2017-2018学年人教版八年级数学上册第11章三角形检测题含答案

合集下载

【精品】人教版八年级数学上册第11章三角形单元检测题(有答案)【3套】试题

【精品】人教版八年级数学上册第11章三角形单元检测题(有答案)【3套】试题

人教版八年级数学上册第11章三角形单元检测题(有答案)一.选择题(共10小题,每小题3分,满分30分)1.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形2.若线段AM、AN分别是△ABC中BC边上的高线和中线,则()A.AM>AN B.AM>AN或AM=ANC.AM<AN D.AM<AN或AM=AN3.下列图形具有稳定性的是()A.B.C.D.4.下列各组数可能是一个三角形的边长的是()A.4,4,9 B.2,6,8 C.3,4,5 D.1,2,3 5.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为()A.50°B.98°C.75°D.80°6.在△ABC中,∠A==∠C,则这个三角形是()A.锐角三角形B.等腰三角形C.钝角三角形D.含30°角的直角三角形7.在△ABC中,若满足下列条件,则一定不是直角三角形的是()A.∠A=∠B+∠CB.∠A=∠C﹣∠BC.一个外角等于与它相邻的内角D.∠A:∠B:∠C=1:3:58.如图所示,在△ABC中,∠C=90°,则∠B为()A.15°B.30°C.50°D.60°9.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.810.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A ﹣∠F=()A.60°B.46°C.26°D.45°二.填空题(共8小题,每小题3分,满分24分)11.三角形的三边之比是3:4:5,周长是36cm,则最长边比最短边长.12.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是.13.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为.15.如图,在△ABC中,∠B=60°,∠BAC与∠BCA的三等分线分别交于点D、E两点,则∠ADC的度数是.16.如图,CE平分∠ACD,∠A=40°,∠B=30°,∠D=104°,则∠BEC=.17.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠2=70°,∠1=.18.如果一个多边形的边数增加1,它的内角和就增加十分之一,那么这个多边形的边数,三.解答题(共8小题,满分66分)19.(6分)“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)20.(6分)若三角形的三边长分别是2,x,10,且x是不等式的正偶数解,试求第三边的长x.21.(6分)如图,已知,在△ABC中,∠C=∠ABC,BE⊥AC,∠DBE=60°,求∠C 的度数.22.(6分)如图∠A=∠B,∠C=α,DE⊥AC于点E,FD⊥AB于点D.(1)若∠EDA=25°,则∠EDF=°;(2)若∠A=65°,则∠EDF=°;(3)若α=50°,则∠EDF=°;(4)若∠EDF=65°,则α=°;(5)∠EDF与α的关系为.23.(8分)如图,在四边形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.24.(10分)如图,已知六边形ABCDEF的每个内角都相等,连接AD.(1)若∠1=48°,求∠2的度数;(2)求证:AB∥DE.25.(12分)已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM 平分∠ABC,E为射线BM上一点.如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACB,求∠BEC的度数.26.(12分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM 平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD 于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案一.选择题1.解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选:C.2.解:如图,∵AM⊥BC,∴根据垂线段最短可知:AM≤AN,故选:D.3.解:∵三角形具有稳定性,∴A选项符合题意而B,C,D选项不合题意.故选:A.4.解:A、因为4+4<9,所以本组数不能构成三角形.故本选项错误;B、因为2+6=8,所以本组数不能构成三角形.故本选项错误;C、因为3+4>5,所以本组数可以构成三角形.故本选项正确;D、因为1+2=3,所以本组数不能构成三角形.故本选项错误;故选:C.5.解:∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∵∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°﹣82°=98°.故选:B.6.解:∵∠A==∠C,∴∠B=2∠A,∠C=3∠A,又∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得:∠A=30°,∴∠C=3∠A=3×30°=90°,故选:D.7.解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意.B、∵∠A=∠C﹣∠B,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故本选项不符合题意.C、∵一个外角等于与它相邻的内角,又这两个角互补,∴相邻的内角是90°,∴三角形是直角三角形,故本选项不符合题意.D、∵∠A:∠B:∠C=1:3:5,∴∠A=20°,∠B=60°,∠C=100°,∴△ABC是钝角三角形,故本选项符合题意,故选:D.8.解:如图所示,在△ABC中,∠C=90°,则x+2x=90°.x=30°.所以2x=60°,即∠B为60°.故选:D.9.解:如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D.10.解:如图:∵∠1=∠APB﹣∠A=126°﹣∠A,∠2=180°﹣∠AQF﹣∠F=180°﹣100°﹣∠F =80°﹣∠F;∵∠1=∠2,∴126°﹣∠A=80°﹣∠F;∴∠A﹣∠F=46°.故选:B.二.填空题11.解:由题意,设三边分别为3xcm,4xcm,5xcm,则3x+4x+5x=36,解得x=3,三边分别为9cm,12cm,15cm.故最长的边长比最短的边长长6cm.故答案是:6cm.12.解:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为11,AB=5,BC=3,∴△BCD的周长是11﹣(5﹣3)=9,故答案为9.13.解:这种方法应用的数学知识是:三角形的稳定性,故答案为:三角形具有稳定性.14.解:∵△ABC的周长为18,其中一条边长为4,这个三角形的最大边长为x,∴第三边的长为:18﹣4﹣x=14﹣x,∴x>4且x>14﹣x,∴x>7,根据三角形的三边关系,得:x<14﹣x+4,解得:x<9;∴7<x<9,故答案为:7<x<9.15.解:∵在△ABC中,∠B=60°,∴∠BAC+∠BCA=180°﹣∠B=120°.∵∠BAC与∠BCA的三等分线分别交于点D、E两点,∴∠DAC=∠BAC,∠DCA=∠BCA,∴∠DAC+∠DCA=(∠BAC+∠BCA)=80°,∴∠ADC=180°﹣(∠DAC+∠DCA)=180°﹣80°=100°.故答案为:100°.16.解:延长CD交AB于F,∠BDC是△BDF的一个外角,则∠BFD=∠BDC﹣∠B=104°﹣30°=74°,同理,∠ACF=∠BFD﹣∠A=74°﹣40°=34°,∵CE平分∠ACD,∴∠ECA=∠ACF=17°,∴∠BEC=∠A+∠ECA=40°+17°=57°,故答案为:57°.17.解:∵a∥b,∴∠3=∠2=70°,∴∠1=180°﹣90°﹣70°=20°,故答案为:20°.18.解:设多边形的边数是n,根据题意得:180(n+1﹣2)=180(n﹣2)(1+),解得:n=12.故答案是:12.三.解答题19.解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.20.解:原不等式可化为5(x+1)>20﹣4(1﹣x),解得x<11,∵x是它的正整数解,∴根据三角形第三边的取值范围,得8<x<12,∵x是正偶数,∴x=10.∴第三边的长为10.21.解:∵BE⊥AC,∴∠AEB=90°,∵∠DBE=60°,∴∠A=90°﹣60°=30°,∴∠C=∠ABC=(180°﹣30°)=75°.22.解:(1)∵DF⊥AB,∴∠ADF=90°,∴∠EDF=90°﹣∠EDA=65°.(2)∵DE⊥AC,∴∠AED=90°,∴∠ADE=90°﹣65°=25°,∴∠EDF=65°.(3)∵α=50°,∴∠A=∠B=(180°﹣50°)=65°,∴∠DEF=65°.(4)∵∠EDF=65°,∴∠ADE=90°﹣65°=25°,∴∠A=∠B=65°,∴α=180°﹣130°=50°(5)∵∠A=∠B,∠C=α∴∠A=∠B=(180°﹣α)=90°﹣α,∵DE⊥AC于点E,FD⊥AB于点D,∴∠AED=∠FDB=90°∴∠EDA=∠BFD=90°﹣(90°﹣α)=α,∴∠EDF=90°﹣∠EDA=90°﹣α.故答案为(1)65°;(2)25°;(3)65°;(4)50°;(5)90°﹣0.5a;23.解:∵AE⊥BC,∴∠AEC=∠AEB=90°,∵∠B=50°,∴∠BAE=180°﹣90°﹣50°=40°,∵∠C=110°,∠D=90°,∴∠DAE=360°﹣∠D﹣∠C﹣∠AEC=70°,∴∠DAB=∠BAE+∠DAE=40°+70°=110°,∵AF平分∠DAB,∴∠FAB=∠DAB=110°=55°,∴∠EAF=∠FAB﹣∠BAE=55°﹣40°=15°.24.解:(1)∵六边形ABCDEF的各内角相等,∴一个内角的大小为,∴∠E=∠F=∠BAF=120°.∵∠FAB=120°,∠1=48°,∴∠FAD=∠FAB﹣∠DAB=120°﹣48°=72°.∵∠2+∠FAD+∠F+∠E=360°,∠F=∠E=120°,∴∠ADE=360°﹣∠FAD﹣∠F﹣∠E=360°﹣72°﹣120°﹣120°=48°.(2)证明:∵∠1=120°﹣∠DAF,∠2=360°﹣120°﹣120°﹣∠DAF=120°﹣∠DAF,∴∠1=∠2,∴AB∥DE.25.解:①如图1,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②如图2,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=∠ABC=40°,∠ECB=∠ACB=20°,∴∠BEC=180°﹣∠ECB﹣∠CBE=180°﹣20°﹣40°=120°.26.解:(1)结论:AB∥CD.理由:如图1中,∵EM平分∠AEF交CD于点M,∴∠AEM=∠MEF,∵∠FEM=∠FME.∴∠AEM=∠FME,∴AB∥CD.(2)①如图2中,∵AB∥CD,∴∠BEG=∠EGH=β=60°,∴∠AEG=120°,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=60°,∵HN⊥EM,∴∠HNE=90°,∴∠EHN=90°﹣∠HEN=30°.②猜想:α=β.理由:∵AB∥CD,∴∠BEG=∠EGH=β,∴∠AEG=180°﹣β,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=90°﹣β,∵HN⊥EM,∴∠HNE=90°,∴α=∠EHN=90°﹣∠HEN=β.人教版八年级上册第十一章三角形单元测试(3)一、选择题(每题3分,共30分)1.如图,∠1的大小等于()A.40°B.50°C.60°D.70°(第1题)(第4题)2.下列长度的三条线段,能组成三角形的是()A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.在△ABC中,能说明△ABC是直角三角形的是()A.∠A:∠B :∠C=1 :2 :2 B.∠A :∠B :∠C=3 :4 :5 C.∠A :∠B :∠C=1 :2 :3 D.∠A :∠B :∠C=2 :3 :4 4.如图,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40°B.60°C.80°D.120°5.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52°B.62°C.64°D.72°(第6题) (第7题)(第9题) (第10题)7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是()A.8 B.7 C.6 D.59.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.180°C.255°D.145°10.如图,∠A,∠B,∠C,∠D,∠E五个角的和等于()A.90°B.180°C.360°D.540°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了___________________________________________________.12.正十边形每个外角的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.将一副三角尺按如图所示放置,则∠1=________.(第14题)(第16题)(第18题)15.一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.16.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.若一个“半角三角形”的“半角”为20°,则这个“半角三角形”最大内角的度数为________. 18.已知△ABC ,有下列说法:(1)如图①,若P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ; (2)如图②,若P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A . 其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.如图,一艘轮船在A 处看见巡逻艇C 在其北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇C 在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.(第19题)20.如图,BD ,CE 是△ABC 的两条高,它们交于O 点. (1)∠1和∠2的大小关系如何?并说明理由. (2)若∠A =50°,∠ABC =70°,求∠3和∠4的度数.(第20题)21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD,CE相交于点P,∠BAC=66°,∠BCE=40°.求∠ADC和∠APC的度数.(第21题)22.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证AF∥CD.(第22题)23.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,则∠ABX+∠ACX的大小是否变化?请说明理由.(第23题)24.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C均不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是________.②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第24题)答案一、1.D 2.A 3.C 4.B 5.B 6.B7.C8.B9.C10.B二、11.三角形具有稳定性12.36°13.514.105°15.1 800°16.617.120°18.2三、19.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.20.解:(1)∠1=∠2.理由如下:∵BD,CE是△ABC的两条高,∴∠AEC=∠ADB=90°.∵∠A+∠1+∠ADB=180°,∠2+∠A+∠AEC=180°,∴∠1=∠2.(2)∵∠A=50°,∠ABC=70°,∠A+∠ABC+∠ACB=180°,∴∠ACB=60°.∵在△AEC中,∠A+∠AEC+∠2=180°,∴∠2=40°.∴∠3=∠ACB-∠2=20°.∵在四边形AE O D中,∠A+∠AE O+∠4+∠AD O=360°,∠A=50°,∠AE O=∠AD O=90°,∴∠4=130°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°.∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠A P C=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°.∴∠AFC=180°-120°=60°.∴∠AFC=∠FCD.∴AF∥CD.23.解:(1)150°;90°;60°(2)∠ABX+∠ACX的大小不变.理由:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=30°,∴∠ABC+∠ACB=180°-30°=150°.∵∠YXZ=90°,∴∠X BC+∠X CB=90°.∴∠AB X+∠AC X=(∠ABC-∠X BC)+(∠ACB-∠X CB)=(∠ABC+∠ACB)-(∠X BC+∠X CB)=150°-90°=60°.∴∠AB X+∠AC X的大小不变.24.解:(1)①20°②120;60(2)存在.①当点D在线段O B上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,易知∠ABE=110°,又三角形的内角和为180°,∴只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.人教版八年级上册第十一章三角形单元测试(2)一、选择题(每题3分,共30分)1.三角形的三条高所在的直线相交于一点,这个交点的位置在()(A)三角形内(B)三角形外(C)三角形边上(D)要根据三角形的形状才能定2.下列长度的各组线段中,能组成三角形的是()(A)1、2、3(B)1、4、2(C)2、3、4(D)6、2、33.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°4.一个多边形只有27条对角线,则这个多边形的边数为()(A)8(B)9(C)10(D)115.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°6.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B.四边形 C.五边形 D.六边形7.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°8.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为()(A) ①5或7 (B) 7 (C) 9 (D) 7或99.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.1310.如图,AB∥CD,AD,BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是( )(A) 31° (B) 35° (C) 41° (D) 76°二、填空题(每题3分,共30分)11.如果三条线段a、b、c,可组成三角形,且a=3,b=5,c是偶数,则c的值为.第10题12.△ABC中,已知∠A=800,∠B=700,则∠C= .13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成个三角形.14.如果一个三角形的三个内角的度数比为1∶2∶3,则这个三角形是三角形.15.一个直角三角形两锐角的平分线所夹的钝角为.16.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.17.一个多边形的每一个外角都等于360,则该多边形的内角和等于18.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.19.如图2,将一副直角三角板叠在一起,使直角顶点重合于点O ,则 ∠AOB+∠DOC= .20.如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10则在第nn 的代数式表示).三、解答题(共60分) 21.(本题6分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?22.(本题6分)正在修建的中山路有一形状如图13所示的三角形空地需要绿化,拟从点A出发,将ABC △分成面积相等的四个三角形,以便种上不同的花草,请你帮助规划出图案.23.(本题7分)一个多边形的内角和比外角和多360度,这是几边形? 24.(本题7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O BAC =50°,∠C =70°.求∠DAC 和∠BOA 的度数.DABCPIO图1 第20题图 图3 第21题图 DE AB C图1325.(本题8分)如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.26.(本题8分)分别测量如图所示的△ABC 和△DEF 的内角 (1)你发现了什么?(2)你有何猜想? (3)通过什么途径说明你的猜想?27.(本题9分)如图,△ABC 中,∠C=90°,∠A=30°. (1)作图:作AB 边上的高CD ,垂足为D ; (2)求∠ACD ,∠BCD ,∠B 的度数;(3)用刻度尺测量BC 和AB ,CD 和AC ,DB 和BC ,将三组线段分别相除(即将BC •的长度除以AB 的长度,CD 的长度除以AC 的长度,DB 的长度除以BC 的长度),你发现了什么规律?28.(本题9分)一块三角形优良品种试验田,现引进四种不同的种子进行对比试验,需要将这块地分成面积相等的四块,请你设计出两种划分方案供选择,画图说明。

