧-==12b a 时,)(x f 在0=x 处可导.2、222ln 1y uu x ⎛⎫'=--⎝()()2ln arccos 1x x x =<. 3、切线方程为()23yx -=--,即5x y +=. 4、12'ln 323y ⎛⎫⎫=-⎪⎪⎝⎭⎭.5、提示 ()()112111213221y x x x x x x --==-=----+--, 则()()()()11111!21nn n n yn x x ++⎡⎤=--⎢⎥--⎢⎥⎣⎦. 人教版二年级上册数学第一单元测试题姓名: 班级:一、填一填。

《高等数学》章节自测题答案

《高等数学》章节自测题答案

《高等数学》章节自测题答案第1部分函数、极限与连续(单元自测题)一.单项选择题(共18分)( A )( B )( D )( D )( B )时有( D )二.填空题(共15分)的连续区间是三.判断下列各组极限运算的正误(8分)1.2.;;3.;;;四.求下列极限(20分)答案:2答案:答案:答案:1五.求函数的间断点,并判断类型(10分)答案:为第一类(可去)间断点;为第二类(无穷)间断点六.已知是连续函数,求的值(9分)答案:七.用零点定理证明方程在内有两个实根(20分)答案:两次利用零点定理即可.第2部分导数与微分(单元自测题)一.单项选择题(共10分)( D )表示( B )( C )( D ),函数的导数是( C )二.填空题(共22分)将适当的函数填入括号内(1) (2)(3) (4)(5) (6)(7)三.求下列函数的导数(16分)1.答案:2.答案:3.答案:4.答案:四.求下列函数的二阶导数(16分)1.答案:2.答案:3.答案:4.答案:五.设,求(16分)答案:六.已知曲线的方程是,求曲线在点处的切线方程(10分)答案:七.已知曲线的参数方程是,求曲线在处的切线方程和法线方程.答案:切线方程;法线方程.第3部分导数的应用(单元自测题)一.单项选择题(共10分)在区间( B )上满足罗尔定理条件( D )( D )( A )极限( C )二.填空题(共15分),最小值是的单调减少区间是三.求下列极限(20分)答案:答案:答案:答案:答案:四.求函数的极值和单调区间(10分)答案:五.证明曲线总是凹的(10分)答案:六.曲线弧上哪一点处的曲率半径最小?并求出该点处的曲率半径.(10分)答案:七.求函数的四阶麦克劳林公式(10分)答案:.八.要做一圆锥形漏斗,其母线长为20cm,问要使得漏斗体积最大,其高应为多少?答案:第4部分不定积分(单元自测题)一.单项选择题(共15分)( B )( B )( B )( C );;不定积分( D )二.填空题(共15分),称为的不定积分三.求下列不定积分(55分)答案:答案:答案:答案:答案:答案:答案:答案:答案:答案:答案:四.试用三种方法求不定积分(15分)答案:方法一:令;方法二:分子;方法三:令第5部分定积分(单元自测题)一.单项选择题(共18分)( C )( A )( C )( B );;;( D )( B )二.填空题(共15分)原函数三.计算下列定积分(24分)答案:答案:答案:答案:答案:答案:四.下列积分中,使用的变换是否正确?如不正确,请改正,并计算各定积分.(12分)答案:不正确,直接法,答案:正确,答案:不正确,几何意义或者令,五.已知有连续的二阶导数,求(10分)答案:六.判断下列广义积分的收敛性(12分)答案:答案:发散答案:答案:发散七.研究函数的单调性,并求其极值(9分)答案:第6部分定积分的应用(单元自测题)一.单项选择题(共20分)( A )而成的立体体积为( B )( A )4 ( C )( D )二.求曲线轴所围图形的面积(10分)答案:三.求曲线轴所围图形的面积(10分)答案:四.求曲线轴所围图形的面积(10分)答案:五.求曲线所围成的图形绕轴旋转而成的立体体积(10分)答案:六.半径为10m的半球形水池内充满了水,求把池内水抽干所做的功(15分)答案:七.一水坝中有一直立矩形闸门,宽10m,深6m,求当水面在闸门顶上8m的时闸门所受水的压力(15分)答案:八.抛物线分圆盘为两部分,求这两部分面积的比(10分)答案:第7部分常微分方程(单元自测题)一.解下列可分离变量方程(共12分)答案:答案:答案:二.解下列齐次方程(8分)答案:答案:三.解下列一阶线性方程(25分)答案:答案:答案:答案:答案:四.解下列可降阶的高阶微分方程(15分)答案:答案:答案:五.解下列二阶常系数线性微分方程(30分)答案:答案:答案:答案:.答案:六.已知某厂的纯利润对广告费的变化率为,与常数和纯利润之差成正比,当时,,试求纯利润与广告费之间的函数关系.(10分)答案:第8部分空间解析几何与向量代数(单元自测题)一.