江苏省盐城市九年级(上)期末数学试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省盐城市九年级(上)期末数学试卷(含答案)
一、选择题
1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )
A .5
B .4
C .3
D .2
2.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为
( ) A .
45
B .
34
C .
43
D .
35
3.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,
△EBF 的面积为2
ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物
线,MN 为线段.则下列说法:
①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =
3; ④点E 的运动速度为每秒2cm .其中正确的是( )
A .①②③
B .①③④
C .①②④
D .②③④
4.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳
定性的是( ) A .方差
B .平均数
C .众数
D .中位数
5.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .
12
B .
13
C .
23
D .
16
6.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8
B .9
C .10
D .11
7.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )
A .23
B .25
C .4
D .6
8.已知反比例函数k
y x
=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限
B .第一、三象限
C .第二、四象限
D .第三、四象限
9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )
A .2
B .
54
C .
53
D .75
10.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是
A .
B .
C .
D .
11.将二次函数y =x 2
的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2
B .y =(x ﹣3)2+2
C .y =(x +2)2+3
D .y =(x ﹣2)2+3
12.如图,△AOB 为等腰三角形,顶点A 的坐标(25),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )
A .(
203,103
) B .(
163,453) C .(203,453
) D .(16
3,43) 13.方程x 2=4的解是( )
A .x=2
B .x=﹣2
C .x 1=1,x 2=4
D .x 1=2,x 2=﹣2
14.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴
C .有最低点
D .在对称轴右侧的部分从左往右是下降的
15.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑
球的概率是( ) A .
3
5
B .
38
C .
58
D .
34
二、填空题
16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 17.若
53x y x +=,则y
x
=______. 18.如图,若抛物线2
y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.
19.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________
20.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 21.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为
2
3,则袋中应再添加红球____个(以上球除颜色外其他都相同). 22.抛物线2
1(5)33
y x =--+的顶点坐标是_______. 23.方程2
9
0x 的解为________.
24.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点
A 、
B 在圆上,边B
C 经过圆心O ,劣弧AB 的度数等于_______︒
25.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =12
13
,BC =12,则AD 的长_____.
26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.
27.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为
3
5
,则m =__. 28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.
29.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,
与AD 交于点F ,则CDF ∆的面积为__________.
30.已知二次函数2
(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:
x
… -1 0 1 2 3 4 … y

6
1
-2
-3
-2
m

下面有四个论断:
①抛物线2
(0)y ax bx c a =++≠的顶点为(23)-,
; ②240b ac -=;
③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.
其中,正确的有___________________.
三、解答题
31.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)
32.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为
AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .
(2)若4AB =,3BE =,7
2
AD =
,求BF 的长.
33.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.
(1)求y 与x 之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 34.如图,OA l ⊥于点,A B 是OA 上一点,O 是以O 为圆心,OB 为半径的圆.C 是
O 上的点,连结CB 并延长,交l 于点D ,且AC AD =.
(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标
注后用数字表示);
(2)若
O 的半径为5,6BC =,求线段AC 的长.
35.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于点A (﹣1,0)、B (5,0),与y 轴相交
于点C (0,
53
3
). (1)求该函数的表达式;
(2)设E 为对称轴上一点,连接AE 、CE ; ①当AE +CE 取得最小值时,点E 的坐标为 ;
②点P 从点A 出发,先以1个单位长度/的速度沿线段AE 到达点E ,再以2个单位长度的速度沿对称轴到达顶点D .当点P 到达顶点D 所用时间最短时,求出点E 的坐标.
四、压轴题
36.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连
接AP 、BP ,过点C 作CM
BP 交PA 的延长线于点M .
(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;
(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 37.如图①,
O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与
AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.
(2)当:3:2AF EF =,6AC =,求AE 的长.
(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).
38.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.
(1)求证: AC 是⊙O 的切线;
(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;
②若⊙O 的半径为3,BF =2,求AC 的长.
39.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .
(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.
40.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:
如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点
A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).
①当t=2时,点A,B,C的最优覆盖矩形的面积为;
②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;
(2)已知点D(1,1).E(m,n)是函数y=4
x
(x>0)的图象上一点,⊙P是点O,
D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.
【详解】
解:根据题意得,
a-1=1,2+m=2,
解得,a=2,m=0,
∴a-m=2.
故选:D.
【点睛】
本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.
2.A
解析:A
【解析】
【分析】
根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.
【详解】
如图,在Rt △
ABC 中,∠C=90°,BC=4,AC=3, ∴2222AB AC BC 345=+=+=, ∵CD ⊥AB, ∴∠ADC=∠C=90°, ∴∠A+∠ACD=∠A+∠B, ∴∠B=∠ACD=α, ∴4
cos 5
BC cos B AB α===. 故选:A.
【点睛】
此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.
3.C
解析:C 【解析】 【分析】
①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得
5
3
BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】
解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,
由题意,1··( 2.5)72
1·(4)42
a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩
解得46a b =⎧⎨
=⎩
, 所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =,
∴53
BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,
2224(63)(5)x x ∴+-=,
解得1x =或134
-(舍), 5BS ∴=,3SD =,3AS =,
3sin 5
AS ABS BS ∴∠=
=故③错误, 5BS =,
5 2.5k ∴=, 2/k cm s ∴=,故④正确,
故选:C .
【点睛】
本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.
4.A
解析:A
【解析】
【分析】
根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.
【详解】
平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差
故选A
考点:方差
5.B
解析:B
【解析】
【分析】
直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.
【详解】
∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,
∴朝上一面的数字是朝上面的数字大于4的概率为:
2163
=, 故选:B .
本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.
6.D
解析:D
【解析】
【分析】
计算最大数19与最小数8的差即可.
【详解】
19-8=11,
故选:D.
【点睛】
此题考查极差,即一组数据中最大值与最小值的差.
7.B
解析:B
【解析】
【分析】
点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得
CD⊥BC,根据勾股定理即可求得结论.
【详解】
解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,
连接CD,
∵△ABC是等边三角形,AB是直径,
∴EF⊥BC,
∴F是BC的中点,
∵E为BD的中点,
∴EF为△BCD的中位线,
∴CD∥EF,
∴CD⊥BC,BC=4,CD=2,
故2216425
+=+=
BC CD
故选:B.
本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.
8.B
解析:B
【解析】
【分析】
【详解】
解:将点(m,3m)代入反比例函数
k
y
x
=得,
k=m•3m=3m2>0;
故函数在第一、三象限,
故选B.
9.D
解析:D
【解析】
【分析】
如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.
【详解】
如图连接BE交AD于O,作AH⊥BC于H.
在Rt△ABC中,∵AC=4,AB=3,
∴22
34
+,
∵CD=DB,
∴AD=DC=DB=5
2

