High Precision Georeferencing using GPSINS and Image Matching BIOGRAPHIES

合集下载

欧盟残余应力标准EN153 05中文翻译稿

欧盟残余应力标准EN153 05中文翻译稿

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITE EUROEEN DE NORMALISATION EUROPAISCHES KOMITEE FUR NORMUNG
爱派克测试技术(上海)有限公司组织翻译
2
EUROPEAN STANDARD
EN 15305‐2008
EUROPEAN STANDARD
EN 15305‐2008
August 2008
欧盟X射线衍射残余应力测定标准EN 15305-2008中文翻译稿
Non-destructive Testing - Test Method for Residual Stress analysis by X-ray Diffraction
爱派克测试技术(上海)有限公司组织翻译
1
EUROPEAN STANDARD
EN 15305‐2008
August 2008
ICS 19.100
无损检测–用X射线衍射进行残余应力分析 的测试方法
本欧洲标准于2008年7月4日经欧盟标准委员会(CEN)批准。
欧盟标准委员会成员国有义务按照欧盟标准无变更的给予标准国家地位。关于本 标准的最新目录和题录都可从欧盟标准委员会管理中心和欧盟成员国那里得到。
6.2.3 χ 法....................................................... 22
6.2.4 修改的 χ 方法............................................... 23
6.2.5 6.3 6.4 6.5
其它衍射几何............................................... 23 辐射的选择 ................................................. 23 探测器的选择 ............................................... 26 设备的性能 ................................................. 26

高精度紧致差分格式综述

高精度紧致差分格式综述

高精度紧致差分格式综述High-accuracy compact difference schemes are essential in computational fluid dynamics for accurately simulating complex fluid flow phenomena. These schemes provide a powerful tool for solving partial differential equations that govern fluid flow, heat transfer, and other physical processes. They are particularly useful in scientific research, engineering design, and industrial applications where precision and efficiency are paramount.高精度紧致差分格式在计算流体力学中是至关重要的,可以准确模拟复杂的流体流动现象。

这些格式为解决控制流体流动、热传递和其他物理过程的偏微分方程提供了强大的工具。

它们在科学研究、工程设计和工业应用中尤为有用,尤其是在精度和效率至关重要的领域。

One of the key advantages of high-accuracy compact difference schemes is their ability to achieve high spatial accuracy with fewer computational nodes compared to traditional finite difference methods. This makes them computationally efficient and allows for the simulation of complex flow phenomena with relatively low computational cost. Additionally, compact schemes are known fortheir ability to preserve important physical properties of the flow field, such as mass conservation, energy conservation, and the satisfaction of boundary conditions.高精度紧致差分格式的一个关键优势是相对于传统的有限差分方法,它们能够以较少的计算节点实现高空间精度。