人教版 八年级数学 第11章达标检测题(含答案)

人教版 八年级数学 第11章达标检测题(含答案)

11.1 与三角形有关的线段一、选择题(本大题共12道小题)1. 三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2. 人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3. 已知在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A. 11B. 5C. 2D. 14. 课堂上,老师把教学用的两块三角尺叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.65. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 126. 如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长大3 cm,则AB与AC的差为()A.2 cm B.3 cm C.4 cm D.6 cm7. 如图,已知P为直线l外一点,点A,B,C,D在直线l上,且PA>PB>PC >PD,则下列说法正确的是()A.线段PD的长是点P到直线l的距离B.线段PC可能是△PAB的高C.线段PD可能是△PBC的高D.线段PB可能是△PAC的高8. 下列关于三角形的分类,有如图K-1-4所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误9. 如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添加木条()A.1根B.2根C.3根D.4根10. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种11. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形12. 某木材市场上木棒规格与对应单价如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m单价(元/根) 10 15 20 25 30 35小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场去购买一根木棒,则小明的爷爷至少带的钱数应为()A.10元B.15元C.20元D.25元二、填空题(本大题共6道小题)13. 如图,自行车的主框架采用了三角形结构,这样设计的依据是________________.14. 如图,AE是△ABC的中线,已知EC=8,DE=3,则BD=________.15. 已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是.16. 如图,在△ABC中,AD⊥BC于点D,点E在CD上,则图中以AD为高的三角形有______个.17. 已知三角形的三边长分别为3,8,x,若x为偶数,则x=____________.18. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.三、解答题(本大题共3道小题)19. 如图,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,橡皮筋始终绷直,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?20. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?21. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.人教版八年级数学11.1 与三角形有关的线段课时训练-答案一、选择题(本大题共12道小题)1. 【答案】D2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.6. 【答案】B[解析] ∵AD是△ABC的中线,∴BD=CD.∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC. ∵△ABD的周长比△ACD的周长大3 cm,∴AB与AC的差为3 cm.7. 【答案】C[解析] 由于PA>PB>PC>PD,因此PD可能是钝角三角形PBC 中BC边上的高.8. 【答案】C9. 【答案】C[解析] 添加3根木条以后成为如右所示图形,其由若干三角形组成,具有稳定性.10. 【答案】C11. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.12. 【答案】C[解析] 由三角形三边大小关系可得第三根木棒的长度应该大于2 m 且小于8 m,所以满足要求的木棒有3 m,4 m,5 m,6 m,其中买3 m木棒用钱最少,为20元.二、填空题(本大题共6道小题)13. 【答案】三角形具有稳定性14. 【答案】5[解析] ∵AE是△ABC的中线,EC=8,∴BE=EC=8.∵DE=3,∴BD=BE-DE=8-3=5.15. 【答案】15[解析] 若腰长为3,3+3=6,∴3,3,6不能组成三角形;若腰长为6,3+6=9>6,∴3,6,6能组成三角形,该三角形的周长为3+6+6=15.16. 【答案】617. 【答案】6或8或10[解析] 由三角形三边关系可知5<x<11.因为x为偶数,所以x的值为6或8或10.18. 【答案】13【解析】由折叠的性质可得:CD=AD,∴△BCD的周长=BC +CD+BD=BC+AD+BD=BC+BA=6+7=13.三、解答题(本大题共3道小题)19. 【答案】解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得x的取值范围为3<x<19.20. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.21. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.11.2 与三角形有关的角一、选择题(本大题共12道小题)1. 已知在△ABC中,∠A=70°,∠B=60°,则∠C的度数为() A.50°B.60°C.70°D.80°2. 在一个三角形中,有一个角是55°,则另外的两个角可能是() A.95°,20°B.45°,80°C.55°,60°D.90°,20°3. (2019•百色)三角形的内角和等于A.90︒B.180︒C.270︒D.360︒4. 在△ABC中,∠A=2∠B=70°,则∠C的度数为()A.35°B.40°C.75°D.105°5. 在Rt△ABC中,∠C=90°,∠A-∠B=50°,则∠A的度数为()A.80°B.70°C.60°D.50°6. 在△ABC中,若∠B=3∠A,∠C=2∠B,则∠B的度数为()A.18°B.36°C.54°D.90°7. 如图,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字形通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是()A.75°B.80°C.85°D.90°8. 如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC交BC于点D,DE∥AB 交AC于点E,则∠ADE的度数是()A.54°B.50°C.45°D.40°9. 如图,在△ABC中,D是∠ABC和∠ACB的平分线的交点,∠A=80°,∠ABD =30°,则∠BDC的度数为()A.100°B.110°C.120°D.130°10. 已知在△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()A. 40°B. 60°C. 80°D. 90°11. 如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°12. 如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6道小题)13. 把一副三角尺如图所示拼在一起,那么图中∠ABF=________°.14. 如图,已知AB,CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D =________°.15. 如图,折叠一张三角形纸片,把三角形的三个角拼在一起,就可以说明一个几何定理.请你写出这个定理的内容:______________________.16. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么“特征角”α的度数为____________.17. 如图所示,在△ABC 中,∠A =36°,E 是BC 延长线上一点,∠DBE =23∠ABE ,∠DCE =23∠ACE ,则∠D 的度数为________.18. 在△ABC 中,∠A =50°,∠B =30°,点D 在AB 边上,连接CD.若△ACD 为直角三角形,则∠BCD 的度数为________.三、解答题(本大题共3道小题)19. 如图1-Z -18是一个大型模板,设计要求BA 与CD 相交成20°角,DA 与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?20. 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AF 是角平分线,交CD 于点E .试说明:∠1=∠2.21. 探究与证明如图①,在△ABC 中,AD ⊥BC 于点D ,CE ⊥AB 于点E .(1)猜测∠1与∠2的关系,并说明理由;(2)如果∠ABC是钝角,如图②,(1)中的结论是否还成立?人教版八年级数学11.2 与三角形有关的角课时训练-答案一、选择题(本大题共12道小题)1. 【答案】A2. 【答案】B[解析] ∵在一个三角形中,有一个角是55°,∴另外的两个角的和为125°,各选项中只有B选项中的两个角的和为125°.故选B.3. 【答案】B【解析】因为三角形的内角和等于180度,故选B.4. 【答案】C5. 【答案】B[解析] ∵∠C=90°,∴∠A+∠B=90°.又∵∠A-∠B=50°,∴2∠A=140°.∴∠A=70°.6. 【答案】C[解析] ∵在△ABC中,∠B=3∠A,∠C=2∠B,∴∠C=6∠A. 设∠A=x,则∠B=3x,∠C=6x.由三角形内角和定理可得x+3x+6x=180°,解得x=18°,∴∠B=3x=54°.7. 【答案】C[解析] ∵∠DBA=130°,∠ECA=135°,∴∠ABC=180°-∠DBA=50°,∠ACB=180°-∠ECA=45°.∴∠A=180°-∠ABC-∠ACB=180°-50°-45°=85°.8. 【答案】D[解析] 由三角形内角和定理可知∠BAC=180°-∠B-∠C=180°-46°-54°=80°.因为AD平分∠BAC,所以∠BAD=12∠BAC=40°.因为DE∥AB,所以∠ADE=∠BAD=40°.9. 【答案】D[解析] ∵BD是∠ABC的平分线,∴∠DBC=∠ABD=30°,∠ABC=2∠ABD=2×30°=60°. ∴∠ACB=180°-∠A-∠ABC=40°.∵CD平分∠ACB,∴∠DCB=12∠ACB=12×40°=20°.∴∠BDC=180°-∠DCB-∠DBC=130°.10. 【答案】A11. 【答案】B[解析] 如图,连接AC并延长交EF于点M.∵AB∥CF,∴∠3=∠1.∵AD∥CE,∴∠2=∠4.∴∠BAD=∠3+∠4=∠1+∠2=∠FCE.∵∠FCE=180°-∠E-∠F=180°-80°-50°=50°,∴∠BAD=∠FCE=50°.12. 【答案】B[解析] 因为∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE.在四边形BCED中,∠1+∠2=360°-∠B-∠C-∠A′ED-∠A′DE=360°-(∠B+∠C)-(∠AED+∠ADE)=360°-2(180°-∠A),化简得∠1+∠2=2∠A.二、填空题(本大题共6道小题)13. 【答案】15[解析] 由题意,得∠F=30°,∠EAD=45°.因为∠EAD=∠F+∠ABF,所以∠ABF=∠EAD-∠F=15°.14. 【答案】64[解析] 由三角形内角和定理可知∠A+∠D+∠AOD=180°,∠B +∠C+∠BOC=180°.∵∠AOD=∠BOC,∴∠A+∠D=∠B+∠C.∴∠D=64°.15. 【答案】三角形三个内角的和等于180°16. 【答案】48°或96°或88°[解析] 当“特征角”为48°时,即α=48°;当β=48°时,则“特征角”α=2×48°=96°;当第三个角为48°时,α+12α+48°=180°,解得α=88°.综上所述,“特征角”α的度数为48°或96°或88°.17. 【答案】24°[解析] ∠D=∠DCE-∠DBE=23∠ACE-23∠ABE=23(∠ACE-∠ABE)=23∠A=23×36°=24°.18. 【答案】60°或10°[解析] 分两种情况:(1)如图①,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°-30°=60°;(2)如图②,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°-30°-50°=100°.∴∠BCD=100°-90°=10°.综上,∠BCD的度数为60°或10°.三、解答题(本大题共3道小题)19. 【答案】解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.故这块模板是合格的.20. 【答案】解:∵∠ACB=90°,∴∠2+∠CAF=90°.∵AF是△ABC的角平分线,∴∠CAF=∠BAF.∴∠2+∠BAF=90°.∵CD⊥AB,∴∠AED+∠BAF=90°.又∵∠AED=∠1,∴∠1+∠BAF=90°.∴∠1=∠2.21. 【答案】解:(1)∠1=∠2.理由如下:∵AD⊥BC,CE⊥AB,∴△ABD和△BCE都是直角三角形.∴∠1+∠B=90°,∠2+∠B=90°.∴∠1=∠2.(2)(1)中的结论仍然成立.理由如下:∵AD⊥BC,CE⊥AB,∴∠D=∠E=90°.∴∠2+∠ABD=90°,∠1+∠CBE=90°.又∵∠ABD=∠CBE,∴∠1=∠2.11.3 多边形的内角和一、选择题1. 下列说法:①等腰三角形是正多边形;②等边三角形是正多边形;③长方形是正多边形;④正方形是正多边形.其中正确的个数为( )A. 1B. 2C. 3D. 42. 过多边形的一个顶点可以引2018条对角线,则这个多边形的边数是( )A. 2018B. 2019C. 2020D. 20213. 在四边形ABCD中,若∠A+∠C+∠D=280°,则∠B的度数为( )A. 80°B. 90°C. 170°D. 20°4. 正多边形的一个内角是150°,则这个正多边形的边数为( )A. 10B. 11C. 12D. 135. 若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是( )A. 7B. 10C. 35D. 706. 如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A. 13B. 14C. 15D. 16第6题第7题7. 如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )A. 140米B. 150米C. 160米D. 240米8. 将一长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°二、填空题9. 若过n边形的一个顶点有2m条对角线,m边形没有对角线,k边形有k条对角线,则(n -k)m=.10. 如图,把一块直角三角形的直角顶点放在直尺的一边上,若∠1=50°,则∠2= .第10题第11题11. 如图,在△ABC中,∠A=60°,∠B=40°,点D,E分别在BC,AC的延长线上,则∠1=.12. 一副三角尺ABC和DEF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为.第12题第13题13. 如图,∠A+∠B+∠C+∠D+∠1的度数为.14. 将一个n边形变成n+1边形,其内角和,外角和.15. 如图,正六边形ABCDEF,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N,则∠MPN=.第15题第16题16. 如图,在同一平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2=.三、解答题17. 如图,将△ABC沿着DE翻折,使B点与B′点重合,若∠1+∠2=80°,求∠B的度数.18. 多边形的内角和与某一个外角的度数总和为1350°,求多边形的边数.19. 如图,求∠A+∠B+∠C+∠D+∠E+∠F.20. (1)如图1,2,试研究其中∠1,∠2与∠3,∠4之间的数量关系;(2)如果我们把∠1,∠2称为四边形的外角,那么请你用文字描述上述的关系式;(3)用你发现的结论解决下列问题:如图3,AE,DE分别是四边形ABCD的外角∠NAD,∠MDA的平分线,∠B+∠C=240°,求∠E的度数.图1图2图3。

(完整)新人教版八年级数学上册第十一章三角形单元测试题含答案,推荐文档

(完整)新人教版八年级数学上册第十一章三角形单元测试题含答案,推荐文档

初中数学八(上)学习过程评价题 班级: 内容:第11章三角形 姓名: 得分: 一、选择题(30分). 1. 从五边形的一个顶点出发的对角线,把这个五边形分成 A.5B.4C.3 2. 以下列各组线段长为边能组成三角形的是 (). A.lcm , 2cm, 4cm B.2cm , 4cm, 6cm C.4cm ,个三角形. D.24. 一个三角形的三条角平分线的交点在 (). A.三角形内 B.三角形外 C. 三角形的某边上5. 某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板, 是()• A.正三角形 B.矩形 C.正六边形6. 能把一个任意三角形分成面积相等的两部分的是 ( A.角平分线 B.中线 C.高 D.以上二种情形都有可能 他购买的瓷砖形状不可以 D. 正八边形 ). D.A7. 一个角的两边与另一个角的两边互相垂直,且这两个角之差为为(). A.70。