∵1
2•BC•AH=
1
2
•AB•AC,
∴AH=12
5

∵AE=AB,DE=DB=DC,
∴AD垂直平分线段BE,△BCE是直角三角形,
∵1
2•AD•BO=
1
2
•BD•AH,
∴OB=12
5

∴BE=2OB=24
5

在Rt△BCE中,
7
5 ==.
故选D.
点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.
10.C
解析:C
【解析】
【分析】
x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.
【详解】
x=0时,两个函数的函数值y=b,
所以,两个函数图象与y轴相交于同一点,故B、D选项错误;
由A、C选项可知,抛物线开口方向向上,
所以,a>0,
所以,一次函数y=ax+b经过第一三象限,
所以,A选项错误,C选项正确.
故选C.
11.A
解析:A
【解析】
【分析】
直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
【详解】
解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,
再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.
故选:A.
【点睛】
解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.12.C
解析:C
【解析】
【分析】
利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】
解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,
∵A的坐标为(2,5),∴AE=5,OE=2.
由等腰三角形底边上的三线合一得OB=2OE=4,
在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,
由旋转前后三角形面积相等得OB AE A'B O'F
22
⋅⋅
=,即453O'F
2
⋅⋅
=,
∴O′F=45.
在Rt△O′FB中,由勾股定理可求BF=
2
2
458
4
33
⎛⎫
-=


⎝⎭
,∴OF=
820
4
33
+=.
∴O′的坐标为(2045
,
33
).
故选C.
【点睛】
本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.13.D
解析:D
【解析】
x2=4,
x=±2.
故选D.
点睛:本题利用方程左右两边直接开平方求解.
14.D
解析:D
【解析】
【分析】
根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.
【详解】
解:∵二次函数y=﹣x2+x=﹣(x
1
2
)2+
1
4

∴a=﹣1,该函数的图象开口向下,故选项A错误;
对称轴是直线x=1
2
,故选项B错误;
当x=1
2
时取得最大值
1
4
,该函数有最高点,故选项C错误;
在对称轴右侧的部分从左往右是下降的,故选项D正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.
15.B
解析:B
【解析】
【分析】
先求出球的总个数,根据概率公式解答即可.
【详解】
因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是3
8

故选B.
【点睛】
本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.
二、填空题
16.y=x2+2
【解析】
分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.