GIS专业英语

GIS专业英语

GIS专业英语Abscissa 横坐标absolute accuracy 绝对精度absolute coordinates 绝对坐标Absorption 吸收abstraction 抽取accuracy 精度Add Data 添加数据Across-track scanner 跨径扫描仪active remote sensing 主动遥感Address geocoding 地址地理编码address locator地址定位器Address matching 地址匹配agreement licensee 协议被许可人Advanced Very High Resolution Radiometer 高级甚高分辨率辐射仪Air station 航摄站alidade照准仪along-track scanner 沿径扫描仪Alphanumeric grid 字母数字网格Anaglyph 视差立体图analog image模拟图像Analysis mask 分析掩模anisotropy各向异性Antipode对跖点apogee远地点Arc 弧architecture 架构archive档案argument参数Arithmetic expression 算术表达式aspatial data 非空间数据aspect ratio纵横比Astrolabe 星盘atlas grid地图集网格atmospheric window大气窗口Atomic clock 原子钟attenuation 衰减authentication 身份验证author 作者Autocorrelation 自相关automated cartography 自动化制图automation scale 自动化比例Autovectorization 自动矢量化axis 轴azimuthal projection 方位投影Backscatter 后向散射band 波段band ratio 波段比band-pass filter 带通滤波器Bandwidth 带宽bar scale比例尺(图形比例尺) base layer 底层base station基站Batch 批量batch geocoding 批量地理编码batch processing 批处理Batch vectorization 批量矢量化bathymetric curve 等深线battleships grid战舰网格Bayesian statistics 贝叶斯统计bearing方位角Bézier curve 贝塞尔曲线Bilinear interpolation 双线性内插法binding绑定binomial distribution 二项式分布Biogeography 生物地理学blind digitizing 盲目数字化block group街区群Block kriging 块段克里金法bookmark 书签boolean 1.布尔数据类型; 2.布尔值Boolean operator 布尔运算符boundary边界boundary line 界线Boundary monument 界标boundary survey 边界测量bounding rectangle边界矩形Bowditch rule 包狄法则break point 断点breakline断裂线browser 浏览器Buffer area 缓冲区business logic 业务逻辑CAD 计算机辅助设计(computer-aided design)Cadastral survey 地籍测量cadastre 地籍calibration 校准,定标callout line标注线Camera station 摄站capacity容量cardinal point方位基点cardinality基数Cartesian coordinate system 笛卡尔坐标系cartogram 统计图cartographer 制图员Cartography 制图学cartouche地图饰框catalog tree 目录树catchment流域Categorical raster 类目栅格celestial sphere天球cell size栅格大小cells 栅格Cellular automaton 元胞自动机census block人口普查区块Census geography人口普查地理学center 中心点centerline中心线centerpoint中点Central meridian中央子午线centroid 重心chart 图表chi-square statistic卡方统计Choropleth map 面量图chroma色度chronometer 天文钟circle圆Circular variance 圆方差civilian code民用码Clarke Belt克拉克带Clarke ellipsoid 克拉克椭球Clarke spheroid 克拉克椭球面Clearinghouse(信息或服务)交换中心clinometric map坡度图code-phase GPS 码相位GPS Cognitive map认知图coincident重叠cokriging协同克里金法command 命令Command line 命令行compass north罗经北compass point 罗经点compass rose罗经盘Compass rule罗盘仪法则compression program 压缩程序Computational geometry计算几何学Containment 包含Conformal projection 等角投影,保角投影,正形投影conformality保形性Conic projection 圆锥投影conjoint boundary共同边界constant azimuth恒定方位Content Standard for Digital Geospatial Metadata 数字地理空间元数据的内容标准Continuous raster 连续栅格contour 等高线,等值线contour drawings 等高线图,等值线图Contour interval 等高线间距,等值线间距contour line等高线,等值线Contour tagging 等高线标注,等值线标注contrast ratio 对比度Contrast stretch 对比度扩展convergence angle收敛角conversion转换Convex hull 凸包coordinate geometry坐标几何学coordinate system 坐标系Coordinated universal time 协调世界时correlation相关Corridor analysis走廊分析, 廊道分析county subdivision县级分区Covariance 协方差Coverage 1.覆盖面;2.ESRI图层Cracking 裂化Crandall rule Crandall 法则crop guide 裁切参考线crop marks 裁切标记Cross correlation 交叉相关cross covariance 交叉协方差cross tabulation 交叉表Cross validation 交叉验证Cross variogram交叉变差函数Cubic convolution立方卷积插值法cultural feature人文要素Cultural geography文化地理学curb approach路边通道curve fitting曲线拟合Customizations 自定义cylindrical projection圆柱投影Dangle length悬线长度Dangle tolerance 悬线容差dangling arc 悬弧Dasymetric mapping分区制图(多用于人口数据)data management 数据管理Data table 数据表dataset 数据集datum基准DBMS 数据库管理系统(data-base management system) Dead reckoning 航位推测法Declination 1.偏角;2.磁偏角degree slope坡度Delaunay triangulation 德洛内三角Delimiter 分隔符demography人口统计学Densify 增密densitometer密度计Density slicing 密度分割deploy 部署或安装(硬件、软件等)Depression contour 洼地等高线depth contour等深线Depth curve 深度曲线Descending node 降交点Desire-line analysis期望线分析desktop 桌面Desktop clients 桌面客户端Desktop GIS 桌面GIS destination目标Determinate flow direction确定性流向Deterministic model 确定性模型Detrending 趋势分离developable surface可展表面developer 开发人员Development environment 开发环境Diazo process重氮晒印法difference 差异Differential correction 差分校正Differential Global Positioning System 差分全球定位系统Diffusion 扩散Digital elevation model 数字高程模型Digital Geographic Information Exchange Standard 数字化地理信息交换标准Digital Geographic Information Working Group 数字地理信息工作组Digital image processing 数字图像处理Digital line graph 数字线划图Digital nautical chart 数字海图Digital number 数值Digital orthophoto quadrangle 数字正射影像图Digital orthophoto quarter quadrangle 数字正射影像象限图Digital raster graphic 数字栅格图digital terrain elevation data 数字地形高程数据Digital terrain model 数字地形模型digitizer数字化仪Dijkstra’s algorithm狄捷斯特拉算法dilution of precision精度衰减因子Dimension 尺寸,维,维度directed network flow有向网络流Direction 方向Dirichlet tessellation荻瑞斯莱特镶嵌,荻瑞斯莱特剖分Discovery 发现discrete data离散数据discrete digitizing离散数字化Discrete raster 离散栅格数据Displacement 位移display scale显示比例Display unit显示单位dissemination扩散,传播distance距离Distance decay距离衰减Distance unit距离单位Distortion变形district 地区Dithering 抖动Diurnal arc周日弧docking停靠Doppler shift多普勒位移Doppler-aided GPS 多普勒辅助GPS dot density map点密度图Dot distribution map 点分布图double precision双精度Double-coordinate precision 双坐标精度Douglas-Peucker algorithm 道格拉斯-普克算法downstream下游Drafting 描绘draping叠加,披盖drift漂移drive-time area驾车时间区Drop-down list 下拉列表drum scanner鼓式扫描仪Dual Independent Map Encoding 双重独立坐标地图编码Dynamic zoom 动态缩放Easting 东距eccentricity 偏心率ecliptic 黄道edge边Edgematching 边缘匹配elastic transformation弹性变形Electromagnetic spectrum 电磁光谱electronic atlas电子地图集element 元素Electronic navigational chart 电子航海图Elevation guide 高程指南ellipsoid 椭球体Ellipticity 椭圆率End offset 末端偏移endpoint 端点enterprise GIS 企业级GIS Entity objects 实体对象envelope包络矩形environmental model 环境模型Ephemeris 星历表equal competition area平等竞争区equal-area classification等积分类Equal-area projection 等积投影equal-interval classification等距分类Equatorial plane 赤道面equidistant projection等距投影ESRI Data ESRI 数据Event 事件exponent指数export导出exposure station 摄站expression表达式Extended 扩展extent范围extrapolation 外插法extrude 拉伸extrusion拉伸Face 平面false easting 东移假定值false northing北移假定值feature 要素Federal Geographic Data Committee 美国联邦地理数据委员会field 字段Fill 填充fillet圆角filter过滤器,过滤flow direction流向flow map流向图Focal analysis邻域分析focal functions邻域函数form 地形,形式fractal 分形Framework 框架frequency 频率from-node 起点Full Extent 完整范围Fuzzy boundary 模糊边界Fuzzy classification 模糊分类fuzzy set 模糊集合Fuzzy tolerance 模糊容差Gauss-Krüger projection 高斯-克吕格投影Generalization 概化,(数据库或地图的)综合技术Geocentric coordinate system 地心坐标系geocode地理编码geocoding 地理编码Geocomputation 地理计算geodata 地理数据geodatabase 地理数据库Geodatabase data model 地理数据库数据模型Geodataset 地理数据集Geodesic 测地线Geodetic 测地学geographic coordinate system 地理坐标系Geographic information science 地理信息学Geographic Information System (GIS) 地理信息系统(GIS)Geography 地理学geography level 地理等级Geography Markup Language地理标记语言Geoid 大地水准面geoid-ellipsoid separation大地水准面-地球椭球面分离Geolocation 几何定位geometric coincidence 几何重叠Geometric correction 几何校正Geometric dilution of precision 几何精度衰减因子Geometric network 几何网络Geometric transformation 几何变换Geometry 几何学geomorphology 地貌学Geoprocessing 地理处理Georectification地理校正Georeference 地理参考Georeferencing 地理参考georelational data model 地理相关数据模型Geospatial data 地理空间数据geospatial data clearinghouse 地理空间数据交换中心Geospatial technology 地理空间技术Geospecific model 地学相关模型Geostationary 对地静止geostatistics地理统计学geosynchronous 对地同步Geotypical model 典型地理模型GIS地理信息系统GIScience地理信息学Global Navigation Satellite System 全球卫星导航系统Global Positioning System 全球定位系统GUI GUI (图形用户界面)Global spatial data infrastructure 全球空间数据基础架构Glyph 字形gnomonic projection日晷投影Go to ǿȀ转至ǿȀGPS 全球定位系统Grad 梯度(原英文单词可能有误) gradian 梯度gradient 坡度,斜率graticule 经纬网Gravimeter 重力计gravimetric geodesy 大地重力学gravity model 引力模型Gray scale 灰度great circle 大圆Greenwich mean time格林尼治标准时间Greenwich meridian格林尼治子午线grid 网格grid cell网格单元ground 大地,地面Hachure 晕渲线Hamiltonian circuit汉密尔顿回路Hamiltonian path汉密尔顿路径Height 高度Helmert transformation 线性正形变换hemisphere半球Heuristic 试探算法,试探函数hexadecimal 十六进制High Accuracy Reference Network高精度基准网High Precision Geodetic Network高精度大地基准网Hillshading 坡面阴影,晕渲histogram equalization直方图均衡化Hole 孔洞Horizontal geodetic datum 水平大地基准human geography 人文地理学Hydrography 水文地理学hydrologic cycle水循环hydrology水文学hyperlink 超链接Hypsography 测高学,地势图hypsometric curve等高线hypsometric map地势图Hypsometry 测高法Identify 识别identity link一致性链接illumination照度image coordinate图像坐标Image data 图像数据image division图像除法运算image scale 图像比例尺Image space 图像空间imager成像仪impedance阻抗import 导入IMS IMS (网络地图服务器,Internet Map Server) incident energy入射能量Index 索引index map索引图infrared scanner红外扫描仪Infrastructure 基础设施inset map插图instance 实例instantiation实例化Integer data 整数型数据integration 集成intensity 亮度Interactive vectorization 交互矢量化Interchange format 交换格式Interferogram干涉图intermediate data中间数据International date line 国际日期变更线international meridian国际子午线International Organization for Standardization 国际标准化组织Interpolation内插法interrupted projection分瓣投影intrinsic stationarity 内在稳态Inverse distance weighted interpolation 反距离加权内插法Irregular triangular mesh 不规则三角网Irregular triangular surface model 不规则三角面模型Isanomal 等地平Isarithm 等数线Isobar 等压线isochrone 等时线Isohyet 等雨量线Isolines 等值线isometric line 等容线isopleth 等值线isotherm等温线Isotropy无向性iteration 迭代iterative procedure迭代过程Jaggies 锯齿Jenks’ optimization詹克斯优化joint operations graphic 联合作战地图Junction element 交点元素Kernel 内核key identifier 主标识符kinematic positioning 动态定位Knockout 分离区(信号或通讯的中断) known point 已知点Kohonen map 柯霍南图Kriging 克里金法label标签labeling 标注lag 间隔land cover土地覆盖land information system土地信息系统land use土地利用landform 地形landmark 地标Landsat 陆地卫星landscape ecology景观生态学large scale 大比例尺lattice 点阵面layers 层layout 布局least squares 最小二乘法level 水平leveling 水平测量library 类库license 许可证license agreement 许可协议licensee 被许可人lidar 激光雷达line线line feature线要素line of sight 视线line simplification 线条简化line smoothing 线条平滑linear dimension 线性尺寸linear feature 线性要素linear interpolation 线性内插法linear referencing 线性参考(用于交通GIS) linear unit 线性单位localization 本地化location query 位置查询location-allocation 位置分配location-based services 基于位置的服务logarithm 对数logical network逻辑网络loop traverse 闭合导线loxodrome 恒向线Magnetic bearing 磁方位magnetometer 磁力计majority resampling 多数重新采样Map algebra 地图代数map collar地图边缘map display 地图显示Map document地图文档map element地图元素map extent地图范围Map feature 地图要素map generalization 地图概化,地图综合Map projection 地图投影Map query 地图查询map reading地图阅读map scale 地图比例尺map series地图系列Map service 地图服务map sheet地图map style地图风格map unit 地图单位Mapping 制图mask掩模mass point散点mathematical operator 数学运算符Matrix 矩阵mean center平均中心mean sea level 平均海平面Mean stationarity 平均稳态Measure 测量measure value 测量值Measurement residual 测量残差median中间数median center平均中心Mental map 意境图meridian子午线metadata 元数据Metropolitan statistical area 大都市统计区microdensitometer 测微密度计Micrometer 1.