和 110° B.80 。

和 120° C.40 。

和 140° 8. 一个三角形三个内角的度数之比为 2:3:7,这个三角形一 A .直角三角形B.等腰三角形 C •锐角三角形 9. ( n+1)边形的内角和比 n 边形的内角和大(). A.180 ° B.360 °C.n • 180° 40 B 、C 都可以,那么这两个角分别 D.100 定是(). D .钝角三角形 和 140°D.n • 360°10.如图,把△ ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则/ A 与/ 1 + Z 2之间 有一种数量关系始终保持不变,试着找一找这个规律 .你发现的规律是().C. / A=2 (/ 1 + Z 2)D. 第11题图二、填空题. 11.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条 是 (每题2分,共16 分)12. 某一个三角形的外角中有一个角是锐角,那么这个三角形是 ____________ 角三角形•13. 一个多边形的内角和是外角和的一半,则它的边数是—14. 如图所示:(1 )在厶ABC中,BC边上的高是_______ ;(2)在厶AEC中,AE边上的高是.15. 如图,正方形ABCD中,截去/ B、/ D后,/ 1、/ 2、/ 3、/ 4的和为16. 若一个等腰三角形的两边长分别是 3 cm和5 cm,则它的周长是cm~17. 三角形的三边长分别为5, 1+2x , 8,则x的取值范围是 ___________ .18. 一个四边形的四个内角中最多有 ________ 个钝角,最多有______ 个锐角?三、解答题(2X 4/=8/).19. 一个多边形的内角和等于它的外角和的6倍,这是一个几边形.20. 已知三角形的两个外角分别是久° , 3°,且满足(a—50)2=—|a +^—200|.求此三角形各角的度数.四、解答题(3X 5/=15/).21. △ ABC中,/ ABC / ACB的平分线相交于点0.(1)若/ ABC = 40 °,/ ACB = 50 °,则/ BOC = __________(2)若/ ABC +/ ACB =116°,则/ BOC = _________ .(3)_______________________________ 若/ A = 76 °,则/ BOC = .(4)_______________________________ 若/ BOC = 120°,则/ A = .22.如图的四边形是某地板厂加工地板时剩下的边角余料嵌吗?请说明理由.,用这种四边形的木板可以进行镶(5)你能找出/ A与/ BOC之间的数量关系吗?23. 已知等腰三角形中,AB= AC, —腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.四、解答题(3X 7/=21/).24. 如图,已知△ ABC D在BC的延长线上,E在CA的延长线上, F在AB上,试比较/ 1与/ 2的大小.25. 已知:如图,AC和BD相交于点0,说明:AC+BD>AB+CD.现测得/ A=145°, / B=75°, / C=85°Z D=55°,就断定这块模板是合格26.如图,它是一个大型模板,设计要求BA与CD相交成20°角, DA与CB相交成40°角, 的,这是为什么?五、解答题((3X 10/=30/)).27. 如图,四边形ABCD中,/ A=Z C= 90°, BE、DF分别是/ B/ D的平分线.(1)/ 1与/ 2大小有何关系,为什么?( 2) BE与DF有何关系?请说明理由C28. 如图1, / ACD>^ ABC的外角,BE平分/ ABC CE平分/ ACD且BE、CE交于点E.求证:⑴/ E= j / A;2(2)若BE、CE是厶ABC两外角的平分线且交于点E,则/ E与/ A又有什么关系?并说明理由29. 如图,/ ECM 90° ,线段AB的端点分别在CE和CF上,BD平分/ CBA并与/ CAB的外角平分线AG所在的直线交于一点 D. (1)Z D与/ C有怎样的数量关系?(2)点A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.参考答案1C ; 2.C ; 3.C ; 4.A ; 5.D ; 6.B ; 7.A ; 8.D ; 9.A ; 10.A ; 11.三角形具有稳定性; 12.钝;13.3 ; 14.AB 、CD 15.540 ° ; 16.11 或 13; 17.1 V x V 6; 18.3、3;22.能进行镶嵌;理由:由镶嵌的条件知,在一个顶点处各个内角的和为 360 °时,就能镶嵌.而任意四边形的内角和是 360 °,只要放在同一顶点的 4个内角和为360 ° 故能进行镶嵌. 23.如图,根据题意得: AB=AC, AD=CD, 设 BC=xcm, AD=CD=ycm 则 AB=AC=2ycm,①若 AB+AD=15cm, BC+CD=6cm 则 2y y 15x y 6解得:x 1 5 y即 AB=AC=10cm, BC=1cm ;②若 AB+AD=6cm , BC+CD=15cm2y 6 则x y 15解得:x 13y 2即 AB=AC=4cm, BC=13cm,19.14;20.13030°、 20°21. /OBC )••• 4+4=8V 13,不能组成三角形,舍去;•••这个等腰三角形的底边的长为1cm.24.根据三角形的外角性质,在△ AEF中,/ BAC >/ 1, 在厶ABC 中,/ 2>Z BAC ,所以,/ 2>Z 1.25.证明:••• AO+BO > AB , DO+CO > CD ,•AO+BO+DO+CO > AB+ CD ,即AC+BD > AB+ CD .26. 解:延长DA、CB,相交于F,•••/ C+Z ADC=85° +55°=140°,•••/ F=180° -140 ° =40 ° ;延长BA、CD相交于E,•/Z C+Z ABC=85° +75°=160°,•Z E=180° -160 °=20 °,故合格.27.(1 )Z 1+ Z 2=90°;•/ BE , DF分别是Z ABC , Z ADC的平分线, • Z 1 = Z ABE , Z 2=Z ADF ,/Z A= Z C=9C° ,• Z ABC+ Z ADC=180 ,••• 2 (/ 1+ / 2) =180° , • BE // DF .28. (1)证明:•••/ ACD= Z A+ /ABC ,1 •••Z2= — (/A+ /ABC )2•••左+ 72= 1 (/A+ ZABC )2•••左+ 1 (/A+ ZACB ) + 1 (/A+ /ABC ) =180。

人教版八年级上册数学第十一章 三角形含答案【有解析】

人教版八年级上册数学第十一章 三角形含答案【有解析】

人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、下列图形中,不具有稳定性的是()A. B. C. D.2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=6,AB=10,则DE的长为()A. B.3 C. D.3、如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A. B. C. D.4、如右图所示,在△ABC中,AD为BC边上的中线,若AB=5cm,Ac=3cm,则△ABD的周长比△ACD周长多()A.5cmB.3cmC.8cmD.2cm5、下列几组线段能组成三角形的是( )A.3cm,5cm,8cmB.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,4cm,8cm6、三角形三条中线的交点叫做三角形的()A.内心B.外心C.中心D.重心7、已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形B.十二边形C.十边形D.九边形8、一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是()A.8B.12C.16D.189、如图,点D是△ABC边BC延长线上一点,∠ACD=120°,∠B=20°,则∠A 的度数是()A.30°B.90°C.100°D.120°10、下列图形中一定能说明∠1>∠2的是()A. B. C.D.11、有四条线段,它们的长分别为1cm, 2cm, 3cm, 4cm, 从中选三条构成三角形,其中正确的选法有()A.1种B.2种C.3种D.4种12、下列图形具有稳定性的是()A.梯形B.长方形C.直角三角形D.平行四边形13、某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5B.6C.7D.814、有两边相等的三角形的两边长为3cm,5cm,则它的周长为()A.8cmB.11cmC.13cmD.11cm或13cm15、图中的五角星是用螺栓将两端打有孔的5根木条连接而构成的,它的形状不稳定.如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓尽可能少,那么需要添加螺栓()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=________17、如图,在中,,,的平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点恰好重合,则为________18、已知等腰三角形的两边长是和,则它的周长是________.19、如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是________.20、如图,在ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________度.21、如图,△ABC中,AB=AC=26,BC=20,AD是BC边上的中线,AD=24,F是AD 上的动点,E是AC边上的动点,则CF+EF的最小值为________.22、如图,若AB∥CD,∠C=50°,则∠A+∠E=________.23、如果一个三角形的两边长分别是2cm和7cm,且第三边为奇数,则三角形的周长是________cm.24、一个多边形的边数是10,则这个多边形的内角和是________°.25、等腰三角形的一边长为7cm,另一边长为3cm,那么这个等腰三角形的周长为________cm.三、解答题(共5题,共计25分)26、求出下列图中x的值。

人教版八年级数学上册第11章《三角形》全章检测题(含答案)

人教版八年级数学上册第11章《三角形》全章检测题(含答案)

第十一章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为()A.3 B.4 C.5 D.6,第1题图),第3题图),第6题图) 2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是()A.30°B.40°C.50°D.60°4.若△ABC有一个外角是钝角,则△ABC一定是()A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF =2,则S△ABC等于()A.16 B.14 C.12 D.10,第7题图),第9题图),第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是()A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A.115°B.105°C.95°D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.,第11题图),第12题图),第13题图),第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD ∠ACE(填“>”“<”或“=”),∠A+∠DOE=_度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为_.15.正多边形的一个外角是72°,则这个多边形的内角和的度数是.16.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B,求∠ACD的度数.20.(8分)如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.21.(9分)已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.22.(9分)如图,小明从点O出发,前进5 m后向右转15°,再前进5 m后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10 cm,BC=8 cm,AC=6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.24.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=,∠XBC+∠XCB=;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.第十一章检测题教师版(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为( C )A.3 B.4 C.5 D.6,第1题图),第3题图),第6题图) 2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B )A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30°B.40°C.50°D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110°B.105°C.100°D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF =2,则S△ABC等于( A )A.16 B.14 C.12 D.10,第7题图),第9题图),第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115°B.105°C.95°D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图),第12题图),第13题图),第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°__.16.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A =α,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线相交于点A 1,得∠A 1;若∠A 1BC 的平分线与∠A 1CD 的平分线相交于点A 2,得∠A 2……∠A 2015BC 的平分线与∠A 2015CD 的平分线相交于点A 2016,得∠A 2016,则∠A 2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC 中,∠A =90°,∠ACB 的平分线交AB 于D ,已知∠DCB =2∠B ,求∠ACD 的度数.解:设∠B =x °,可得∠DCB =∠ACD =2x °,则x +2x +2x =90,∴x =18,∴∠ACD =2x °=36°20.(8分)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =18°,求∠C 的度数.解:∵∠BAD =90°-∠B =20°,∴∠BAE =∠BAD +∠DAE =38°.∵AE 是角平分线,∴∠CAE =∠BAE =38°,∴∠DAC =∠DAE +∠CAE =56°,∴∠C =90°-∠DAC =34°21.(9分)已知等腰三角形的周长为18 cm ,其中两边之差为3 cm ,求三角形的各边长.解:设腰长为x cm ,底边长为y cm ,则⎩⎨⎧2x +y =18,x -y =3,或⎩⎨⎧2x +y =18,y -x =3,解得⎩⎨⎧x =7,y =4,或⎩⎨⎧x =5,y =8,经检验均能构成三角形,即三角形的三边长是7 cm ,7 cm ,4 cm 或5 cm ,5 cm ,8 cm22.(9分)如图,小明从点O 出发,前进5 m 后向右转15°,再前进5 m 后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10 cm,BC=8 cm,AC=6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC =12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C+∠D+∠E=180°。

人教版数学八年级上第11章三角形全章测试含答案

人教版数学八年级上第11章三角形全章测试含答案

人教版数学八年级上第11章三角形全章测试含答案第11章三角形全章测试一、多项选择题(每题3分,共30分)1.以下列各组长度的线段为边,能构成三角形的是()a、 7,3,4b.5,6,12c.3,4,5d.1,2,32。