各类计算题(共30分)在坐标面上求与三已知点等距离的点答案:已知向量的方向角且,求答案:求过点且与平面垂直的直线方程答案:求同时垂直于向量和向量的单位向量答案:5.求过直线的平面方程答案:已知垂直,求答案:二.求以为顶点的四边形面积(10分)答案:三.求两平面,的夹角(10分)答案:四.判断下列线与线、线与面之间的位置关系(20分)答案:互相垂直答案:重合答案:平行答案:直线在平面上五.求点到直线的距离(10分)答案:六.求平面曲线绕轴旋转所得曲面的方程(10分)答案:七.求曲线在面上的投影(10分)答案:第9部分多元函数微积分(单元自测题)一.关于一阶偏导数(共16分)若,求答案:若,求答案:若,求答案:若,求答案:二.关于高阶(二阶)偏导数(12分)若,求答案:若,求答案:三.关于复合函数的偏导数(10分)若,求答案:若,求答案:四.关于隐函数的偏导数(10分)若,求答案:若,求答案:五.关于极值问题(12分)求的极值答案:设,求在条件下的极小值答案:六.交换下列积分次序(16分)答案:答案:答案:答案:七.计算下列二重积分(24分),答案:答案:,答案:,答案:第10部分无穷级数(单元自测题)一.判断下列级数的敛散性(共30分)答案:收敛答案:发散答案:收敛答案:发散5.答案:条件收敛答案:绝对收敛答案:绝对收敛答案:时绝对收敛;时发散答案:收敛答案:收敛二.证明(6分)答案:利用级数收敛的必要条件三.求下列级数的收敛域(12分)答案:答案:答案:答案:四.求下列幂级数在收敛域内的和函数(12分)答案:答案:五.将下列函数展开成的幂级数,并求其收敛域(12分)答案:答案:答案:六.将下列函数在指定点处展开成幂级数,并求其收敛域(12分)答案:答案:七.把下列函数展成傅立叶级数(16分)答案:答案:第11部分概率(单元自测题)一.单项选择题(共24分)( B )设为随机事件,,则必有( A )设互为对立事件,且,则下列各式中错误的是( A )抛一枚不均匀硬币,正面朝上的概率为,将此硬币连抛4次,则恰好3次正面朝上的概率是( C )设随机变量的分布函数为,下列结论中不一定成立的是( D )下列各函数中是随机变量分布函数的是( B )如果函数是某连续型随机变量的概率密度,则区间可以是( C )设随机变量的概率密度为,令,则的概率密度为( D )二.填空题(15分)设与互相独立,则某射手命中率为,他独立地向目标射击4次,则至少命中一次的概率为设为连续型随机变量,是一个常数,则= 0设∽,则= 0.5设∽,则的概率密度=三.设(8分)答案:0.4四.设为两个随机事件,证明与相互独立(10分)五.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求:(10分)(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格品的产品确实是合格品的概率.答案:(1)0.9325;(2)0.9984六.袋中有2个白球,3个红球,现从袋中随机地抽取2个球,以表示取到的红球,求的分布律(10分)答案:0 1 2七.设的概率密度为, 求:(10分)(1) 的分布函数;(2) .答案:(1) ;(2)0.625,0.625八.已知某种类型电子元件的寿命(单位:小时)服从指数分布,它的概率密度为,一台仪器装有4个此种类型的电子元件,其中任意一个损坏时仪器便不能正常工作,假设4个电子元件损坏与否互相独立。

《高等数学》第二章.导数和微分的习试题库完整

《高等数学》第二章.导数和微分的习试题库完整

第二章 导数与微分一、判断题1. []00''()()f x f x = ,其中0x 是函数()f x 定义域内的一个点。

( )2. 若()f x 在0x 处可导,则()f x 在0x 处连续。

( )3. 因为()f x x =在0x =处连续,所以()f x 在0x =处可导。

( )4. 因为()f x x =在0x =处的左、右导数都存在,所以()f x 在0x =处可导。

( )5. ()f x 在0x 处可导的充要条件左、右导数存在且相等。

( )6. 若曲线()y f x =在0x 处存在切线,则'0()f x 必存在。

( )7. 若()f x 在点0x 处可导,则曲线()f x 在点0x 处切线的斜率为()0f x '。

( )8. ()()()sin sin cos tan cot cos sin cos x x x x x x xx ''⎛⎫'====- ⎪-'⎝⎭。

( )9. ()()()22sin cos cos sin sin tan sec cos cos x x x x x x x x x '''-⎛⎫'=== ⎪⎝⎭。