测微计; 2.微米minimum bounding rectangle 最小边界矩形Minimum map unit 最小地图单位minor axis短轴misclosure 闭合差Mitigation 减轻mobile clients 移动客户端Mobile GIS 移动GIS Model 模型Monument 标石morphology 形态学mosaic 镶嵌图mud pit 泥浆池Multichannel receiver 多频道接收器multidimensional data多维数据Multipart feature 多部分要素multipatch feature 带纹理要素Multiplexing channel receiver 多路复用频道接收器multipoint feature 多点要素Multispectral scanner 多光谱扫描仪multivariate analysis 多元分析My Places 我的位置National Spatial Data Infrastructure 美国国家空间数据基础设施Natural breaks classification 自然分类navigation 导航Navstar Navstar (美国国防部全球定位系统联合服务项目)Neighborhood statistics 邻域统计networked 联网node 节点Noncoterminous polygon 非相连多边形nonversioned 非版本normal distribution 正态分布Normal probability distribution 正态概率分布northing 北距Oblate ellipsoid扁椭球体oblate spheroid扁椭球面offset 偏移Oill spill 溢油(原文oill 应为Oil) Online GIS 在线GISOpen Geodata Interoperability Specification 开放地理空间数据互操作规范Open Geospatial Consortium 开放地理空间协会open traverse 不闭合导线OpenGIS Consortium OpenGIS 协会OpenLS OpenLS (OpenGIS所包含的Open Location Service)Operand 运算数operator运算符optical center 光学中心ordinal data序数数据Ordinary kriging 普通克里金法ordinate 纵坐标Ordnance Survey 英国陆地测量局Orientation 方向origin point 原点orthogonal offset 正交偏移Orthographic 正交orthomorphic 正形orthophoto 正射影像Orthophotograph 正射影像orthophotoquad 无等高线正射影像overview map 总览图Orthophotoscope 正射投影仪orthorectification 正射校正outlier 异常值Outline vectorization 轮廓矢量化output data 输出数据Overlay 重叠Overprinting 套印Pan 平移panchromatic sharpening 全色锐化parallax bar 视差尺Parameter 参数parametric curve 参数曲线passive remote sensing 被动遥感Passive sensors 被动传感器Path 路径Pathfinding 路径搜寻peak山峰Percent slope 斜率perigee 近地点persistence 持久性photogeology 摄影地质学Photogrammetry 摄影测量学Photomap 摄影地图photometer光度计Physical geography 自然地理学pit 洼地,山谷placement 放置Planar coordinate system 平面坐标系planar enforcement 平面强化planarize平面化Plane 平面planimetric map 平面图planimetric shift 平面位移Platform 平台Plot 绘图plotter绘图仪plumb line铅垂线point 点point digitizing 点数字化Point event 点事件point feature 点要素point line 点线Point mode digitizing 点模式数字化point size点大小Point-in-polygon overlay 多边形内点重叠polar aspect 极方位坡向Polar flattening 极向扁率polar orbit 极轨道polar radius 极半径Policy and management 政策与管理Polygon overlay 多边形重叠Polyhedron 多面体Polyline 折线position位置postal code 邮政编码precision code 精确码Prime meridian 本初子午线prime vertical 东西圈probability map概率图Profile graph 剖面图projected coordinate system 投影坐标系Projective transformation 射影变换prolate ellipsoid 长椭球体property属性Proximity analysis 邻近分析pseudo node 伪节点pseudo-random number伪随机数Public Land Survey System美国公共土地测量系统pyramid金字塔QQ plot QQ 图quadrangle maps 梯形图幅quadrant象限quadrat analysis样方分析Quadtree 四叉树quantile 分位数quantile classification 分位数分类Quantile scatter chart 分位数散点图quantitative data 数量数据Quantitative geography 数量地理学query 查询Radar altimeter 雷达测高计Radar interferometry 雷达干涉测量Radian 弧度Radiation 辐射radio button 单选按钮radio waves 无线电波radiometer 辐射计Radiometric 辐射测量radius半径random noise随机噪声range范围,距离Range domain 范围域,距离域raster 栅格raster band栅格层raster cell 栅格单元Raster data model栅格数据模型Raster dataset band 栅格数据层Raster model 栅格模型Raster preprocessing 栅格预处理Raster snapping 栅格贴齐Raster tracing 栅格跟踪Rasterization 栅格化ratioing 比值法ray tracing 光线跟踪RDBMS 关系数据库管理系统reclassification 重分类Record 记录Record selector 记录选择器rectangular survey 矩形测量rectification 校正Rectilinear 直线,纵横线redistricting 重新区划reference data 参考数据Reference grid 参考网格Reference level 基准面Reference map 基准图Reference spheroid 参考椭球面Reference system 参考系统Referential integrity 参照完整性Reflectance 反射率reflected back 反射Region 地区,区域regression回归relational join 关系结合Relational operator 关系运算符relationship 关系relative accuracy相对精度Relative bearing 相对方位relative mode 相对模式relative path 相对路径Release of hazardous liquids 有害液体的泄漏relief efforts 救助Relief shading 地貌晕渲remote-sensing imagery 遥感图像Replaced hachuring 替代晕渲法replication 复制Representation 表示法,表现Representative fraction数字比例尺reprojection 重新投影resampling 重采样Residuals 残差resolution merging 分辨率融合restriction 限制Reverse geocoding 反地理编码rhumb line 恒向线ring 圆环ring study圆环分析River addressing 河道寻址rotation 旋转route路线row行R-tree R 树Satellite image 卫星图像satellite imagery 卫星图像saturation饱和度Scalable 可伸缩scale bar 比例尺scale factor 比例系数scale range 比例尺范围Scatter chart 散点图scene 场景,景(卫星图像单位) Schema 架构Seamless pan 无缝平移secant projection 正割投影section 弧段segment线段Self-organizing map 自组织影射图semantics 语义semimajor axis 半长轴Semiminor axis 半短轴semivariogram 半变差函数Sensitivity analysis 敏感度分析Sensor 传感器sequence 序列sequential analysis 顺序分析Serialization 序列化Server GIS 服务器GIS sextant 六分仪shaded relief image 晕渲地貌图Shaded relief map 晕渲地貌图shading 晕渲Shape 形状Shapefile 形状文件(ESRI数据格式) shield盾牌,(地质学)地盾shift位移Shortcuts 快捷方式short-range variation 短程变化signal 信号Signal-to-noise ratio 信噪比signature特征significance level 显著性水平Sill 基台simple kriging 简单克里金法simultaneous conveyance 同时传达Sink 端点,汇点site prospecting 选址分析slope坡度smooth 平滑Snapping tolerance 捕捉容差soil 土壤sonar 声纳soundex 语音编码算法Source 起点,源点source data 源数据space coordinate system 空间坐标系Spaghetti data 无位相数据spaghetti digitizing 无位相数字化spatial analysis 空间分析Spatial cognition 空间认知spatial data 空间数据Spatial Data Transfer Standard空间数据传输标准spatial database空间数据库Spatial join 空间结合spatial modeling 空间建模spatial overlay空间叠加Spatial query 空间查询spatial reference空间参考spatial weights matrix空间权重矩阵Spatialization 空间化spectral resolution 光谱分辨率spectral signature 光谱特征Spectrometer 光谱仪spectrophotometer分光光度计Spectroscopy 光谱学Spectrum 光谱sphere球体spheroid 椭球面,椭球体spider diagram蛛网图Spike 尖峰,异常线spline 样条函数spot 点spurious polygon 伪多边形Standard deviation 标准偏差Standard Generalized Markup Language 标准通用标记语言Standard Industrial Classification codes 标准工业分类代码Star diagram 星形图state状态state plane coordinate system 国家平面坐标系Static positioning 静态定位Stationarity 稳态Stationing 定位参考Statistical surface 统计表面steep 陡峭steradian 球面度Stereocompilation 立体测图Stereogrammatic organization 立体法结构Stereographic projection 球极平面投影Stereometer 体积计Stereomodel 立体模型Stereopair 立体像对Stereoplotter 立体绘图仪stochastic model 随机性模型stream digitizing 流数字化Stream mode digitizing 流模式数字化stream tolerance 流容差streaming 数据流Stretch 拉伸string 线段串,字符串Structure 结构study area 研究区域Surface fitting 曲面拟合surface model 曲面模型surround element 周边元素Survey marker 方位标survey monument方位标survey station测点Symbol 符号Tangent projection 切面投影taskbar 任务栏temporal data 时态数据Temporal GIS 时态GIS territory 地域Tessellation 网格化textbox 文本框Texture 纹理thematic map 专题地图theodolite 经纬仪Thiessen polygons 泰森多边形Thinning 细化third normal form 第三范式three-dimensional shape 三维形状Three-tier configuration 三层结构threshold ring analysis 阈值环分析Tidal datum 潮位基准面tie point 连接点tie survey 连接测量Tissot indicatrix 天梭指示线tolerance 容差toolbar 工具栏,工具条toolbox 工具箱Tools toolbox 工具工具箱topographic contours 地形等高线topography地形学, 地形Topological overlay 拓扑重叠Topology error 拓扑误差toponym 地名tour巡回路线Township 镇区tracing 跟踪tracking data 跟踪数据tract 人口普查区transaction事务Transformation 变换transit rule 过渡法则translation平移,转换Transverse aspect横轴法投影traverse 导线triangulated irregular network 不规则三角网Triangulation 三角测量trilateration 三边测量true bearing 真实方位true curve 真实曲线True north 真北tuple 元组turn impedance转弯阻抗turn-by-turn maps多段显示地图Tutorial 教程uninitialized flow direction 未初始化的流向United States Geological Survey 美国地质勘测局univariate distribution 一元分布Universal kriging 通用克里金法universal polar stereographic 通用极球面投影坐标网Universal Soil Loss Equation 通用土壤流失方程universal time 世界时Universal transverse Mercator 统一横轴墨卡托投影upstream 上游Urban geography 城市地理学Urban Vector Map 城市矢量图Valency 度validation验证variable 变量variance 方差Variance-covariance matrix 方差协方差矩阵 Variogram 变差函数Variography 变差法Vector 矢量vectorization 矢量化verbal scale 言语比例尺Vertex 顶点Vertical axis 纵轴vertical coordinate system 垂直坐标系Vertical exaggeration 垂直夸大Vertical geodetic datum垂直大地基准Vertical photograph 垂直航拍图viewshed 视域visible scale range 可见比例范围Visual center 视觉中心visual hierarchy 视觉层次visualization可视化V oronoi diagram V oronoi 图V oxel 三维像素Warping 变形waterfall model 瀑布模型Watershed 分水岭Wavelength 波长wavelet compression 小波压缩wayfinding 路线搜寻Waypoint 路点Web clients Web 客户端Web-enabled 支持Web Weight 权重Weighted mean center 加权平均中心weighted moving average 加权移动平均Weighted overlay 加权重叠weird polygon 复杂多边形well 水井World 世界Windowing 窗口Wireframe 线框workbook 工作簿,练习册workflow 工作流Zenithal projection 天顶投影zonal analysis 区域分析zonal functions 区域函数zone of interpolation 内插区zoning 分区zoom 缩放。