等腰三角形的外角为80°,则其底角为()a.100°b.100°或40°c.40°d.803.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为()a、1260°b.1080°c.1620°d.360°4.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是()a.正三角形b.正方形c.正六边形d.正八边形5.以下陈述是正确的()a.三角形的角平分线、中线及高都在三角形内b.直角三角形的高只有一条.c.三角形至少有一条高在形内d.钝角三角形的三条高都在形外.6.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()a.5b.6c.7d.87.在下图中,正确画出ac边上高的是().BBBBAECACEAC(a)(b)(c)(d)8.如图所示,∠a、∠1、∠2的大小关系是()a.∠a?∠1?∠2b.∠2?∠1?∠ac.∠a?∠2?∠1d.∠2?∠a?∠19.给出以下建议:⑴三角形的一个外角一定大于它的一个内角.(2)如果三角形的三个内角之比是1:3:4,那么它一定是直角三角形。

(3)三角形的最小内角不能大于60°⑷三角形的一个外角等于和它不相邻的两个内角的和其中真命题的个数是()(a) 1(b)2(c)3(d)410.如图1,把△abc纸片沿de折叠,当点a落在四边形bcde内部时,则∠a与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()答。

∠a=∠1+∠2b.2∠a=∠1+∠2c.3∠a=2∠1+∠2d.3∠a=2(∠1+∠2)第1页共3页二、填空(每题3分,共30分)11.为了使一扇旧木门不变形,木工师傅在木门的背面钉一块木头的原因是。

人教版八年级数学上第十一章三角形单元检测含答案

人教版八年级数学上第十一章三角形单元检测含答案

人教版八年级数学上第十一章三角形单元检测含答案一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有( ).A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ).A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上)10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的13,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.21.(本题满分12分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B 点拨:只有B中较短两边之和大于第三边,能组成三角形.2.C 点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C 点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C 点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A 点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D 点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A 点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B 点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C 点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性 不稳定性11.2a-2b 点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250° 点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八 点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360° 点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45° 点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120 点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n ,得180(n -2)=360×3,解得n =8.答:这个正多边形是八边形.20.解:因为∠AOC 是△AOB 的一个外角,所以∠AOC =∠A +∠B (三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC =95°,∠B =50°,所以∠A =∠AOC -∠B =95°-50°=45°.因为AB ∥CD ,所以∠D =∠A =45°(两直线平行,内错角相等).21.解:因为BD ∥AE ,所以∠DBA =∠BAE =57°.所以∠ABC =∠DBC -∠DBA =82°-57°=25°.在△ABC 中,∠BAC =∠BAE +∠CAE =57°+15°=72°,所以∠C =180°-∠ABC -∠BAC =180°-25°-72°=83°.22.答案:(1)πR 2 (2)πR 2 (3)πR 2 (4)πR 21232n -22点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.。

2018年人教版八年级数学上第11章三角形单元测试题(附答案和解释)

2018年人教版八年级数学上第11章三角形单元测试题(附答案和解释)

2018年人教版八年级数学上第11章三角形单元测试题(附答案和解释)2018年秋人教版八年级上册数学《第11章三角形》单元测试题一.选择题(共10小题) 1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2 B.3 C.5 D.6 2.如图,BD是△ABC的高,EF∥AC,EF交BD 于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC 的高;③DG是△AGC的高;④AD是△ABG的高.A.1个 B.2个 C.3个 D.4个 3.下列说法正确的是() A.三角形的三条中线交于一点 B.三角形的三条高都在三角形内部 C.三角形不一定具有稳定性 D.三角形的角平分线可能在三角形的内部或外部 4.下列线段长能构成三角形的是() A.3、4、8 B.2、3、6 C.5、6、11 D.5、6、10 5.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75° B.60° C.45° D.40° 6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45° B.55° C.65° D.75° 7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是() A.30° B.40° C.45° D.50° 8.将一个四边形截去一个角后,它不可能是()A.六边形 B.五边形 C.四边形 D.三角形 9.如果n边形的内角和是它外角和的4倍,则n等于() A.7 B.8 C.10 D.9 10.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是()A.100米 B.110米 C.120米 D.200米二.填空题(共8小题)11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是. 12.如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA 中边BH上的高是.13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于度,若∠A=60°时,∠BOC又等于14.如图,∠1,∠2,∠3的大小关系是.15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.16.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为. 17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为.18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=.三.解答题(共8小题) 19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD=10°,求∠B的度数22.如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=60°,则∠P=°;(2)若∠A=40°,则∠P=°;(3)若∠A=100°,则∠P=°;(4)请你用数学表达式归纳∠A与∠P的关系.23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD 的度数.24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数. 25.(1)已知一个多边形的�冉呛褪撬�的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F =40°,求∠ACF的度数.26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP =∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.2018年秋人教版八年级上册数学《第11章三角形》单元测试题参考答案与试题解析一.选择题(共10小题) 1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2 B.3 C.5 D.6 【分析】根据三角形的个数解答即可.【解答】解:图中三角形的个数是5个,故选:C.【点评】此题考查三角形,关键是根据图中图形得出三角形个数. 2.如图,BD是△ABC 的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG 的高.A.1个 B.2个 C.3个 D.4个【分析】根据三角形的高的定义以及平行线的性质,即可解答.【解答】解:∵BD是△ABC的高,∴∠ADB =∠CDB=90°,∵EF∥AC,∴∠EGB=∠ADB=90°,∴BG是△EBF 的高,①正确;∵∠CDB=90°,∴CD是△BGC的高,②正确;∵∠ADG=∠CDG=90°,∴DG是△AGC的高,③正确;∵∠ADB=90°,∴AD是△ABG的高,④正确.故选:D.【点评】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,理解定义是关键.也考查了平行线的性质. 3.下列说法正确的是() A.三角形的三条中线交于一点 B.三角形的三条高都在三角形内部 C.三角形不一定具有稳定性 D.三角形的角平分线可能在三角形的内部或外部【分析】依据三角形角平分线、中线以及高线的概念,即可得到正确结论.【解答】解:A.三角形的三条中线交于一点,正确; B.锐角三角形的三条高都在三角形内部,错误; C.三角形一定具有稳定性,错误;D.三角形的角平分线一定在三角形的内部,错误;故选:A.【点评】本题主要考查了三角形角平分线、中线以及高线的概念,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 4.下列线段长能构成三角形的是()A.3、4、8 B.2、3、6 C.5、6、11 D.5、6、10 【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解:A、3+4<8,不能构成三角形,故此选项不合题意;B、3+2<6,不能构成三角形,故此选项不合题意;C、5+6=11,不能构成三角形,故此选项不合题意;D、5+6>10,能构成三角形,故此选项符合题意.故选:D.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形. 5.一个缺角的三角形ABC残片如图所示,量得∠A =60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75° B.60° C.45° D.40° 【分析】根据三角形内角和定理即可解决问题;【解答】解:∵∠A+∠B+∠C=180°,∠A=60°,∠B=75°,∴∠C=45°,故选:C.【点评】本题考查三角形内角和定理,记住三角形内角和等于180°是解题的关键. 6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45° B.55° C.65° D.75° 【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°�80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型. 7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是() A.30° B.40° C.45° D.50° 【分析】根据直角三角形两锐角互余解答.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°�50°=40°.故选:B.【点评】本题属于基础题,利用直角三角形两锐角互余的性质解决问题. 8.将一个四边形截去一个角后,它不可能是() A.