( )10. 若()f x ,g()x 在x 处均可导,则[]()g()()g()f x x f x x '''=。

( )11. 设()sin cos f x x x =,'''()(sin ).(cos)(sin )cos f x x x x x ==-。

( )12. 设2()x e f x x =,则'()2x e f x x=。

( )13. 由参数方程0y e xy +=的两边求导得'0y e x xy ++=,于是'1()y y e y x=-+。

( )14. ()()n x x e e =。

高等数学1-6章单元自测题

高等数学1-6章单元自测题

《高等数学》单元自测题第一章 函数与极限专业 班级 姓名 学号一、 填空题:1.设,则=_________________。

2. =+-∞→nn nn n 3232lim _________________。

3. =-∞→x x x 2)11(lim _________________。

4. ___________________。

5. 已知时与是等价无穷小,则__________。

6. 函数的连续区间是_____ _____。

二、 选择题:1.函数)12arcsin(412-+-=x x y 的定义域是( )。

(A ))2,0[; (B ))2,2(-; (C )]4,0[; (D) ]4,2(-。

2.已知极限,则常数( )。

(A) ; (B) 0 ;(C) 1; (D) 2 。

3.若,则下面选项中不正确的是( )。

(A) ,其中为无穷小; (B)在点可以无意义;(C) ; (D) 若,则在的某一去心邻域内。

()xx x f +-=11()[]x f f =++∞→xx x x 1sin 2332lim 20→x ()11312-+ax1cos -x =a ()⎪⎪⎩⎪⎪⎨⎧>=<=0,1sin ,0, 0 ,0, e 1x x x x x x f x 0)2(lim 2=++∞→kn nn n =k 1-()A x f x x =→0lim α+=A x f )(α)(x f 0x )(0x f A =0>A 0x 0)(>x f4. 当时,下列哪一个函数不是其他函数的等价无穷小( )。

(A) ; (B) ; (C) ; (D) 。

5.设函数在点处连续,则常数的值为( )。

(A) ; (B) ;(C) ; (D) 。

6. 已知函数在上单调增加,则方程必有一个根的区间是( )。

(A) )0,1(-; (B) )1,0(; (C) ; (D) 。

三、 计算下列各题:1.求函数的反函数,并求反函数的定义域。

《导数与微分》章节测试练习题

《导数与微分》章节测试练习题

f ( x ) = ⎪ 3《导数与微分》章节测试练习题一、选择题:1.设⎧ 2 x 3 ,⎨ ⎪⎩ x 2 ,x ≤ 1, x > 1则 f ( x ) 在 x = 1处的( )。