“高分辨率地震数据处理和反演方法”教案讲义

“高分辨率地震数据处理和反演方法”教案讲义

已知: y(t)=r(t)* w(t); 且, r(t), w(t) 未知; 求解: h(t)=r(t)*w(at); 已知 a>1
不需要已知子波,避免了 求取子波方法上的问题。
由于不需要子波,
HFE可以保持地震子波 时变、空变的相对关系,
保持地震数据的时频特性 和波组特征。
HiSPEC
HFE高频拓展方法原理
滩坝砂岩
HFE + AIW
HiSPEC
~3m ~ 4m
1292-1295 1298-1302
~ 3.5m
AIW波阻抗反演结果
薄互砂岩储层
HiSPEC
AIW波阻抗反演结果
大套砂砾岩层
HiSPEC
目录
高分辨率处理方法的一点认识
高频拓展的可能性 决定地震数据分辨率的关键因素 高分辨率与保持信噪比、相对振幅关系的矛盾
HFE 高频拓展方法
AIW 基于小波边缘分析建模的波阻抗反演 HFE 及 AIW应用实例分析
三参数 HiSPEC-AVO 反演技术
HiSPEC
HFE 及 AIW应用实例分析
— 构造形态及地层接触关系 — 碳酸盐岩储层 — 砂岩储层(致密砂岩) — 非常规储层
HiSPEC
地层接触关系分析 HFE 及 AIW应用实例分析
变换到复赛谱域
s()r()w ()
高通滤波
s()r()
逆变换到时间域
r(t)
Application of homomorphic theory in non stationary
deconvolution CREWS Research Report – Volume11(1999) Mi YanPeng & G of Calgary