六边形 B.五边形 C.四边形 D.三角形【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【解答】解:一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,故选:A.【点评】本题考查了多边形,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 9.如果n边形的内角和是它外角和的4倍,则n等于() A.7 B.8 C.10 D.9 【分析】利用多边形的内角和公式和外角和公式,根据一个n 边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n�2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决. 10.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米 B.110米 C.120米 D.200米【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m即可.【解答】解:∵每次小明都是沿直线前进10米后向左转36°,∴他走过的图形是正多边形,边数n=360°÷36°=10,∴他第一次回到出发点A时,一共走了10×10=100米.故选:A.【点评】本题考查了正多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键.二.填空题(共8小题) 11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是7<a<12 .【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【解答】解:根据三角形三边关系定理知:最长边a的取值范围是:7<a<(7+5),即7<a<12.故答案为:7<a<12.【点评】此题主要考查的是三角形的三边关系,即:两边之和大于第三边,两边之差小于第三边. 12.如图,H若是△ABC三条高AD,BE,CF 的交点,则△BHA中边BH上的高是AE .【分析】直接利用三角形高线的定义得出答案.【解答】解:如图所示:∵H是△ABC三条高AD,BE,CF的交点,∴△BHA中边BH上的高是:AE.故答案为:AE.【点评】此题主要考查了三角形的高,正确钝角三角形高线的作法是解题关键. 13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于84 度,若∠A=60°时,∠BOC又等于120°【分析】根据三角形内角和定理易得∠OBC+∠OCB=48°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,进而利用三角形内角和定理可得∠A度数;【解答】解:∵∠BOC=132°,∴∠OBC+∠OCB=48°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,∴∠A=180°�96°=84°;解:∵∠A=60°∴∠ABC+∠ACB=120° ∴∠BOC=180°�(∠ABC+∠ACB)=120°.故答案为:84,120°.【点评】本题考查的是三角形内角和定理,角平分线的定义,熟知三角形内角和是180°是解答此题的关键. 14.如图,∠1,∠2,∠3的大小关系是∠1<∠2<∠3.【分析】如图可知∠2是三角形的外角,∠3是三角形的外角,根据外角的性质可得到∠1,∠2,∠3的大小关系.【解答】解:∵∠2是外角,∠1是内角,∴∠1<∠2,∵∠3是外角,∠2是内角,∴∠2<∠3,∴∠1<∠2<∠3,故答案为:∠1<∠2<∠3.【点评】本题主要考查外角的性质,掌握外角大于不相邻的每一个内角是解题的关键. 15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.【分析】根据题意,画出图象,由图可知∠6+∠7=∠8+∠9,因为五边形内角和为540°,从而得出答案.【解答】解:如图∵∠6+∠7=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠3+∠4+∠5+∠8+∠9,=五边形的内角和=540°,故答案为:540°.【点评】本题考查了五边形内角和,同时需要考生认真通过图形获取信息,通过连线构造五边形从而得出结论. 16.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为9 .【分析】一个多边形的每个内角都相等,每个内角与相邻外角的差为100°,又由于内角与外角的和是180度.设内角是x°,外角是y°,列方程组求解即可.【解答】解:设内角是x°,外角是y°,则得到一个方程组,解得.而任何多边形的外角和是360°,则多边形外角的个数是360÷40=9,则这个多边形的边数是九边形.故答案为:9 【点评】本题考查多边形的内角与外角,根据多边形的内角与外角的关系转化为方程组的问题,并利用了多边形的外角和定理;已知外角求边数的这种方法是需要熟记的内容. 17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为120°.【分析】由∠BDC是△ABD的外角,而∠BEC是△CDE的外角即可求解.【解答】解:∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=85°,同理:∠BEC=∠BDC+∠DCE=120°,故:答案是120°.【点评】本题主要考查的是三角形内角和定理和外角定理,是一道基本题. 18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=50°.【分析】根据三角形的外角的性质得到∠C=∠ADE�∠DEC=50°,根据平角的定义计算.【解答】解:∵DE⊥BC,∴∠DEC=90°,由三角形的外角的性质可知,∠C=∠ADE�∠DE C=50°,∴∠B=∠C =50°,∵EF⊥AB,∴∠EFC=90°,∴∠FEB=90°�50°=40°,则∠FED=180°�40°�90°=50°,故答案为:50°.【点评】本题考查的是直角三角形的性质,三角形的外角的性质,掌握三角形内角和定理是解题的关键.三.解答题(共8小题) 19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?【分析】根据三角形的三边关系即可得到结论.【解答】解:共有2、4、4;3,3,4;2种不同的折法,【点评】本题考查了三角形的三边关系,正确的理解题意是解题的关键. 20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.【分析】分别根据角平分线、三角形高线作法以及垂直平分线的作法得出答案即可.【解答】解:由题意画图可得:【点评】此题主要考查了复杂作图中线段垂直平分线的作法以及角平分线作法等知识,熟练掌握作图方法是关键. 21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD=10°,求∠B的度数【分析】根据垂直的定义得到∠ADC=90°,根据角平分线的定义得到∠CAE=BAC=40°,根据三角形的内角和即可得到结论.【解答】解:∵AD是高,∴∠ADC=90°,∵AE是角平分线,∠BAC=80°,∴∠CAE=BAC=40°,∵∠EAD=10°,∴∠CAD=30°,∴∠C=60°,∴∠B=180°�∠BAC�∠C=40°.【点评】本题考查了三角形内角和定理和垂直定义、角平分线定义等知识点,能根据三角形内角和定理求出各个角的度数是解此题的关键. 22.如图,△ABC 中,分别延长△AB C的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A =60°,则∠P=,60 °;(2)若∠A=40°,则∠P=90 °;(3)若∠A=100°,则∠P=70 °;(4)请你用数学表达式归纳∠A与∠P的关系90°�∠A.【分析】(1)若∠A=60°,则有∠ABC+∠ACB=120°,∠DBC+∠BCE =360°�120°=240°,根据角平分线的定义可以求得∠PBC+∠PCB 的度数,再利用三角形的内角和定理即可求得∠P的度数.(2)(3)和(1)的解题步骤相似.(4)利用角平分线的性质和三角形的外角性质可求出∠BCP=(∠A+∠ABC),∠CBP=(∠A+∠ACB);再利用三角形内角和定理便可求出∠A与∠P的关系.【解答】解:(1)∵∠A =60°,∴∠ABC+∠ACB=180°�60°=120°,∠DBC+∠BCE=360°�120°=240°,又∵∠CBD与∠BCE的平分线相交于点P,∴∠PBC=∠DBC,∠PCB=∠BCE,∴∠PBC+∠PCB=(∠DBC+∠ECB)=120°,∴∠P=60°.同理得:(2)90°;(3)70° (4)∠P =90°�∠A.理由如下:∵BP平分∠DBC,CP平分∠BCE,∴∠DBC =2∠CBP,∠BCE=2∠BCP 又∵∠DBC=∠A+∠ACB∠BCE=∠A+∠ABC,∴2∠CBP=∠A+∠ACB,2∠BCP=∠A+∠ABC,∴2∠CBP+2∠BCP=∠A+∠ACB+∠A+∠ABC=180°+∠A,∴∠CBP+∠BCP=90°+∠A 又∵∠CBP+∠BCP+∠P=180°,∴∠P=90°�∠A.故答案为:60,90,70,90°�∠A.【点评】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质以及角平分线的定义,熟练掌握性质和定义是解题的关键. 23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°�72°=36度.【解答】证明:∵五边形ABCDE的内角都相等,∴∠BAE =∠B=∠BCD=∠CDE=∠E=(5�2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°�108°)÷2=36°,∴∠ACD=∠BCD�∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD =180°�∠ACD�∠ADC=36°.【点评】本题主要考查了正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108度. 24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.【分析】已知关系为:一个外角=一个内角×,隐含关系为:一个外角+一个内角=180°,由此即可解决问题.【解答】解:设这个多边形的每一个内角为x°,那么180�x=x,解得x=140,那么边数为360÷(180�140)=9.答:这个多边形的每一个内角的度数为140°,它的边数为9.【点评】本题考查了多边形内角与外角的关系,用到的知识点为:各个内角相等的多边形的边数可利用外角来求,边数=360÷一个外角的度数. 25.(1)已知一个多边形的�冉呛褪撬�的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.【分析】(1)多边形的外角和是360°,内角和是它的外角和的3倍,则内角和是3×360=1080度.n边形的内角和可以表示成(n�2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.(2)在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中,根据内角与外角的性质求∠ACF的度数即可.【解答】解:(1)设这个多边形的边数为n,∵n边形的内角和为(n�2)•180°,多边形的外角和为360°,∴(n�2)•180°=360°×3,解得n=8.∴这个多边形的边数为8.(2)在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=30°+50°=80°.【点评】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.同时考查了三角形的内角和定理,以及三角形的外角等于不相邻的两个内角的和. 26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有 3 个,以点O为交点的“8字型”有 4 个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP =∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C�∠P=∠P�∠B,即∠P=(∠C+∠B),然后把∠C=120°,∠B=100°代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【解答】(1)证明:在图1中,有∠A+∠C=180°�∠AOC,∠B+∠D=180°�∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①3;4;故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP ∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP =∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P =∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP =∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP ∴∠C�∠P=∠CDP�∠CAP=(∠CDB�∠CAB),∠P�∠B=∠BDP�∠BAP=(∠CDB�∠CAB).∴2(∠C�∠P)=∠P�∠B,∴3∠P=∠B+2∠C.【点评】本题考查了三角形内角和定理:三角实用精品文献资料分享形内角和是180°.也考查了角平分线的定义.。