A. 左右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左右导数都不存在2. d () = e-2 xdx .-2 x-2 x1-2 x1-2 xA. e + CB. -2e+ CC. e+ C2D. - e+ C23.d ( ) = sin ωxdx .1A. cos ωx + CB. - cos ωx + CC. -ωcos ωx + CD. -cos ωx + Cω4. f ( x ) 在点 x 0 可导是 f ( x ) 在点 x 0 连续的( )条件.A.必要不充分B.充分不必要C.充分必要D.既不充分也不必要5.曲线 y = x - e x在点()处的切线斜率等于 0.A. (1,0) B. (0,1)C. (0, -1)D. (-1, 0)6. y = 2x 5+ 3x 4+ 4x 3+ 5x 2+ 6x + 7 ,则 y (5)(0) = ().A. 0B.120C. 240D. 3607.已知 y = sin 2 x,则 y '= ().x2x cos 2x -sin 2xA. x 22x cos 2x + sin 2xx cos 2x -sin 2x B.x 2x cos 2x + sin 2xC.8. y = x 2x 在x = 0 处( ).D.x2A.可导且连续B.连续不可导C.不连续也不可导D.可导不连续x ⎪x 29. y = sin x2 ,则y'=( ).A.cos x2B.2sin x cos xC. 2x cos x2D. 2sin x10.下列等式中,正确的是( ).A.1=d B.ln xdx =d ⎛1 ⎫⎝⎭C.-1dx =d⎛1 ⎫D. sin xdx =d (cos x)⎪x ⎝⎭11.已知y =x sin 2x ,则dy =().A.cos 2xdxxB. 2 c os 2xdxC. (sin 2x +x cos 2x)d x12.已知f '(x0 )=a ,则下列极限正确的是( ).D.(sin 2x + 2x cos 2x)d xA.limh→0f(x0+h)-f(x0-h)h=-2 a B.lim∆x→0f(x0+2∆x)-f(x0)∆x= 2 a lim f(x-∆x)-f(x0)=a⎡⎛ 1 ⎫⎤C. D. lim n ⎢f x0 + ⎪-f(x0)⎥=na ∆x→02∆x 2 ∆x→0 ⎣⎝n ⎭⎦13.已知f (x),则f '(0)=().A. 0B. -12C. -1D.12二、填空题:1.设 f '(x0)=a ,则limh→0f(x0+h)-f(x0-h)=.h2.设 f '(x0= 2 ,则lim∆x→0f(x0+2∆x)-f(x0)=.∆x3.已知f '(0)= 2, f (0)= 0, ,则limx→0f (x)= .x)a 2- x 2x 6 ⎪ x =14.已知 f '(1) = 2, f (1) = 1, ,则limx →1f ( x ) - 1 = .x - 15.已知 f ( x ) = sin 2 x ,求 f '⎛π⎫ = .⎝ ⎭6. d =1 1 + xdx . 7. d= 2dx .8. d= cos t dt .9.已知 y = ,求 y ' = .10.已知 y = e -3 x 2,则 dy= .11. d ( ) = 3xdx 12. d () = s ec 2 3xdx113. 已知 y = + 2 x,则 dy = .三、判断题:1. ( ★ ★ ★ )f (x ) 在 点x 0 连 续 是f ( x ) 在 点x 0 可 导 的 充 分 不 必 要 条 件 . ( )2. f ( x ) 在点 x 0 可导是 f ( x ) 在点 x 0 可微的充分必要条件.( )3. 已知 y = x x , 则 y ' = xx x -1.( )4. f ( x ) 在点 x 0 的左导数 f -' ( x 0 ) 及右导数 f +' ( x 0 ) 都存在且相等是 f ( x ) 在点 x 0 可导的充要条件.( )5. 已知 y = ln (1 + x 2) ,则 y 'x =1= 1. ( )26. ( ★ ★ ★ ) 设 y = f (u ) 是 可 微 函 数 , u = g ( x )是 可 微 函 数 , 则dy = f '(u )d u . ( )7. f '( x 0 ) = ⎡⎣ f (x 0 )⎤⎦' .( )x8. 若函数 f ( x ) 在点 x 0 处可导,则lim f( x ) = A ,但 A ≠ x →x 0f (x 0 ) .( )9. 已知 f '( x 0) = 2 ,则 lim∆x →0 f ( x 0 - ∆x ) - f (x 0 ) = 2.( )∆x10. 若函数 f ( x ) 在点 x 0 处可导,则 lim f ( x ) x →x 0存在.( )11.(★★★) d (ln + C )=1dx . ( )12. 若函数 f( x ) 在点 x 0 处可导,则函数 f ( x ) 在点 x 0 处有定义.( )13. 曲线 y = f( x ) 在点( x 0 , f ( x 0 ))处有切线,则 f '( x 0 ) 一定存在. ( )四、计算题:1. (★★★)设函数⎧ x 2 ,x ≤ 1f ( x ) = ⎨⎩ax + b ,, x > 1为了使函数 f ( x ) 在 x = 1处连续且可导, a , b 应取什么值?2. (★★★)已知 y = e - x 2cos 3x ,求dy .x⎝⎭3.(★★★)求方程xy =e x+y 所确定的隐函数的导数.4.求方程x3 +y3 - 3axy = 0 所确定的隐函数的导数.⎛x ⎫x5. (★★★)已知 y = 1 +x ⎪ ,求 y'.6. 已知 y =x)4(1+x)5,求 y'.7.已知 y = arcsin (1 - 2x ),求 y'.五、证明题:1. (★★★)证明:设 y =C eλx +C e -λx (λ,C ,C 是常数),证明:y'-λ2y=0.1 2 1 22. 证明:设 y =e x sin x ,证明: y '- 2 y'+ 2 y = 0 .22 ⎩六、应用题:⎧ x = sin t π1.求曲线⎨ y = cos 2t 在t = 4 处的切线方程与法线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章导数与微分自测题B
一 选择题
1.若下列极限存在,则成立的是 ( )
()()
A .lim ()
x f a x f a f a x
-
∆→+∆-'=∆ 0
()(0)
B.
lim
(0)x f tx f f x
∆→-'=
C.0000
()()
lim
()
t f x f x t f x t
→--'= 0
()()
D .lim
()
x f x f a f a a x
→-'=-
2.
x x f dx d 1)1
(2
=
⎥⎦