Chip geometries during high-speed machining for orthogonal cutting conditions

Chip geometries during high-speed machining for orthogonal cutting conditions

Chip geometries during high-speed machiningfor orthogonal cutting conditionsG.Sutter*L.P.M.M.,U.M.R.C.N.R.S.n87554,I.S.G.M.P.,Universite´de Metz,Ile du Saulcy,57045Metz cedex1,FranceReceived21May2004;accepted23September2004Available online23November2004AbstractThe originality of this work consists in taking photographs of chips during the cutting process for a large range of speeds.Contrary to methods usually used such as the quick stop in which root chips are analyzed after an abrupt interruption of the cutting,the proposed process photographs the chip geometry during its elaboration.An original device reproducing perfectly orthogonal cutting conditions is used because it allows a good accessibility to the zone of machining and reduces considerably the vibrations found in conventional machining tests.A large range of cutting velocities is investigated(from17to60m/s)for a middle hard steel(French Standards XC18).The experimental measures of the root chip geometry,more specifically the tool-chip contact length and the shear angle,are obtained from an analysis of the pictures obtained with a numerical high-speed camera.These geometrical characteristics of chips are studied for various cutting speeds,at the three rake angles K5,0,C58and for different depths of cut reaching0.65mm.q2004Elsevier Ltd.All rights reserved.Keywords:High-speed machining;Tool-chip contact;Orthogonal cutting;Shear angle1.IntroductionMachining is a process of shaping by the removal of material which results in chips.The geometrical and metallurgical characteristics of these chips are very representative of the performances of the process.Indeed, they bear witness to most of the physical and thermal phenomena occurring during the machining.This explains the large number of works made on chips[1–6].However, some important phenomena in metal cutting process are focused on the interaction occurring between the cutting edge of a tool and the workpiece.Indeed this contact zone is the main area of concentration of the friction and then of the rise of temperature.In addition,it was established that the process of plastic deformation in the primary shear zone depends upon the condition of the sliding of the chip along the tool face.So,it is of utmost importance to investigate closely the zone of contact along which the chip is separated from the remainder of the workpiece.This analysis is not realizable without some difficulties by the study of the chips after the end of the cutting process and it is then necessary to make hypotheses.For instance,to examine the length of contact between the cutting tool and the chip,or the behavior of the primary shear plane in the chip root,a snapshot of the process is desirable.With this aim,the most frequently used device is the quick stop process[1,6–15].Those devices interrupt the cutting process while trying to reduce the disturbing consequences on the state of the chip.The relative velocity between the cutting tool and the cutting surface must tend abruptly towards zero.This can be obtained either by accelerating the tool out of the cutting area and so from the workpiece or by accelerating the workpiece to separate it from the tool.Let us mention for instance Williams et al.[8] or Jaspers and Dautzenberg[13]who used a tool holder, which pivots about its end and rests on a brittle shear pin during machining.With the principle of propulsion with the explosion of powder,a projectile isfired to shear the pin. The tool is rapidly disengaged from the workpiece with a mean acceleration of33!104m/s2with experiments of Williams et al.[8]and6!105m/s2with experiments of Jaspers and Dautzenberg[13].International Journal of Machine Tools&Manufacture45(2005)719–726/locate/ijmactool *Corresponding author.Tel.:C330387315367;fax:C330387315366.E-mail address:sutter@lpmm.univ-metz.fr.An other original quick-stop mechanism design by Buda [15]allows to break the chip root instantly.A series of notches along the sample edges initiate the severance of the chip from the workpiece.By this way,the material removal process is effectively frozen in time and the chip-workpiece interface can be sectioned for detailed examination.However,in this method the retraction of the tool requires no negligible time.The cutting tool remains in contact with the workpiece until contact with the chip ends. Consequently the instantaneous conditions are altered. According to Jaspers and Dautzenberg[13],at a cutting speed of4m/s,the tool travels approximately13.3m m through the workpiece material during retraction.This quick stop device is so considerably improved but the process remains,however,not instantaneous.Furthermore,at higher cutting speeds(in the order of60m/s),as those proposed here,this device would allow the tool to cover the distance of3mm in the workpiece.When comparing this value to the chip thickness,in order of about a tenth of millimeter,the performance of this modified quick stop device seems to be unsuitable for high speed of cutting.This set-up based on the dynamics of the quick motion of the tool away from the workpiece impose to neglect the course of the tool in the workpiece during its retraction as well as the phenomena which are associated to it.In addition these methods are cumbersome and time consuming.Moreover adaptation and adjustments of these systems on conventional machine tools are not always easy due to the machine design and as a result of the inertia forces generated by the moving workpiece.To remedy these problems,other techniques were elaborated that allow to analyze the influence of tool-chip contact in a indirect way.Sadik and Lindstro¨m[16]and Fang and Jawahir[17]analyze the role of tool-chip contact length by using cutting tool with restricted contact length. To analyze the stress distribution on the rake face and to investigate the signification of tool-chip contact area, Takeyama and Usui[18]used also a specially designed tool,restricting artificially the tool-chip contact area. Similarly to the groove-type chip breaker tools,double-rake angle tools are used by Fang[19]to develop a slip-line model accounting for the tool-chip contact on the tool secondary rake face.The most common and easy technique used by Friedman and Lenz[20]for measuring the length contact is microscopic examination of the traces left by the sliding of the chip on the tool face.The tool face can be covered with marker to enhance the trace of the contact zone between chips and tool.Radwan[5]measured the chip-tool contact length for aluminum alloy,by measuring the scour trace on the tool face using toolmaker’s microscope.A large machining time is necessary to obtained clear traces and other parameters such as wear should then be taken into account.It should be noted that the pressure distribution on the tool rake face is not uniform along the tool-chip interface,which implies that the limits of the contact tracesBased on the work of Okoshi and Fukui[21],Bagghi and Wright[22]used a transparent single crystal of sapphire in photo elasticity studies to determine the stress boundary condition during machining.Steel and brass specimens were machined orthogonally at speed of up to75m/mn. Previously Doyle[23]used a similar tool to make direct observation of the chip-tool interface.However,this method is confined to the use of transparent tool materials and it cannot be assumed that the action at the tool-chip interface is the same as when using different tools.To understand chip formation without need for hypotheses or approximations,the most faithful is video recording.As early as1948,Field and Merchant[24] followed the discontinuous chip formation by shot movies through a microscope under orthogonal condition at extremely slow cutting speed(about13mm/mn).The speed of the moviefilms was24frames per second,so there were between25and50frames showing the formation of each ter,at higher cutting speed(55m/mn),Komanduri and Brown[6]used a high-speed movie camera(3300fps)combined with an explosive quick-stop device to examine the mechanics of chip segmentation.The aim of this work is an experimental analysis of the chip roots by using high-speed camera.Low carbon steel is chosen as work material in the hope that continuous chips are obtained.Although discontinuous or segmented chips are more frequent,a continuous‘phenomenon’is needed to validate this set-up.Orthogonal cutting condition is achieved for a large range of velocities(up to60m/s)in a ballistic set-up developed by Sutter et al.[25].This unusual set-up,which presents a high rigidity in comparison with conventional machine tools,allows to get cutting conditions which remain perfectly orthogonal and quasi steady-state after a short transient period.Effects of cutting conditions(feed,cutting speed,rake angle)on the chip root characteristics are studied and compared with previous results.2.Experimental set-up2.1.Mechanical partExperiments in manufacturing are greatly interested in cutting speed.Yet,when speed increases,the vibrations of the machine tools disturb not only the cutting process but also the feasibility of measures.Moreover the increase in the quickness of phenomena adds some difficulties such as the reduction of the measurement time duration and the increasing acquisition frequency.To free cutting exper-iments from some of the constraints found in conventional machining tests,a device was specially developed to reproduce orthogonal cutting conditions(see Fig.1)[25]. The larger possible range of cutting speed varies between 10and120m/s.In the presented work,the rangeG.Sutter/International Journal of Machine Tools&Manufacture45(2005)719–726 720The workpiece isfixed on a projectile and its length determines the uncut chip thickness.The projectile is launched inside a tube by an air gun.A sufficient length of the tube allows to achieve constant speed for the projectile. At the end of this tube,a second tube aligned with thefirst one supports two symmetricallyfixed tools.The specimen impacts the tools and orthogonal machining occurs.The second tube leads the projectile bearing the manufactured sample into a shock absorber.Speed and acceleration are measured by a set of photo-diodes and a time counter.The design of the tool holdingfixture allows three rake angles: K5,0,C58.A low carbon steel is chosen as work material in the hope that continuous chips would be produced at these rake angles.2.2.Optical partHigh rigidity and good accessibility from this device allow to develop this photographic recording set-up.Due to high cutting speed,the exposure times are very much reduced and need high performances camera.To make use of the photographic recording for the measurement of the chip characteristics,a strong magnification and afine definition of the digital matrix are necessary.A numerical high-speed camera located near the zone of manufacturing is chosen. However,considerable attention and practice are required to obtain high quality pictures.Sufficient depth offield, sufficient and adequate lighting(in order to limit blur)and maximum magnification are parameters to be considered. The optimal conditions consist in coming to a good arrangement of the different adjustment parameters. In order to limit the incertitude due to the blur and to get more details,the magnification is about!5by means of reverse wide-angle lens.Such a magnification imposes to determined by the focal of the lens.This distance of about 30mm disturbs the lighting of the process.In addition,even for continuous chips,edge effects are present.Thus an inadequate depth offield makes unworkable photographic images.Increasing the depth offield requires a reduction in lens aperture and a proportional increase in the intensity of light.In other respects,higher cutting speed reduces the duration of the process,for example less than300m s at 50m/s.The phenomenon duration time to befilmed requires a very short exposure time(of the order of a few microseconds)so a significant‘luminous intensity’is needed,which is assured by twoflashes of high power.The two light sources are balanced to overcome shadows.This requires a perfect synchronization of the trigger mechanism with the photographic recording system.Actually the times of response of the different electronic components require a post-synchronization of the trigger to guarantee an optimum intensity of light.A global synchronization of all the parts of the photographic recording process is necessary.The start of the manufacturing corresponds to the initial moment of the protocol.An early release activates the light sources and then a delay drives the beginning of the video recording. According to the cutting speeds and optical control,an aperture time is defined.This time does not exceed5ms for problems of neatness.The performances of this device are shown by the possibility of measuringfield temperature during the process[26].3.Results and discussionThe present work allows experiments to be performed without some of the constraints found in devices abruptly interrupting the cutting of a workpiece.Figs.2–5presentFig.1.Experimental set-up for high-speed orthogonal cutting.G.Sutter/International Journal of Machine Tools&Manufacture45(2005)719–726721different cutting speeds and for rake angles from K 5,0,C 58.Four cutting speeds are used 17,25,40and 60m/s.The workpiece material is a low carbon steel to ensure a continuous chip in all cases.Measurements of the root chip geometry are carried out with the software that drives the camera and allows to strengthen only certain contrasts.The orientation of light sources allows to distinguish the tip of the tool and so to confirm the depth of cut.3.1.Length of tool-chip contactThe tool-chip contact length L C ,as shown in Fig.6,is an important parameter in the cutting process [16,17,27].In our experimental work,this length is measured on the photographic recordings see Figs.2–5,obtained during the process in real time.The lack of definition due to blurring of the pictures imposes uncertainties on the measurements.In addition the different contrasts on the picture require uncertainty percentages depending on the analyzed zone.These percentages on the measurement are:4%of chip thickness (t 1and t 2),7%of contact lengths and shear angles.Error bars translate this vagueness on Figs.7and 8.The evolution of this contact for the different uncut chip thickness is plotted in Fig.7.These results are compared with linear evolutions proposed by different authors [12,27–31].The equations of the length L C normalized by the uncut chip thickness are resumed in Table 1.The evolutions suggested by Lee and Schaffer [28]and Abuladze [30],are close and the results are superimposed.Our experimental results are correlated with a coefficient of determination of 0.68and our linear equation is:L C t 1Z 1:92t2t 1K 0:09(1)Fig.2.Real time photographs of chip formation.(a)Cutting speed V C Z 25m/s;depth of cut t 1Z 0.27mm;rake angle a Z 08.(b)Cutting speed V C Z 25m/s;depth of cut t 1Z 0.49mm;rake angle a Z 08.G.Sutter /International Journal of Machine Tools &Manufacture 45(2005)719–726722Fig.4.Real time photographs of chip formation.(a)Cutting speed V C Z 17m/s;depth of cut t 1Z 0.56mm;rake angle a Z C 58.(b)Cutting speed V C Z 25m/s;depth of cut t 1Z 0.24mm;rake angle a Z C 58.(c)Cutting speed V C Z 60m/s;depth of cut t 1Z 0.56mm;rake angle a Z C 58.(d)Cutting speed V C Z 17m/s;depth of cut t 1Z 0.14mm;rake angle a Z C 58.G.Sutter /International Journal of Machine Tools &Manufacture 45(2005)719–726723This linear evolution Eq.(1)is close to the solution proposed by Toropov [27]and Kato et al.[12]and corroborates that L C tends near to zero for a decreasing ratio t 2/t 1.The effect of the uncut chip thickness t 1on the length L C (see Fig.7)confirms that for an increasing value of the uncut chip thickness t 1,the contact length L C increases.A similar tendency was observed by Marinov [29]and Sadik and Lindstro¨m [16]but the linear evolution (of L C versus t 1)is not accepted unanimously.Results obtained by these authors are plotted in comparison with our exper-imental data (see Fig.8a).For a wide range of uncut chip thickness the linear tendency seems to be verified.However,for t 1of about 0.35mm,the effect of the depth of cut seems to be not so pronounced.The cutting speed effect on the relationship between L C and t 1is showed as insignificant in Fig.8b for the cutting speeds from 25to 60m/s (for example V C Z 25m/s;t 1Z 0.29mm;L C Z 0.70mm and V C Z 60m/s;t 1Z 0.29mm;L C Z 0.73mm).On the other hand,using the margin of error on the results and due to the feeble variation between the models proposed by Poletika [31],Abuladze [30],Lee and shaffer[28]and Kato et al.[12],all these solutions seem to be acceptable approximations of the contact length evolution,in particular for this range of uncut chip thickness.Due to the large dispersion in the results of L C /t 1on Fig.9,the influence of the rake angle varying for from K 5to 58is not obvious.Indeed the respective linear equations,plotted in Fig.9,prove that an increasing rake angle results in an augmentation in the slope of the linear approximation.The tool-chip contact length decreases with an increasing rake angle.The solution of Lee and Shaffer [28]taking into account the rake angle sensitivity follows a like tendency.For a rake angle of 08,Fig.10shows a decreasing of the ratio t 2/t 1with decreasing uncut chip thickness.For higher depth of cut the ratio t 2/t 1tends to the unit.A trend curve plotted by a power law with a broken line in Fig.10illustrates thisobservation.Fig.6.Geometry of orthogonalcutting.Fig.7.Solutions for the tool-chip contact length proposed by differentFig.8.The uncut chip thickness t 1in function on the chip-tool contact length L C .(a)For a cutting speed V C varying from 25to 60m/s.(b)For three different cutting speeds (V C Z 25,40and 60m/s).Table 1Formulation of the non-dimensional parameter L C /t 1used in Fig.7AuthorsEquationLee and Shaffer [28]L C t 1Z ffiffi2p sin f sin ð45C f K a ÞKato [12];Toropov [27]L C Z 2t 1Poletika [31]L C 1Z 2:05t 21K 0:55Abuladze [30]L C 1Z t 21 0:1t 21ð1K tan a ÞC 1h i G.Sutter /International Journal of Machine Tools &Manufacture 45(2005)719–7267243.2.Shear angleThe optical observations made possible by our set-up allow us also to measure another important parameter that is the shear angle.The formation of chips involves shearing of the workpiece material in a plane extending from the tool edge to the position where the chip leaves the work surface.The angle formed between the direction of movement of the workpiece and the shear plane defines the shear angle f (cf.Fig.6).It is agreed that the shearing action for the work material occurs in an extended area close to this plane.The shear angle measurements proposed here are geometrical values defined previously.The experimental results of the angle f in Fig.11,are compared with the calculated shear angle f c given by the usual relationship:f c Z arctant 1t 2cos a1K t 12sin a!(2)At zero rake angle,the shear angle depends directly on the chip thickness ratio through the following equation:f c Z arctan t1t 2 (3)So,referring to Fig.10,the decreasing ratio t 2/t 1with increasing uncut chip thickness reproduces the inverted relationship on Fig.11,plotting the shear angle against the depth of cut.The solid line and the broken line plotted in Fig.11are power laws corresponding,respectively,to experimental and calculated results.The shear angle evolution given by Merchant’s equation for steel is:f M Zp 2K l C a 2;l Z 0:704V K 0:248C(4)Fig.12shows the increasing shear angle for four increasing cutting speeds.This law underestimates our experimental results.The increase of shear angle with tool rake angle is in accordance with the principle of minimum rate of work.The increasing shear angle reduces the primary shear area and thus the specific shear energy.At higher rakeangle,Fig.9.Evolution of the non-dimensional parameter L C /t 1for three rake angles:(B )a Z 08(C )a Z C 58;(K )a Z K 58.Fig.10.Effect of the uncut chip thickness t 1on the normalized chipFig.11.Effect of the depth of cut t 1on the shear angle f .Rake angle a Z 08,cutting speed V C varying from 0to 60m/s.G.Sutter /International Journal of Machine Tools &Manufacture 45(2005)719–726725the shear angle tends towards a maximum value of458that corresponds to the equality t1Z t2.4.ConclusionsA‘dimensional analysis’of the root chip in orthogonal cutting has been presented in this work.Photograph recordings taken during the process allow results to be obtained without some of the approximations necessary in other techniques.A high-speed numerical camera with very short time of aperture permits to study chips in a large range of cutting speed varying from17to60m/s.The work material is a low carbon steel chosen to obtained continuous chips in order to define more easily the shear plane direction.Different models of the chip length contact are validated at the sight of experimental measurements.The chip thickness ratio t1/t2tends to1when the uncut chip thickness increases.The principle of minimum rate of work is confirmed with the effect of the cutting speed on the shear angle.On the other hand,the improvements in the optical part will allow to record photographs for different chip shapes.References[1]R.Komanduri,T.Schroeder,J.Hazra, B.F.von Turkovich,D.G.Flom,On the catastrophic shear instability in high-speedmachining of an AISI4340steel,Journal of Engineering for Industry 104(1982)121–131.[2]W.F.Hastings,P.Mathews,P.L.B.Oxley,A machining theory forpredicting chip geometry,cutting forces etc.from material properties and cutting conditions,Proceedings of the Royal Society of London A371(1980)569–587.[3]D.Lee,The effect of cutting speed on chip formation underorthogonal machining,Journal of Engineering for Industry107 (1985)55–63.[4]G.Sutter,L.Faure, A.Molinari, A.Delime, D.Dudzinski,Experimental analysis of cutting process and chip formation at high speed machining,Journal de Physique1997;C3-33–C3-38.[5]A.A.Radwan,Investigation of the secondary deformation zone andmean coefficient of friction during the machining of5083-H34 aluminum alloy,Wear101(1985)191–204.[6]R.Komanduri,R.H.Brown,On the mechanics of chip segmentationin machining,Journal of Engineering for Industry103(1981)33–51.[7]G.Poulachon, A.L.Moisan,M.Dessoly,Me´canique et indus-trie32002;291–299.[8]J.E.Williams,E.F.Smart,ner,The metallurgy of machining.Part I.Basic considerations and the cutting of pure metals,Metallurgia 81(1970)3–10.[9]A.Vyas,M.C.Shaw,Mechanics of saw-tooth chip formation in metalcutting,ASME Journal of Manufacturing Science and Engineering 121(1999)163–172.[10]N.N.Zorev,Interrelation between shear process occurring along thetool face and on the shear plane in metal cutting,International Research in Production Engineering,Pittsburgh,1963pp.42–49.[11]A.Bhattacharyya,On the friction process in metal,Proceeding of theSixth International Machine Tool Design and Research Conference, 1963pp.491–505.[12]S.Kato,K.Yamaguchi,M.Yamada,Stress distribution at theinterface between tool chip in machining,Journal of Engineering for Industry94(1972)683–689.[13]S.P.F.C.Jaspers,J.H.Dautzenberg,Material behaviour in metalcutting:strains,strain rates and temperature in chip formation,Journal of Materials Processing technology43(2002)1–13.[14]P.K.Wright,J.G.Horne,D.Tabor,Boundary conditions at the chip-toll interface in machining:comparison between seizure and sliding friction,Wear54(1979)371–390.[15]J.Buda,New methods in the study of plastic deformation in thecutting zone,Annals of CIRP21(1972)17–18.[16]M.I.Sadik,B.Lindstro¨m,The role of tool-chip length in metalcutting,Journal of Materials Processing Technology37(1993) 613–627.[17]N.Fang,I.S.Jawahir,Analytical prediction and experimentalvalidation of cutting force ratio,chip thickness,and chip back-flow angle in restricted contact machining using the universal slip-line model,International Journal of Machine Tools and Manufacturing42 (2002)681–694.[18]H.Takeyama,ui,The effect of tool-chip contact area in metalmachining,Transactions of the ASME1958;1089–1096.[19]N.Fang,Machining with tool-chip contact on the tool secondary rakeface.Part II.Analysis and discussion,International Journal of Mechanical Sciences44(2002)2355–2368.[20]M.Y.Friedman,E.Lenz,Investigation of tool-chip contact length inmetal cutting,International Journal of Machine Tool Design and Research10(1970)401–416.[21]M.Okoshi,S.Fukui,Studies of cutting action by means ofphotoelasticity,Journal Society Precision Mechanics Japan1(1934) 508–517.[22]A.Bagghi,P.K.Wright,Proceeding of the Royal Society of London,Series A409(1987)99–113.[23]E.D.Doyle,J.G.Horne,D.T.Tabor,Frictional interactions betweenchip and rake face in continuous chip formation,Proceeding of the Royal Society of London,Series A366(1979)173–183.[24]M.Field,M.E.Merchant,Mechanics of formation of the discontinu-ous chip in metal cutting,Transactions ASME1949;421–430. [25]G.Sutter,A.Molinari,L.Faure,J.R.Klepaczko,D.Dudzinski,Anexperimental study of high speed orthogonal cutting,Transactions ASME,Journal of Manufacturing Science and Engineering12(1998) 169–172.[26]G.Sutter,L.Faure,A.Molinari,N.Ranc,V.Pina,An experimentaltechnique for the measurement of temperaturefields for the orthogonal cutting in high speed machining,International Journal of Machine Tools and Manufacture43(2003)671–678.[27]A.Toropov,S.L.Ko,Prediction of tool-chip contact length using anew slip-line solution for orthogonal cutting,International Journal Tools and Manufacture43(2003)1209–1215.[28]E.H.Lee,B.W.Shaffer,The theory of plasticity applied to a problemof machining,Journal of Applied Mechanics18(4)(1951)405–413.[29]V.R.Marinov,Hybrid analytical-numerical solution for the shearangle in orthogonal metal cutting.Part II.Experimental verification, International Journal of Mechanical Sciences43(2001)415–426. [30]N.G.Abuladze,Character and the length of tool-chip contact(inRussian),Proceedings Machinability of Heat-resistant and Titanium Alloys,Kuibyshev,1962pp.68–78.[31]M.F.Poletika,Contact loads on tool faces(in Russian),Machinos-tronie,Moscow,1969.G.Sutter/International Journal of Machine Tools&Manufacture45(2005)719–726 726。