人教版八年级数学上册第十一章三角形单元测试题(含答案).doc

人教版八年级数学上册第十一章三角形单元测试题(含答案).doc

第十一章三角形单元测试题一、选择题(每小题 3 分,共30分)1、下列三条线段,能组成三角形的是()A、3,3,3B、3,3,6C、3,2,5D、3,2,62、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(A 、锐角三角形B 、钝角三角形C 、直角三角形D 、都有可能3、如图所示,AD 是△ ABC 的高,延长BC 至 E,使CE = BC ,△AB的面积为S2,那么()1>S2 1=S2C、1<S2 D 、不能确定A 、 SB 、 S S4、下列图形中有稳定性的是()A 、正方形B 、长方形C、直角三角形 D 、平行四边形5、如图,正方形网格中,每个小方格都是边长为 1 的正方形,A、在小方格的顶点上,位置如图形所示, C 也在小方格的顶点上,且以C 为顶点的三角形面积为 1 个平方单位,则点 C 的个数为(A、3个B、4个C、5个D、6个6、已知△ ABC 中,∠ A 、∠ B、∠ C 三个角的比例如下,其中能说明△ ABC 是直角三角形的是()A、2:3:4B、1:2:3C、4:3:5D、1:2:27、点P 是△ ABC 内一点,连结BP 并延长交AC 于 D ,连结PC ,则图中∠1、∠ 2、∠ A 的大小关系是()A 、∠ A>∠ 2>∠ 1B、∠ A>∠ 2>∠ 1二、填空题(本大题共 6 小题,每小题 3 分,共18 分)11、 P 为△ ABC 中 BC 边的延长线上一点,∠ A = 50 °,∠ B=70 °,则12、如果一个三角形两边为2cm , 7cm ,且第三边为奇数,则三角形的周长13、在△ ABC 中,∠A= 60 °,∠ C = 2∠ B,则∠ C = _____ 。

14、一个多边形的每个内角都等于150 °,则这个多边形是_____ 边形15、用正三角形和正方形镶嵌平面,每一个顶点处有_____ 个正三角形16、黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案,(有白色纸片_____ 块。