⎢⎣
⎡ , 则
1
()2
f '=( )
A. 2
1 B. -1 C.
2 D. -4
3.设()f x 是可导函数,则( ) A. 若()f x 为奇函数,则
()f x '为偶函数 B. 若()f x 为单调函数,则()f x '为单调函数
C. 若()f x 为奇函数,则
()f x '为奇函数 D. 若()f x 为非负函数,则()f x '为非负函数
A.()00
f x = B. ()f x 在0x 点连续 C.
()0
0f x '=
D.
()f
x 在0x 处可导
5.设()()0f =g 0,若()()
''<0g 0f ,则下列结论正确的是( )
A. 存在0δ>使得()(),00,x δδ∈-⋃时,()()f x g x <。

B. 存在0δ>使得()(),00,x δδ∈-⋃时,()()f x g x >。

C. 存在0δ>使得(),0x δ∈-时,()
()f x g x >;()0,x δ∈时,()()f x g x <。

D. 存在0
δ
>使得(),0x δ∈-时,()()f x g x <;()0,x δ
∈时,
()
()f
x g x >。

6.设()(),f x g x 定义在()1,1-,且都在0
x
=连续,若
()
,0(),2,0g x x f x x x ⎧≠⎪
=⎨⎪=⎩

( ) A. ()()0
lim 000
x g x g →'==且 B. ()()0
lim 001x g x g →'==且
C.
()()0
lim 100x g x g →'==且
D.
()()0
lim 002x g x g →'==且
则0x
=必是()f
x 的( )
A.间断点
B.连续而不可导的点
C.可导的点,且()f 00
'= D.可导的点,且()f 00'≠
8.设0()f x x 在的某个邻域内有界,令()()01co s ()g x x x f x =--⎡⎤⎣⎦,
则( ) A. ()00g x '=
B.()
00
g x '≠
C.
()g x 在0x 连续,但0()g x '不存在 D.
()g x 在0x 不一定连续
9.设()
f x 可微,则()x d f e =( ) A.
()x
f x e dx ' B.
()x
f e d x
' C.()x x
f e e dx ' D. ()x x
f e e '
10.下列导数中等于x 2sin 2
1的是( )
A.
x
2cos 21 B.
x
2
sin
21 C.
x
2
cos
2
1 D.
x
2cos 4
1
二 填空题 1.设
(2)()0(0)0,lim
1sin x f x f x x f
x
→===-在处可导,且,那么曲线()y f x =在原点
处的切线方程是______________. 3.设1
321(
),()ln ,
1
x y
f f x x x -'==+则
d y d x
=______________.
4.设()g x 满足()sin ()cos ,g x x g x x '+⋅=且(0)0,g =则
5.函数()y
y x =由方程()2
2
2sin 0
x
x y
e xy ++-=所确定,则
d y d x
=_____________.
6.曲线2
3
1x t y t
⎧=+⎪⎨
=⎪⎩在t =2处的切线方程为______________.
7.设()()
ln f x y f x e
= ,则dy =_____________. 8.设2
2
1co s sin
y x x
=,则'y =______________.
9.设
x f =
1)(,则
()
(2)
n f
=______________.
三 计算题与证明题 1.2
(1co s )(0)(0)0lim
ta n 5设存在,,求x f x f
f x
→-'=。

2.设函数()f x 对任何实数12,x x ,有()
()()12
12f x x f
x f x +=,且
(0)1,f '=。



()()f x f
x '=.
3.设 ()2ln 1,arctan x t y t t

=+⎪⎨=-⎪⎩求
2
2d y d x。

4.2
222ln d y y xa rctg x d x
=-求。

5.用dy y dx '=及一阶微分形式不变性求函数sin cos 0x y
e y e x --=的微分。

6.设()2
lim
2t x
t x f x x e
→+∞
=+-,讨论()f x 的可导性。

7.设()2
4sin
y x =,求(
)
3
d y
d
x。

9.求lim
(0,1)x
a
x a
x
a
a a x a
→->≠-。

相关文档
最新文档