流体耦合问题中高精度数值方法

流体耦合问题中高精度数值方法

流体耦合问题中高精度数值方法流体耦合问题在许多工程和科学领域中都具有重要意义,如流体力学、气候模拟、流体机械等。

为了准确模拟和预测这类问题,高精度数值方法的发展变得至关重要。

本文将介绍一些常用的高精度数值方法,包括有限差分法、有限元法、有限体积法、谱方法、伪谱法、格子Boltzmann法、广义差分法、广义有限元法和边界元法。

1.有限差分法有限差分法是一种直接将微分方程离散化的方法。

通过将连续的空间离散成有限个点,并将时间也离散化,有限差分法能用差分方程组来近似代替微分方程。

这种方法在流体耦合问题的求解中非常常见,因为它能处理复杂的边界条件和不规则的空间区域。

2.有限元法有限元法是一种将连续的求解域离散化为有限个相互连接的小区域(单元)的方法。

在每个单元内,未知函数被近似为插值函数,然后通过变分原理将微分方程转化为线性方程组。

这种方法在处理复杂边界条件和几何形状时具有很大的灵活性。

3.有限体积法有限体积法是一种将微分方程在控制体积上进行离散化的方法。

该方法的关键是将微分方程转化为积分方程,然后在控制体积上进行积分。

有限体积法在处理流体耦合问题时具有较高的精度和稳定性。

4.谱方法谱方法是一种利用傅里叶级数或其他正交函数系来离散化和逼近微分方程的方法。

谱方法具有很高的精度和收敛速度,但需要大量的计算资源和内存。

在处理流体耦合问题时,谱方法通常被用于处理具有周期边界条件或对称性的问题。

5.伪谱法伪谱法是一种利用傅里叶级数的逼近性质,结合数值积分和插值方法来离散化微分方程的方法。

与谱方法相比,伪谱法需要的计算资源和内存较少,且具有更高的数值稳定性。

6.格子Boltzmann法格子Boltzmann法是一种基于分子动力学的数值方法,用于模拟流体流动和传热等问题。

该方法将流体看作是一组在格子空间中运动的粒子,通过这些粒子的分布函数的变化来模拟流体的运动和传热过程。

格子Boltzmann法具有较高的并行性和数值稳定性,适用于处理复杂的流体耦合问题。

Fusion 360 制图功能教程:绘制工程图纸说明书

Fusion 360 制图功能教程:绘制工程图纸说明书
Default Title Blocks ................................................................................................................ 9 Importing Custom Title Blocks ............................................................................................... 9 Drawing Templates................................................................................................................ 9
Your AU Expert(s)
Andrew de Leon is a senior principal user experience designer at Autodesk, Inc., with 20 years’ experience in the manufacturing industry and 11 years in user experience design. He has experience with AutoCAD software, AutoCAD Mechanical software, Inventor software, and Fusion பைடு நூலகம்60 software. He’s passionate about manufacturing and design, and enjoys solving difficult problems.

219390924_高精度磁测在某矿区勘察中的应用

219390924_高精度磁测在某矿区勘察中的应用

2023年 3月上 世界有色金属109地质勘探G eological prospecting高精度磁测在某矿区勘察中的应用王俊英,张 锋(中陕核工业集团地质调查院有限公司,陕西 西安 710100)摘 要:在社会发展过程中,矿产源资的勘测、开采具有重要使用意义,矿产资源作为一种不可再生资源,是国家战略后备资源之一,其勘察工作不容忽视。

在矿区区域外应该采取相应的找矿工程,开采的同时做好周边环境调查,最终才能实现矿山的可持续性发展,提供更大的经济效益和挖掘价值。

本文以某矿区为例,探索勘察中高精度磁测技术的运营,根据该技术的工作原理、结合实际地质情况展开详细研究,旨在为相关人员提供参考。

关键词:高精度磁测;磁场勘测;地质情况;应用中图分类号:P618.2 文献标识码:A 文章编号:1002-5065(2023)05-0109-3Application of high precision magnetic survey in a mining areaWANG Jun-ying, ZHANG Feng(China Shaanxi Nuclear Industry Group Geological Survey Institute Co., Ltd., Xi'an 710100,China)Abstract: In the process of social development, the exploration and mining of mineral resources are of great significance. As a non renewable resource, mineral resources are one of the national strategic reserve resources, and their exploration work cannot be ignored. Corresponding prospecting projects should be taken outside the mining area, and the surrounding environment should be investigated while mining, so as to achieve the sustainable development of the mine and provide greater economic benefits and mining value. This paper takes a mining area as an example to explore the operation of high-precision magnetic survey technology in the survey. According to the working principle of this technology and the actual geological conditions, a detailed study is carried out to provide reference for relevant personnel.Keywords: high-precision magnetic measurement; Magnetic field survey; Geological conditions; application收稿日期:2023-01作者简介:王俊英,男,生于1986年,汉族,陕西宝鸡人,本科,中级工程师,研究方向:电、磁法找矿、测井。

HVPE气相外延法在c面蓝宝石上选区外延生长GaN及其表征[1]

HVPE气相外延法在c面蓝宝石上选区外延生长GaN及其表征[1]