解析:y=x2+2
【解析】
分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.
详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.
故答案为y=x2+2.
点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.【解析】
【分析】
将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.
【详解】
解:∵,
∴3x+3y=5x,
∴2x=3y,
∴.
故答案为:.
【点睛】
本题考查比例的
解析:2 3
【解析】
【分析】
将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】
解:∵
5
3
x y
x
+
=,
∴3x+3y=5x,∴2x=3y,

2
3 y
x =.
故答案为:2 3 .
【点睛】
本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.
18.【解析】
【分析】
观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.

解析:23x -<<
【解析】
【分析】
观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.
【详解】
解:设21y ax h =+,2y kx b =+,
∵2ax b kx h -<-
∴2ax h kx b +<+,
∴12y y <
即二次函数值小于一次函数值,
∵抛物线与直线交点为()3,A m ,()2,B n -,
∴由图象可得,x 的取值范围是23x -<<.
【点睛】
本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.
19.【解析】
【分析】
首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.
【详解】
解:∵∠DAB=∠ABC=90°,
∴AB 、BC 是⊙O 的切线,
∵C 解析:32
【解析】
【分析】
首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.
【详解】
解:∵∠DAB=∠ABC=90°,
∴AB 、BC 是⊙O 的切线,
∵CF 是⊙O 的切线,
∴AF=EF ,BC=EC ,
∴FC=AF+DC,
设AF=x,则,DF=2-x,
∴CF=2+x,
在RT△DCF中,CF2=DF2+DC2,
即(2+x)2=(2-x)2+22,解得x=1
2

∴DF=2-1
2
=
3
2
,

1133
2
2222 CDF
S DF DC
=⋅=⨯⨯=,
故答案为:3 2 .
【点睛】
本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.
20.【解析】
【分析】
直接利用根与系数的关系求解.
【详解】
解:根据题意得x1+x2═
故答案为.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1
解析:
1 2 -
【解析】
【分析】
直接利用根与系数的关系求解.【详解】
解:根据题意得x1+x2═
1
2 b
a
-=-
故答案为
1
2 -.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则
x1+x2=
b
a
-,x1•x2=
c
a

21.3
【解析】
【分析】
首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.
【详解】
解:设应在该盒子中再添加红球x个,
根据题意得:,
解得:x=3,
经检验,x=3是原分
解析:3
【解析】
【分析】
首先设应在该盒子中再添加红球x个,根据题意得:
12
123
x
x
+
=
++
,解此分式方程即可求
得答案.
【详解】
解:设应在该盒子中再添加红球x个,
根据题意得:
12
123
x
x
+
=
++

解得:x=3,
经检验,x=3是原分式方程的解.
故答案为:3.
【点睛】
此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.22.(5,3)
【解析】
【分析】
根据二次函数顶点式的性质直接求解.
【详解】
解:抛物线的顶点坐标是(5,3)
故答案为:(5,3).
【点睛】
本题考查二次函数性质其顶点坐标为(h,k),题目比较
解析:(5,3)
【解析】
【分析】
根据二次函数顶点式2()y a x h k =-+的性质直接求解.
【详解】 解:抛物线2
1(5)33y x =--+的顶点坐标是(5,3)
故答案为:(5,3).
【点睛】
本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 23.【解析】
【分析】
这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.
【详解】
解:移项得x2=9,
解得x=±3.
故答案为.
【点睛】
本题考查了解一元二次方程-直接开平方法,解这
解析:3x =±
【解析】
【分析】
这个式子先移项,变成x 2=9,从而把问题转化为求9的平方根.
【详解】
解:移项得x 2=9,
解得x =±3.
故答案为3x =±.
【点睛】
本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.注意:
(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.
(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
24.120°
【解析】
【分析】
因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.
【详解】
如图,连接OA ,
∵OA ,OB 为半径,
∴,
∴,
∴劣弧的度数等于,
故答案为:1
解析:120°
【解析】
【分析】
因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.
【详解】
如图,连接OA ,
∵OA ,OB 为半径,
∴30OAB ABO ∠=∠=︒,
∴180120AOB OAB ABO ∠=︒-∠-∠=︒,
∴劣弧AB 的度数等于120︒,
故答案为:120.
【点睛】
本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握. 25.8
【解析】
【分析】
在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =
13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A
解析:8
【解析】
【分析】
在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213
,则可设AD =12x ,所以AC =13x ,利
用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=12
13
,接着在Rt△ABD中利用
正切的定义得到BD=13x,所以13x+5x=12,解得x=2
3
,然后利用AD=12x进行计算.
【详解】
在Rt△ADC中,sin C=AD
AC