2017-2018年最新人教版八年级数学上册第十一章三角形单元测试卷及答案-【实用性强】

2017-2018年最新人教版八年级数学上册第十一章三角形单元测试卷及答案-【实用性强】

2017-2018 年最新人教版八年级数学上册三角形单元测试班级:姓名:分数:一、单项选择题(共10 题;共 30 分)1、如图,小正方形边长为1,连结小正方形的三个极点,可得△ABC,则 AC边上的高是()A、B、C、D、2、等腰三角形的两边分别为5cm、 4cm,则它的周长是()A、14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14 条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720°,则这个多边形的边数为()A、4B、5C、6D、76、以下列图形中有牢固性的是()A、正方形B、直角三角形C、长方形D、平行四边形7、八边形的对角线共有()A、8条B、16条C、18条D、20条8、多边形的每个内角都等于150°,则今后多边形的一个极点出发可作的对角线共有()A、8条B、9条C、10条D、11条9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ ABC内角和等于 180°”时,延长 BC至 D,过点 C作 CE∥ AB,获取∠ABC=∠ ECD,∠ BAC=∠ACE,由于∠ BCD=180°,可获取∠ ABC+∠ ACB+∠ BAC=180°,这个证明方法表现的数学思想是()A、数形结合B、特别到一般C、一般到特别D、转变二、填空题(共8 题;共 27 分)11、一个等腰三角形的两边长分别为 5 厘米、 9 厘米,则这个三角形的周长为________.12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了 ________ .13、若一个多边形从一个极点可以引8 条对角线,则这个多边形的边数是________ ,这个多边形所有对角线的条数是________ .14、现要用两种不同样的正多边形地砖铺地板,若已采用正三角形,则还可以采用正________边形与它搭配铺成无空隙且不重叠的地面(只需要写出一种即可)15、若是等腰三角形一个角是45°,那么别的两个角的度数为________16、已知一个多边形的内角和是1620°,则这个多边形是 ________边形.17、在格点图中,横排或竖排相邻两格点问的距离都为 1,若格点多边形界线上有 200 个格点,面积为 199,则这个格点多边形内有 ________个格点.18、一个多边形的每一个内角都是108°,你们这个多边形的边数是________.三、解答题(共 5 题;共 32 分)19、如图,已知, l 1∥l 2, C1在 l 1上,并且 C1A⊥l 2, A 为垂足, C2, C 3是 l 1上任意两点,点 B 在 l 2上.设△ ABC1的面积为 S1,△ABC2的面积为 S2,△ABC3的面积为 S3,小颖认为 S1=S2=S3,请帮小颖说明原由.20、如图,五边形ABCDE的内角都相等,且∠ 1=∠ 2,∠ 3=∠4,求 x 的值.21、如图,在△ ABC中,∠ B=40°,∠ C=62°,AD是△ ABC的高, AE是△ ABC的角均分线.求∠EAD的度数.22、如图,△ABC的中线 AD、BE订交于点 F.△ ABF与四边形 CEFD的面积有怎样的数量关系?为什么?23、如图,在 7× 8 的方格纸中,已知图中每个小正方形的边长都为1,求图中阴影部分的面积.四、综合题(共 1 题;共 11 分)24、已知点 P 为∠ EAF均分线上一点, PB⊥AE于 B,PC⊥AF于 C,点 M,N 分别是射线 AE,AF 上的点,且 PM=PN.(1)如图 1,当点 M在线段 AB上,点 N在线段 AC的延长线上时,求证: BM=CN;(2) 在( 1)的条件下,直接写出线段 AM,AN与 AC之间的数量关系 ________;(3) 如图 2,当点 M在线段AB的延长线上,点N 在线段 AC上时,若 AC:PC=2:1,且 PC=4,求四边形 ANPM的面积.答案解析一、单项选择题1、【答案】 C【考点】三角形的面积,勾股定理【解析】【解析】以 AC、AB、BC为斜边的三个直角三角形的面积分别为1、1、,所以△ ABC 的面积为;用勾股定理计算AC的长为,所以AC边上的高为.【解答】∵三角形的面积等于小正方形的面积减去三个直角三角形的面积,即S△ABC=4-×1×2-×1×1-×1×2=∵=∴AC边上的高 =应选 C.,=,【谈论】此题第一依照大正方形的面积减去三个直角三角形的面积计算,再依照勾股定理求得 AC的长,最后依照三角形的面积公式计算.2、【答案】 D【考点】三角形三边关系,等腰三角形的性质【解析】【解析】由于等腰三角形的两边分别为 5cm和 4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类谈论【解答】当 4 为底时,其他两边都为5,4、 5、 5 可以组成三角形,周长为14cm;当 4 为腰时,其他两边为 4 和 5,4、 4、 5 可以组成三角形,周长为13cm.应选 D.3、【答案】 B【考点】多边形的对角线【解析】【解析】依照多边形的对角线与边的关系,n 边形的对角线条数为:(n≥3,且 n 为整数 ) 。

新人教版八年级数学上册第十一章三角形单元测试题含答案

新人教版八年级数学上册第十一章三角形单元测试题含答案

新人教版八年级数学上册第十一章三角形单元测试题含答案新人教版八年级数学上册第十一章三角形单元测试题(上)一、选择题(30分)1.从五边形的一个顶点出发的对角线,把这个五边形分成()个三角形。

A.5B.4C.3D.22.以下列各组线段长为边能组成三角形的是()。

A.1cm,2cm,4cmB.2cm,4cm,6cmC.4cm,6cm,8cmD.5cm,6cm,12cm3.下列图形中一定能说明∠1>∠2的是()。

1.211.22.12A。

B.CD4.一个三角形的三条角平分线的交点在()A.三角形内B.三角形外C.三角形的某边上D.以上三种情形都有可能5.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()。

A.正三角形B.矩形C.正六边形D.正八边形6.能把一个任意三角形分成面积相等的两部分的是()。

A.角平分线B.中线C.高D.A、B、C都可以7.一个角的两边与另一个角的两边互相垂直,且这两个角之差为40°,那么这两个角分别为()。

A.70°和110°B.80°和120°C.40°和140°D.100°和140°8.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()。

A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形9.(n+1)边形的内角和比n边形的内角和大()。

A.180°B.360°C.n·180°D.n·360°10.如图,把△XXX纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律。

你发现的规律是()。

BA.∠1+∠2=2∠AB.∠1+∠2=∠AC.∠A=2(∠1+∠2)D.∠1+∠2=∠A/2二、填空题(每题2分,共16分)1.在图1中,∠A+∠B+∠C+∠D+∠E=_____°。

人教版八年级数学上册 第11章 三角形 2017年秋达标检测卷(含答案)

人教版八年级数学上册 第11章 三角形 2017年秋达标检测卷(含答案)

第十一章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个2.下列判断:①有两个内角分别为50°和20°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中不可以有三个锐角;④有一个外角是锐角的三角形一定是钝角三角形,其中正确的有()A.1个B.2个C.3个D.4个3.图中能表示△ABC的BC边上的高的是()A B C D4.如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C 的度数为()A.40°B.60°C.80°D.100°(第4题) (第7题) (第9题) (第10题) 5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为()A.7 cm B.3 cm C.9 cm D.5 cm6.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°7.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.69.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于D,BE⊥AC于E,AD 与BE交于F,则∠AFB的度数是()A.126°B.120°C.116°D.110°10.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°二、填空题(每题3分,共30分)11.若一个三角形的三个内角度数之比为4∶3∶2,则这个三角形的最大内角为________度.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________性.(第12题) (第14题) (第15题) 13.已知△ABC的两条边长分别为3和5,且第三边的长c为整数,则c的取值可以为________.14.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD 是AC边上的高,则BD的长为________cm、15.如图,点D在△ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是______度.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.(第17题) (第18题) (第20题) 17.如图是一副三角尺拼成的图案,则∠CEB=________°、18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________、19.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.20.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG∶GE=2∶1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.三、解答题(21、22题每题6分,23、24题每题8分,25、26题每题10分,27题12分,共60分)21.如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.(第21题)22.如图.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2 cm,AE=3 cm,求△AEC的面积及CE的长.(第22题)23.如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=440°,求∠BGD的度数.(第23题)24.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.25.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠AB C、求∠4的度数.(第25题) 26.已知等腰三角形的三边长分别为a,2a-1,5a-3,求这个等腰三角形的周长.27.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C不与点O重合),连接AC交射线OE于点D、设∠OAC=x°、(1)如图(1),若AB∥ON,则①∠ABO的度数是________;②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图(2),若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第27题)参考答案一、1、B 2、C 3、D4.C 点拨:∵∠CBD 是△ABC 的外角,∴∠CBD =∠C +∠A 、又∵∠A =40°,∠CBD =120°,∴∠C =∠CBD -∠A =120°-40°=80°、5.B6.C 点拨:八边形的内角和为(8-2)×180°=1 080°、 7.C8.A 点拨:设这个多边形的边数为n ,依题意有(n -2)×180°<360°,即n <4、所以n =3、9.A 点拨:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°、在四边形EFDC 中,∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =90°,∠BEC =90°,∴∠DFE =360°-∠DCE -∠FDC -∠FEC =360°-54°-90°-90°=126°、∴∠AFB =∠DFE =126°、10.B 点拨:∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°÷5=108°、∴∠AEB =(180°-108°)÷2=36°、∵l ∥BE ,∴∠1=∠AEB =36°、故选B 、二、11、80 12、稳定 13.3,4,5,6,714、6013 点拨:由等面积法可知AB ·BC =BD ·AC ,所以BD =AB·BC AC =12×513=6013(cm ).15.60 点拨:∵∠ACD 是△ABC 的外角,∴∠ACD =∠A +∠B =80°+40°=120°、又∵CE 平分∠ACD ,∴∠ACE =12∠ACD =12×120°=60°、16.7 17、10518.360° 点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°、(第18题)19.120°20.2 点拨:∵E 为BC 的中点,∴S △ABE =S △ACE =12S △ABC =3、∵AG ∶GE =2∶1,△BGA 与△BEG 为等高三角形,∴S △BGA ∶S △BEG =2∶1,∴S △BGA =2、又∵D 为AB 的中点,∴S △BGD =12S △BGA =1、同理得S △CGF =1、∴S 1+S 2=2、三、21、解:∵DE ∥BC ,∴∠ACB =∠AED =70°、∵CD 平分∠ACB ,∴∠BCD =12∠ACB =35°、又∵DE ∥BC ,∴∠EDC =∠BCD =35°、22.解:(1)AB ;(2)CD ;(3)∵AE =3 cm , CD =2 cm ,∴S △AEC =12AE ·CD =12×3×2=3(cm 2).∵S △AEC =12CE ·AB =3 cm 2,AB =2 cm ,∴CE =3 cm 、23.解:∵六边形ABCDEF 的内角和为180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC +∠C +∠CDG =720°-440°=280°,∴∠BGD =360°-(∠GBC +∠C +∠CDG )=80°、24.解:设这个等腰三角形的腰长为a ,底边长为b 、 ∵D 为AC 的中点, ∴AD =DC =12AC =12a 、根据题意得⎩⎨⎧32a =18,12a +b =15,或⎩⎨⎧32a =15,12a +b =18.解得⎩⎪⎨⎪⎧a =12,b =9,或⎩⎪⎨⎪⎧a =10,b =13. 又∵三边长为12,12,9和10,10,13均可以构成三角形. ∴这个等腰三角形的底边长为9或13、25.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°、∵∠2=12∠3,∴∠2=10°,∴∠BAC =∠2+∠3=10°+20°=30°,∴∠ABC =180°-∠C -∠BAC =180°-80°-30°=70°、∵BE 平分∠ABC ,∴∠ABE =35°、∵∠4=∠2+∠ABE ,∴∠4=45°、26.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形三边关系.能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a -3时,2a -1=a ,即a =1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2、 27.解:(1)①20° ②120;60(2)①当点D 在线段OB 上时,若∠BAD =∠ABD ,则x =20、若∠BAD =∠BDA ,则x =35、若∠ADB =∠ABD ,则x =50、②当点D 在射线BE 上时,因为∠ABE =110°,且三角形的内角和为180°,所以只有∠BAD =∠BDA ,此时x =125,综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x =20,35,50或125、www 、czsx 、com 、cn。

人教版2017-2018学年八年级数学上册 第11章 三角形认识 单元测试题(含答案)