第29卷 第3期2008年3月半 导 体 学 报J OU RNAL O F S EMICOND U C TO RSV ol.29 N o.3Mar.,2008通信作者.Email :lingq @se 2007208231收到,2007209218定稿Ζ2008中国电子学会HVPE 气相外延法在c 面蓝宝石上选区外延生长G a N 及其表征林郭强 曾一平 段瑞飞 魏同波 马 平 王军喜 刘 喆 王晓亮 李晋闽(中国科学院半导体研究所,北京 100083)摘要:使用气相沉积SiO 2和普通光刻以及湿法腐蚀方法,在c 面蓝宝石上开出不同尺寸的正方形窗口,在窗口区域中露出衬底,然后使用氢化物气相外延(HV P E )方法选区外延GaN 薄膜.采用光学显微镜、原子力显微镜(A FM )、扫描电子显微镜(S EM )、高分辨率双晶X 射线衍射(D C XRD )和喇曼谱测试(Ra man shif t )对薄膜进行分析.结果表明,在c 面蓝宝石衬底上独立的正方形窗口区域中外延生长的,厚度约20μm 的GaN 薄膜,当窗口面积为100μm ×100μm 时,GaN 表面无裂纹;而当窗口面积为300μm ×300μm 和500μm ×500μm 时,GaN 表面有裂纹.随着窗口面积的减小,GaN 双晶衍射摇摆曲线的(0002)峰的半高宽(FW HM )减小,表明晶体的质量更好,最小的半高宽为530″.从正方形窗口区的角上到边缘再到中心,GaN 的面内压应力逐渐减小,分析认为这与GaN 横向外延区(EL O 区)与SiO 2掩膜之间的相互作用,以及窗口区到EL O 区的线位错的90°扭转有关.关键词:氮化镓;选区外延;氢化物气相外延PACC :7280E;6855;8110B 中图分类号:TN3041054 文献标识码:A 文章编号:025324177(2008)03205302041 引言GaN 基材料在光电子器件如蓝光、紫外光发光器件和紫外探测器方面有重要应用,在高温、大功率、高频电子器件领域有很好的应用前景.由于GaN 体单晶的制备比较困难[1~3],难以得到大尺寸和质量比较好的体单晶GaN 衬底,所以GaN 的外延生长通常是以异质外延的方式进行的.在异质外延GaN 中使用较多的是蓝宝石衬底,但是由于蓝宝石与GaN 之间存在较大的晶格常数失配和热膨胀系数失配,在外延过程中,会在GaN 中产生密度很高的位错等晶体缺陷.在生长结束后,由于蓝宝石与GaN 的热膨胀系数不同,在GaN 中会形成压应力.氢化物气相外延(HV P E )具有设备简单、生长速度快等优点,是外延GaN 厚膜的有效方法[4].HV P E 方法可以制备较厚的GaN 膜(数百微米~数毫米),得到的GaN 可以剥离后作为进一步生长的同质衬底[5].选区外延生长(selective a rea growt h ,SA G )通过对外延时垂直于衬底表面方向的二维尺寸的限制,在降低GaN 薄膜中的应力,改善晶体质量方面十分有效[6~9].本文使用HV P E 方法在c 面蓝宝石衬底上进行了GaN 的选区外延,使用高倍光学显微镜、原子力显微镜(A FM )、扫描电子显微镜(S EM )、高分辨率双晶X 射线衍射(D C X RD )和喇曼光谱测试(Ra ma n s hif t )对结果进行分析,分析了不同尺寸的图形衬底对于HV P E 外延的GaN 薄膜性质的影响,以及GaN 薄膜内的应力分布情况.2 实验GaN 外延生长使用的是自制的垂直式HV P E 气相外延设备[10].实验使用的衬底为Al 2O 3(0001)面的c 面蓝宝石衬底.先按次序使用三氯乙烯、丙酮、酒精超声清洗衬底,然后用去离子水反复漂洗干净后甩干.衬底清洗后,首先在蓝宝石衬底上用等离子增强化学气相淀积法(P ECV D )沉积一层约800nm 厚的SiO 2,然后用常规光刻与湿法腐蚀除去正方形窗口形状的SiO 2,露出衬底表面,形成以SiO 2分隔的独立的正方形窗口.制备了不同尺寸的图形衬底,其正方形窗口区的边长分别为100,300和500μm ,标记为样品A ,B 和C.然后,在该图形衬底上用HV P E 方法进行GaN 的外延生长.生长温度为1050℃,生长速度约为40μm/h ,外延得到的GaN 膜厚度约为20μm.所有3个样品的生长温度和生长参数均相同.3 结果与讨论图1(a )和(b )分别给出了500μm ×500μm 样品表面的光学显微照片和原子力显微镜(A FM )照片.从图1(a )可以看到,外延生长的选择性较好,GaN 在窗口区的蓝宝石衬底表面成核生长,形成了与衬底图形相同的分立的正方形岛,在GaN 表面可以观察到一些互相之间成60°的裂纹.在SiO 2掩膜材料的表面,只有一些小的多晶GaN 颗粒.通过常规光刻与湿法腐蚀,得到的正方形图形衬底,开出的正方形窗口区的边缘是平整的.在该窗口区外延GaN 后,从图1(a )看到,沿着GaN [1120]方向,GaN 岛的边缘比较平整,而沿GaN [1100]方第3期林郭强等: HV P E 气相外延法在c面蓝宝石上选区外延生长GaN及其表征图1 500μm ×500μm GaN 样品薄膜表面的光学显微镜照片(a )和A FM 照片(b )(5μm ×5μm 扫描)Fig.1 Surf ace morp hology (a )and A FM image (5μm ×5μm scan )(b )of GaN layer of a 500μm ×500μm sa mple 向,边缘则相对较粗糙.这是因为,在GaN 的横向外延中,沿[1120]方向的生长速度要高于[1100]方向,原因是GaN (1101)晶面比较稳定,生长速度比较慢所致.因为在[1120]方向的生长速度高,所以在这个方向上,横向外延得到的边缘,相对于[1100]方向要粗糙[6,11].图1(b )是样品表面5μm ×5μm 的A FM 照片,可以看到,样品的表面十分平整,均方根粗糙度(RMS )为11359nm.图2(a )和(b )分别是样品沿[1120]和[1100]方向的截面S EM 照片.可以看到,在[1120]方向上,GaN 的横向外延速度大于在[1100]方向的速度.[1120]方向上的横向外延速度约为24μm/h ,而在[1100]方向的横向外延速度约为14μm/h.这是由于GaN (1101)晶面比较稳定,生长速度比较慢[11].图3分别是样品A ,B 和C 表面的光学显微镜照图2 GaN 薄膜沿GaN[1120](a )和[1100](b )方向的截面SEM 照片Fig.2 SEM micrographs of GaN layers along G aN [1120](a )and [1100](b )directions片.因为蓝宝石衬底与GaN 之间存在较大的热膨胀系数的差异,所以,当GaN 达到一定的厚度,就会由于较大的热应力而开裂[10].在图3中可以看到,在300μm ×300μm 以及500μm ×500μm 窗口中生长的GaN ,表面出现了互相之间成60°的裂纹,而在100μm ×100μm 的窗口中生长的GaN ,没有裂纹,说明在生长温度和其他生长参数相同的情况下,减小窗口的面积,可以有效地避免GaN 开裂的发生.其原因可能是面积较小的窗口中,累积的热应力比较小[6].为了测试GaN 的晶体质量,对这3个样品进行了双晶X 射线衍射(D C X RD )摇摆曲线测试.测试使用的是Cu KαX 射线,波长λ=01154056nm.摇摆曲线测试的ω轴沿GaN [1120]方向.测试得到的GaN (0002)峰的摇摆曲线如图4所示.可以看到,随着GaN 窗口面积图3 3个样品表面的光学显微镜照片 (a )样品A (100μm ×100μm );(b )样品B (300μm ×300μm );(c )样品C (500μm ×500μm )Fig.3 Surf ace morp hology of t hree samples (a )Sample A (100μm ×100μm );(b )Sa mple B (300μm ×300μm );(c )Sa mple C (500μm ×500μm )135半 导 体 学 报第29卷图4 3个样品的GaN (0002)峰DCXRD 摇摆曲线(X 射线波长λ=01154056nm )Fig.4 X 2ray rocking curves of GaN (0002)reflection of t hree samples (X 2ray ,λ=01154056nm )的减小,GaN (0002)峰的半高宽(F W HM )亦减小,说明样品的晶体质量变好.100μm ×100μm 窗口上生长的样品A 的F W HM 值最小,为530″.样品B 和C 的摇摆曲线半高宽分别为770″和776″.因为GaN 与蓝宝石的热膨胀系数存在着较大的差异,所以在蓝宝石衬底上高温外延GaN 结束以后,在冷却的过程中会在GaN 中产生面内的压应力.在选区外延中,我们认为,由于将应力局限于每一个小的岛状GaN 薄膜内,使得其积累的应力不会过大,有利于避免裂纹的产生,并且减少GaN 中的缺陷,从而提高晶体的质量.因此,面积较小的GaN 选区外延样品,其晶体质量就较好[6,7].图5是样品的室温喇曼谱测试结果,测试使用的是Z (XX )Z 背散射几何配置.对于每个样品,分别在窗口区的角上、边缘中央、边缘与中心的1/2处,以及样品中心取点测试,标记为1,2,3,4,如图5插图所示.可以看到,样品A ,B 和C 的喇曼谱的共同特点是:谱线主要由E 2(high )峰与A 1(L O )峰组成,E 2(high )峰在567c m -1附近,A 1(L O )峰在733c m -1附近,在558c m -1处可以看到有一个比较弱的E 1(TO )峰,在742cm -1附近没有发现明显的E 1(L O )峰.E 2(high )峰与A 1(L O )峰的存在表明样品为(0001)取向的六方相GaN ,E 2(high )峰十分尖锐,平均的半高宽(F W HM )为5c m -1,说明GaN 的晶体质量比较好[12].A 1(L O )峰的出现说明样品表面的自由载流子图5 3个样品的喇曼谱测试结果 插图表示在同一个样品中测试点的位置.Fig.5 Ra ma n sp ect ra of t hree sa mples Inset indica 2ting measuring p ositions of squarewindow.图6 样品A ,B 和C 不同位置的Raman shift E 2(high )峰位置Fig.6 E 2(high )phonon energy versus position of samples A ,B and C浓度小于1017cm -3[13,14].对于(0001)面的六方相GaN ,根据Ra ma n 选择定则,在使用Z (XX )Z 背散射几何配置的情况下,应该只有E 2(high )和A 1(L O )峰存在,而我们的样品中出现了E 1(TO )峰.对于在558cm -1位置的E 1(TO )峰,我们认为是由于在窗口区的边缘发生了横向外延,通过EL O 区GaN 与SiO 2掩膜之间的相互作用,使EL O 区的GaN 产生向下的晶面倾斜和在窗口区边缘产生小角晶界[15,16],造成了GaN 晶格的畸变,这种晶面倾斜和晶格畸变导致了不符合Ra ma n 选择定则的声子模的出现.GaN 的Ra ma n 谱的E 2(high )峰的位置可以用来表征晶体中的应力[17,18].图6给出了E 2(high )峰的位置随不同样品和位置的变化.在蓝宝石上生长的GaN 受到的是压应力,E 2(high )峰会发生蓝移,根据偏移量的大小可以估算出应力的大小,在无应力状态下的GaN 的E 2(high )位置为56611cm -1[19].从图6可以看到,从样品的边缘往中心,E 2(high )峰相对于无应力状态下的56611cm -1的偏移量逐渐减少,即压应力是逐渐减小的.这可以从两个方面进行解释:(1)如前面所述,由于EL O 区的GaN 产生了向下的晶面倾斜和在窗口区边缘产生了小角晶界,使得样品边缘位置产生了更大的应力;(2)由于在横向外延的过程中,在GaN 中的位错会发生90°的扭转,这种扭转在窗口区与EL O 区之间造成了一定的应力[20~22].由于以上两个原因,导致在窗口区的边缘处,形成了比较大的应力,随着远离样品的边缘,越靠近GaN 薄膜的中心区域,压应力就越小.4 结论在c 面蓝宝石上选区外延生长六方相GaN ,使用SiO 2作为掩膜材料,GaN 在窗口区与掩膜区上生长的选择性较好.GaN 在[1120]和[1100]两个方向的生长速度差别较大,分别为24和14μm/h.由于选区外延限制了窗口区GaN 的面积,减小了累积的压应力,因此随着窗口面积的减小,累积的压应力也将减小,GaN 薄膜裂纹减少并消失,同时晶体质量变好,GaN (0002)峰的双晶摇摆曲线半高宽随之减小,最小值为530″.从正方形窗口区GaN 的边缘向中心,其面内的压应力逐渐减小.235第3期林郭强等: HV P E气相外延法在c面蓝宝石上选区外延生长GaN及其表征分析认为可能的原因是:(1)GaN横向外延区(EL O 区)与SiO2掩膜之间发生了相互作用,从而产生了晶面的倾斜和晶格的畸变;(2)窗口区到EL O区发生了线位错的90°扭转,以上两个原因造成了在窗口区的边缘附近压应力较大.参考文献[1] Porowski S,Grzegory I.Ther modyna mical p rop erties of III2V ni2t rides a nd crystal growt h of GaN at high N2p ressure.J CrystGrowt h,1997,178:174[2] Inoue T,Seki Y,Oda O,et al.Growt h of bulk GaN single crystalsby t he p ressure2cont rolled solution growt h met hod.J CrystGrowt h,2001,229:35[3] Karpinski J,J un J,Porowski S.Equilibrium p ressure of N2overGaN a nd high p ressure solution growt h of GaN.J Cryst Growt h,1984,66:1[4] Detchp rohm T,Hira matsu K.Hydride vap or p hase epitaxialgrowt h of a high qualit y GaN fil m using a ZnO buff er layer.ApplPhys L ett,1992,61:2688[5] Xu Xueping,Vaudo R P,L oria C,et al.Growt h a nd characteriza2tion of low def ect GaN by hydride vap or p hase epitaxy.J CrystGrowt h,2002,246:223[6] Shibata T,Sone H,Yahashi K,et al.Hydride vap or2p hase epitaxygrowt h of high2quality GaN bulk single crystal by epitaxial lateralovergrowt h.J Cryst Growt h,1998,189:67[7] Honda Y,Kuroiwa Y,Ya maguchi M,et al.Growt h of a GaN crys2tal f ree f rom cracks on a(111)Si subst rate by selective MOV P E.J Cryst Growt h,2002,242:77[8] Colt ri n M E,Mitchell C C.Mass t ra nsp ort and kinetic li mitationsin MOCV D selective2area growt h.J Cryst Growt h,2003,254:35 [9] Ujihara T,Yoshida Y,L ee W S,et al.Patter n size eff ect on sourcesupply p rocess f or sub2micrometer scale selective area growt h by orga nometallic vap or p hase epitaxy.J Cryst Growt h,2006,289:89 [10] Ma Ping,Wei Tongbo,Dua n Ruif ei,et al.Gr owt h of GaN t hickfil m by HV P E on sapp hire subst rate.Chinese J our nal of Se micon2duct ors,2007,28(6):902(in Chinese)[马平,魏同波,段瑞飞,等.蓝宝石衬底上HV P E2GaN厚膜生长.半导体学报,2007,28(6): 902][11] Na m O H,Bre mser M D,Zheleva T S,et al.L ateral epitaxy oflow def ect density GaN layers via orga nometallic vap or p hase epi2 taxy.Appl Phys L ett,1997,71:2638[12] Pop hristic M,L ong F H,Schur ma n M,et al.Ra ma n microscop y oflateral epitaxial overgrowt h of GaN on sapp hire.Appl Phys L ett, 1999,74:3519[13] Kozawa T,Kachi T,Kano H,et al.Ra man scattering f rom L Op honon2plas mon coupled modes i n gallium nit ride.J Appl Phys, 1994,75:1098[14] Holtz M,Seon M,Prokof yeva T,et al.Micro2Ra ma n i maging ofGaN hexagonal island st ructures.Appl Phys L ett,1999,75:1757 [15] Feng G,Zheng X H,Fu Y,et al.Investigation on t he origi n ofcrystallograp hic tilt in lateral epitaxial overgrown GaN usi ng se2 lective etching.J Cryst Growt h,2002,240:368[16] Chen W M,McNally P J,J acobs K,et al.Deter mination of crystalmisorientation in epitaxial lateral overgrowt h of GaN.J CrystGrowt h,2002,243:94[17] Kozawa T,Kachi T,Ka no H,et al.Ther mal2st ress in GaN epitaxi2al layers grown on sapp hire subst rates.J Appl Phys,1995,77:4389 [18] L ee I H,Choi I H,L ee C R,et al.St ress relaxation in Si2dop edGaN studied by Ra ma n spect roscop y.J Appl Phys,1998,83:5787 [19] Kisielowski C,Kruger J,Ruvi mov S,et al.St rain2related p henom2ena i n GaN t hin fil ms.Phys Rev B,1996,54:17745[20] Hira matsu K,Matsushi ma H,Shibata T,et al.Selective areagrowt h and epitaxial lateral overgrowt h of GaN by metalorga nic vap or p hase epitaxy and hydride vap or p hase epitaxy.Materials Science Engineering,1999,B59:104[21] Sa kai A,Sunakawa H,Ki mura A,et al.Self2orga nized p rop agationof dislocations in GaN fil ms during epitaxial lateral overgrowt h.Appl Phys L ett,2000,76:442[22] Follstaedt D M,Provencio P P,Missert N A,et al.Mini mizi ngt hreading dislocations by redirection during ca ntilever epitaxial growt h of GaN.Appl Phys L ett,2002,81:2758Selective Area G row th and Characterization of G a N G row n on c2Sapphireby H ydride V apor Phase EpitaxyL i n Guoqia ng ,Ze ng Yip i ng,D ua n Ruif ei,Wei Tongbo,Ma Pi ng,Wa ng J unxi,L iu Zhe,Wa ng Xiaolia ng,a nd L i J i nmi n(I nstit ute of Semiconduct ors,Chi nese Academy of Sciences,Beiji ng 100083,Chi na)Abstract:Square p atter ns wit h diff ere nt sizes are p rep ared on c2sapp hire by plasma2e nhanced chemical vap or dep osition of SiO2,con2 ventional op tical lit hograp hy,and wet che mical etching.The GaN film is selectively grow n on t his p atter ned c2sapp hire by hydride vap or p hase epitaxy.A n op tical microscope,at omic f orce microscop e,sca nning elect ron microscope,high resolution double crystal X2 ray diff raction(D C XRD),a nd Ra man shif t sp ect rum are used t o analyze t he sample.The GaN layer wit h a t hickness of about20μm grow n on an area of100μm×100μm is crack2f ree w hile t he GaN layers grow n on areas of300μm×300μm and500μm×500μm have cracks.Thus,t he f ull widt h at half maximum(FW HM)of D C XRD of(0002)reflection of GaN grow n on t he indepe nde nt square window of c2sapp hire decreases w he n t he area of window decreases,indicating better quality GaN single crystal.The minimum FW HM is530″.From t he cor ner of t he square window t owards its edge a nd ce nter,t he in2plane comp ressive st ress of GaN decreases due t o t he interaction betwee n t he epitaxial lateral overgrow n GaN wings a nd t he SiO2mask under neat h,and t he bending of90°of t hreading dislocations at t he border of t he window regions.K ey w ords:GaN;selective area growt h;HV P EPACC:7280E;6855;8110BArticle ID:025324177(2008)0320530204Corresp onding aut hor.Email:lingq@se  Received31August2007,revised ma nuscript received18September2007Ζ2008Chinese Instit ute of Elect ronics335。