12
13

设AD=12x,则AC=13x,
∴DC=5x,
∵cos∠DAC=sin C=12 13

∴tan B=12 13

在Rt△ABD中,∵tan B=AD
BD

12
13

而AD=12x,∴BD=13x,
∴13x+5x=12,解得x=2
3

∴AD=12x=8.
故答案为8.
【点睛】
本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.26.【解析】
【分析】
利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】
解:∵AD是△ABC的高,
∴∠ADC=90°,
∴,
∵AE是直径,
∴∠ABE=90°,
【解析】
【分析】
利用勾股定理求出AC,证明△ABE∽△ADC,推出AB AE
AD AC
=,由此即可解决问题.
【详解】
解:∵AD 是△ABC 的高,
∴∠ADC=90°,
∴AC =
=
∵AE 是直径,
∴∠ABE=90°,
∴∠ABE=∠ADC ,
∵∠E=∠C ,
∴△ABE ∽△ADC , ∴AB AE AD AC
=, ∴
3AB =
∴AB =
【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.
27.5
【解析】
【分析】
根据概率公式列出方程,即可求出答案.
【详解】
解:由题意得,
解得m =5,
经检验m =5是原分式方程的根,
故答案为5.
【点睛】
本题主要考查了概率公式,根据概率公
解析:5
【解析】
【分析】
根据概率公式列出方程,即可求出答案.
【详解】
解:由题意得,
10m 3610m 45
+=+++ 解得m =5,
经检验m =5是原分式方程的根,
故答案为5.
【点睛】
本题主要考查了概率公式,根据概率公式列出方程是解题的关键.
28.15π.
【解析】
【分析】
根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求
解析:15π.
【解析】
【分析】
根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.
【详解】
解:根据题意得圆锥的底面圆的半径为3,母线长为5,
所以这个圆锥的侧面积=
12
×5×2π×3=15π. 【点睛】
本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 29.【解析】
【分析】
运用切线长定理和勾股定理求出DF ,进而完成解答.
【详解】
解:∵与相切于点,与交于点
∴EF=AF,EC=BC=2
设EF=AF=x,则CF=2+x,DF=2-x
在Rt △C 解析:32
【解析】
【分析】
运用切线长定理和勾股定理求出DF ,进而完成解答.
【详解】
解:∵CF 与O 相切于点E ,与AD 交于点F
∴EF=AF,EC=BC=2
设EF=AF=x,则CF=2+x,DF=2-x
在Rt △CDF 中,由勾股定理得:
DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22
解得:x=12,则DF=32
∴CDF ∆的面积为
13222⨯⨯=32 故答案为
32
. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.
30.①③.
【解析】
【分析】
根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.
【详解】
由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:
该函数图象是开口向上的抛
解析:①③.
【解析】
【分析】
根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.
【详解】
由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:
该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;
∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;
②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;
③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;
④m =﹣3,结论错误,
∴其中,正确的有. ①③
故答案为:①③
【点睛】
本题考查了二次函数的图像,结合图表信息是解题的关键.
三、解答题
31.(1)x=﹣3或x=1;(2)x=1或x=4.
【解析】
【分析】
(1)用因式分解法求解即可;
(2)先移项,再用因式分解法求解即可.
【详解】
解:(1)∵x2+2x﹣3=0,
∴(x+3)(x﹣1)=0,
∴x=﹣3或x=1;
(2)∵(x﹣1)2=3(x﹣1),
∴(x﹣1)[(x﹣1)﹣3]=0,
∴(x﹣1)(x﹣4)=0,
∴x=1或x=4;
【点睛】
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
32.(1)见解析;(2)14 5
【解析】
【分析】
(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE=∠C,根据等角的补角相等可得出∠ADE=∠AFB,根据AB∥CD可得出∠BAF=∠AED,这样就构成了两三角形相似的条件.
(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关系,有了AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,这样就能求出BF的长了.
【详解】
(1)证明:在平行四边形ABCD中,
∵∠D+∠C=180°,AB∥CD,
∴∠BAF=∠AED.
∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,
∴∠AFB=∠D,
∴△ABF∽△EAD.
(2)解:∵BE⊥CD,AB∥CD,
∴BE⊥AB.
∴∠ABE=90°.
∴2222
345
AE AB BE
=+=+=.
∵△ABF∽△EAD,
BF AB
AD EA
∴=,
4
75
2
BF
∴=

14
5
BF
∴=.
【点睛】
本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.
33.(1)10700
y x
=-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
【解析】
【分析】
(1)可用待定系数法来确定y与x之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
【详解】
(1)由题意得:
40300
55150
k b
k b
+=


+=

10
700
k
b
=-

⇒⎨
=


故y与x之间的函数关系式为:y=-10x+700,
(2)由题意,得
-10x+700≥240,
解得x≤46,
设利润为w=(x-30)•y=(x-30)(-10x+700),
w=-10x2+1000x-21000=-10(x-50)2+4000,
∵-10<0,。

相关文档
最新文档