人教版2017-2018学年八年级数学上册  第11章 三角形认识 单元测试题(含答案)

2018年八年级数学上册三角形认识单元测试题一、选择题:1、已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为( )A.2B.3C.5D.132、若正多边形的一个外角是40°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形3、一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是( )A.8B.12C.16D.184、一个多边形内角和是1080°,则这个多边形的对角线条数为()A.27B.25C.22D.205、如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10B.11C.16D.266、小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是()A.16cmB.17cmC.22cm或23cmD.11cm7、如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为()A.20°B.30°C.40°D.50°8、如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CADB.∠ADE=∠AEDC.∠B=∠CD.∠BAD=∠BDA9、如图,三角形ABC中,AB=AC,D,E分别为边A B,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°10、一个正五边形与一个正方形的边长正好相等,在它们相接的地方,形成一个完整的“苹果”图案(如图).如果让正方形沿着正五边形的四周滚动,并且始终保持正方形和正五边形有两条边邻接,那么第一次恢复“苹果”的图形时,正方形要绕五边形转()4圈.A.4B.3C.6D.811、如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,则∠1+∠2的度数为()A.80°;B.90°;C.100°;D.110°;12、设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A. B. C. D.二、填空题:13、若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.14、如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S△ABC=4,则S△BFF=_______15、如图所示,分别以边形顶点为圆心,以2cm为半径画圆,则图中阴影部分面积之和为.16、如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= °17、如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF= °18、如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点 P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点 P1、P2、P3、…、P2017,把△ABC 分成个互不重叠的小三角形.三、作图题:19、如图,在方格纸内将△ABC水平向右平移4个单位,再向下后平移1得到△A′B′C′.(1)画出平移后的△A′B′C′;(2)画出AB边上的高线CD(利用三角板画图);(3)画出△ABC中AB边上的中线CE;(4)图中AC与A′C′的关系是:;(5)△BCE的面积为.(6)若△A″BC的面积与△ABC面积相同,则A″(A″在格点上)的位置(除A点外)共有个.四、解答题:20、已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21、过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,求代数式(m-k)n22、如图,中,∠A=80°,BE,CF交于点O,∠ACF=30°,∠ABE=20°,求∠BOC的度数.23、在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点P在线段AB上运动,且n=90°时①若PD∥BC,PE∥AC,则m= ;②若m=50°,求x+y的值.(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.24、如图所示,在平面直角坐标系中,点B的坐标是(﹣1,0),点C的坐标是(1,0),点D为y轴上一点,点A为第二象限内一动点,且∠BAC=2∠BDO,过D作DM⊥AC于点M.(1)求证:∠ABD=∠ACD.(2)若点E在BA延长线上,求证:AD平分∠CAE.(3)当A点运动时,的值是否发生变化?若不变化,请求出其值;若变化,请说明理由.参考答案1、B2、C3、B4、D5、C6、C7、B8、D9、A10、A11、A;12、D13、8 .14、115、4π、16、70 °17、5718、403519、(1)(2)(3)略(4)平行且相等(5)4(6)320、(1)∵a、b、c是三角形的三边长,∴a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|=﹣a+b+c﹣b+c+a﹣c+a+b=a+b+c;(2)∵a+b=11①,b+c=9②,a+c=10③,∴由①﹣②,得a﹣c=2,④由③+④,得2a=12,∴a=6,∴b=11﹣6=5,∴c=10﹣6=4.21、解:据题意得,m-3=7,m=10,n=3,1/2k(k-3)=k,k=5,所以(m-k)n=(10-5)3=12522、∠BOC=13023、 90°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.24、(1)证明:在△ABC中,∠ABD+∠CBD+∠ACB=180﹣∠BAC,∵∠BAC=2∠BDO,∴∠ABD+∠CBD+∠ACB=180﹣∠BAC=180﹣2∠BDO①;∵点B的坐标是(﹣1,0),点C的坐标是(1,0),∴OB=OC,∵DO⊥BC,∴BD=CD,∴∠BDO=∠CDO,∠BDC=2∠BDO,连接CD,在△BCD中,∠ACD+∠ACB+∠CBD=180﹣2∠BDO②;①﹣②得:∠ABD﹣∠ACD=0,∴∠ABD=∠ACD;(2)证明:过D作DN⊥BE于N,如图所示:∵DM⊥AC,∴∠DNB=∠DMC=90°,在△BDN和△CDM中,,∴△BDN≌△CDM(AAS),∴DN=DM,∴AD是∠CAE的角平分线,即AD平分∠CAE;(3)解:∵△BDN≌△CDM,∴BN=CM;由AD是∠CAE的角平分线,得AN=AM;又BN=AN+AB=AM+AB;CM=AC﹣AM;∴AC=AB=2AM,∴=2,即的值是定值2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) △ ABC 的面积; (2) AD 的长; (3) △ ACE 和△ ABE 的周长的差.
20. (9 分 )等腰三角形的两边长满足 |a- 4|+ (b- 9)2= 0.求这个等腰三角形的周长.
21.(10 分 )如图,∠ A=10°,∠ ABC=90°,∠ ACB =∠ DCE ,∠ ADC =∠ EDF ,∠ CED =∠ FEG . 求∠ F 的度数.
25. (10 分 )如图,∠ XOY= 90°,点 A, B 分别在射线 OX, OY 上移动, BE 是∠ ABY 的平分 线,BE 的反向延长线与∠ OAB 的平分线相交于点 C.试问∠ ACB 的大小是否变化?请说明理 由.
第 11 章检测题参考答案
,第 11 题图 )
,第 13 题图 )
,第 15 题
图)
,第 16 题图 )
13.如图,在△ ABC 中,已知∠ BAC = 50°,∠ C= 60°,AD 是高, BE 是∠ ABC 的平分线,
AD ,BE 交于点 F,则∠ BEC= ________. 14.已知 a, b, c 是△ ABC 的三边,化简: |a+ b- c|+ |b- a- c|- |c+ b-a|= ________. 15.如图,∠ 1+∠ 2+∠ 3+∠ 4+∠ 5+∠ 6= ________. 16.将一副直角三角板如图摆放,点 C 在 EF 上, AC 经过点 D,已知∠ A=∠ EDF = 90°, AB= AC,∠ E= 30°,∠ BCE = 40°,则∠ CDF =________. 17.如果一个多边形的边数增加 1 倍,它的内角和就为 2160 °,那么原来那个多边形是 ______ 边形.
A . 180 ° B. 720 ° C. 1080 ° D .540 °
9.如图,把△ ABC 纸片沿 DE 折叠,当点 A 落在四边形 BCDE 内部时,则∠ A 与∠ 1+∠ 2
之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是
()
A .∠ A=∠ 1+∠ 2 B. 2∠A=∠ 1+∠ 2 C. 3∠ A=∠ 1+∠ 2 D. 3∠A= 2(∠ 1+∠ 2) 10.如图是 D, E, F, G 四点在△ ABC 边上的位置图,根据图中的符号和数据,则 值为 ( )
C.∠ A 3∠ C
第 3 题图
,第 4 题图 )
,第 9 题图 )
,第 10 题图 )
7.一个正多边形的外角与它相邻的内角之比为
1∶ 4,那么这个多边形的边数为 ( )
A . 8 B . 9 C. 10 D. 12
8.若一个多边形的每个外角都等于 60°,则它的内角和等于 ( )
22. (9 分 )小明计算一个多边形的内角和时误把一个外角加进去了,得其和为 (1) 求这个多加的外角的度数; (2) 求这个多边形的边数.
2620 °.
23. (9 分 )某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确
保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点
P 和 Q,
然后在左 边定出开挖的方向线 AP,为了准确定出右边开挖的方向线 BQ,测量人员取一个 可
以同时看到点 A,P,Q 的点 O,测得∠ A= 28°,∠ AOC=100°,那么∠ QBO 应等于多少度
才能确保 BQ 与 AP 在同一条直线上?
24. (10 分 ) 如图,在四边形 ABCD 中,∠ A=∠ C= 90°, BE 平分∠ ABC ,DF 平分∠ ADC . 则 BE 与 DF 有何位置关系?试说明理由.
18.上午 9 时, 一艘船从 A 处出发以 20 海里 /时的速度向正北航行, 11 时到达 B 处, 若在 A
处测得灯塔 C 在北偏西 3 4°,且∠ ACB = 3∠ BAC ,则灯塔 C 应在 B 处的 ________. 2
三、解答题 (共 66 分 )
19.(9 分)如图,已知 AD,AE 分别是△ ABC 的高和中线, AB= 6 cm,AC= 8 cm,BC= 10 cm, ∠CAB = 90°,求:
2017-2018 学年人教版八年级数学上册
第 11 章检测题
( 时间: 120 分钟
满分: 120 分 )
一、选择题 (每小题 3 分,共 30 分) 1.已知三条线段的长是:① 2, 3, 4;② 3, 4, 5;③ 3, 3,5;④ 6, 6, 10.其中可构成等 腰三角形的有 ( ) A . 1 个 B .2 个 C. 3 个 D. 4 个 2.一个三角形的两边长分别是 3 和 7,且第三边长为整数,这样的三角形周长最大的值为 () A . 15 B.16 C. 18 D. 19 3.如图,在△ ABC 中,∠ B=67°,∠ C= 33°,AD 是△ ABC 的角平分线,则∠ CAD 的度数 为( ) A . 40° B . 45° C. 50° D. 55° 4.如图,在△ ABC 中,∠ A=80°,高 BE 和 CH 的交点为 O,则∠ BOC 等于 ( ) A . 80° B . 120 ° C. 100 ° D . 150 ° 5.已知△ ABC 中,∠ B 是∠ A 的 2 倍,∠ C 比∠ A 大 20°,则∠ A 等于 ( ) A . 40° B . 60° C. 80° D. 90° 6.具备下列条件的△ ABC 中,不是直角三角形的是 ( ) A .∠ A+∠ B=∠ C B .∠ A=12∠ B=13∠ C
x+y 的
A . 110 B. 120 C.160 D. 165 二、填空题 (每小题 3 分,共 24 分) 11.如图,在△ ABC 中, AD 是 BC 边上的中线, BE 是△ ABD 中 AD 边上的中线,若△ ABC 的面积是 24,则△ ABE 的面积是 ________. 12.在△ ABC 中,∠ C 比∠ A+∠ B 还大 30°,则∠ C 的外角为 ________度,这个三角形是 ________ 三角形.
相关文档
最新文档