高精度轨道电子地图生成系统设计与应用

高精度轨道电子地图生成系统设计与应用

DOI: 10.3969/j.issn.1673-4440.2023.11.003高精度轨道电子地图生成系统设计与应用孙 哲1,王 嵩2,赵 佳1 (1.中铁工程设计咨询集团有限公司,北京 100055;2.中国铁路设计集团有限公司,天津 300308)摘要:针对轨道电子地图数据类型多、人工编制工作量大且准确性不高的问题,提出一种高精度轨道电子图源数据描述方式和数据结构,设计并实现一种适用于中低运量轨道交通的高精度轨道电子地图生成系统,该系统可自动完成对仿真标注数据和现场采集数据的处理和校验,最终生成电子地图数据文件。

通过搭建移动式定位数据采集平台,系统在芜湖轨道交通1、2号线得到了实际应用,应用结果表明,系统生成的高精度轨道电子地图能准确、有效地实现车辆位置匹配和图形化显示功能。

关键词:高精度;轨道电子地图;中低运量;数据生成;系统设计中图分类号:U284.48 文献标志码:A 文章编号:1673-4440(2023)11-0014-06Design and Implementation ofHigh Precision Track Electronic Map Generation SystemSun Zhe1, Wang Song2, Zhao Jia1(1. China Railway Engineering Design & Consultant Group Co., Ltd., Beijing 100055, China)(2. China Railway Design Corporation, Tianjin 300308, China)Abstract: Aiming at the problems of large amount of track electronic map data, heavy workload ofmanual compilation and low accuracy, this paper proposes a high-precision track electronic map source data description method and data structure. A high-precision track electronic map generation system suitable for medium and low traffic volume rail transit is designed and implemented. The system can automatically complete data processing and data verification in simulation and actual scenarios, and finally generate electronic map data file. Through the establishment of mobile positioning data acquisition platform, the system has been applied in Wuhu rail transit line 1 and 2. The application results show that the high-precision track electronic map generated by the system can accurately and effectively realize the functions of vehicle position matching and graphical display.Keywords: high precision; track electronic map; medium and low traffic volume; data generation;system design收稿日期:2023-06-01;修回日期:2023-11-01基金项目:中铁工程设计咨询集团有限公司科技开发项目(软2022-4)第一作者:孙哲(1992—),男,工程师,硕士,主要研究方向:轨道交通信号智能运维技术,邮箱:****************。

Georeferencing

Georeferencing

Geographic Information Systems and ScienceSECOND EDITIONPaul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind©2005 John Wiley and Sons, Ltd5. Georeferencing 同步带同步轮进口三角带 OutlineIntroductionPlacenamesPostal addresses and postal codesLinear referencing systemsCadastersLatitude and longitudeProjections and coordinate systemsThe Global Positioning SystemConverting georeferencesGeoreferencingIs essential in GIS, since all information mustbe linked to the Earth’s surfaceThe method of georeferencing must be:Unique, linking information to exactly one locationShared, so different users understand the meaningof a georeferencePersistent through time, so today’s georeferencesare still meaningful tomorrowUniquenessA georeference may be unique onlywithin a defined domain, not globallyThere are many instances of Springfield inthe U.S., but only one in any stateThe meaning of a reference to London maydepend on context, since there are smallerLondons in several parts of the worldGeoreferences as Measurements Some georeferences are metricThey define location using measures of distancefrom fixed places•E.g., distance from the Equator or from the GreenwichMeridianOthers are based on orderingE.g. street addresses in most parts of the worldorder houses along streetsOthers are only nominalPlacenames do not involve ordering or measuringThe National Grid is a system of metric georeferencing used in Great Britain. It is administered by the Ordnance Survey of Great Britain, and provides a unique georeference for every point in England, Scotland, and Wales. The first designating letter defines a 500 km square, and the second defines a 100 km square. Within each square, two measurements, called easting and northing, define a location with respect to the lower left corner of the square. The number of digits defines the precision—three digits for easting and three for northing (a total of six) definelocation to the nearest 100 m.PlacenamesThe earliest form of georeferencingAnd the most commonly used in everyday activities Many names of geographic features areuniversally recognizedOthers may be understood only by localsNames work at many different scalesFrom continents to small villages and neighborhoods Names may pass out of use in timeWhere was Camelot?Postal Addresses and Postcodes Every dwelling and office is a potentialdestination for mailDwellings and offices are arrayed alongstreets, and numbered accordinglyStreets have names that are unique withinlocal areasLocal areas have names that are uniquewithin larger regionsIf these assumptions are true, then a postal address is a useful georeferenceWhere Do Postal Addresses Fail as Georeferences?In rural areasUrban-style addresses have been extendedrecently to many rural areasFor natural featuresLakes, mountains, and rivers cannot be locatedusing postal addressesWhen numbering on streets is not sequentialE.g. in JapanPostcodes as GeoreferencesDefined in many countriesE.g. ZIP codes in the USHierarchically structuredThe first few characters define large areasSubsequent characters designate smaller areasCoarser spatial resolution than postal addressUseful for mappingForward sortation areas (FSAs) of the central part of the Toronto metropolitan region. In Canada the first three characters of the six-ZIP code boundaries are a convenient way to summarize data in the US. The dots on the left have been summarized as a density per squaremile on the rightLinear ReferencingA system forgeoreferencing positionson a road, street, rail, orriver networkCombines the name ofthe link with an offsetdistance along the linkfrom a fixed point, mostoften an intersectionUsers of Linear ReferencingTransportation authoritiesTo keep track of pavement quality, signs,traffic conditions on roadsPoliceTo record the locations of accidentsProblem CasesLocations in rural areas may be a longway from an intersection or othersuitable zero pointPairs of streets may intersect more than onceMeasurements of distance along streetsmay be inaccurate, depending on themeasuring device, e.g. a car odometerCadastersMaps of land ownership, showing propertyboundariesThe Public Land Survey System (PLSS) in the US and similar systems in other countriesprovide a method of georeferencing linked to the cadasterIn the Western US the PLSS is often used torecord locations of natural resources, e.g. oiland gas wellsPortion of the Township and Range system (Public Lands Survey System) widely used in the western US as the basis of land ownership. Townships are laid out in six-mile squares on either side of an accurately surveyed Principal Meridian. The offset shown between townships 16N and 17N is needed to accommodate the Earth’s curvature (shown much exaggerated). The square mile sections within each township are numbered as shown in (A) east of the Principal Meridian, and reversed west of the Principal Meridian.Latitude and LongitudeThe most comprehensive and powerfulmethod of georeferencingMetric, standard, stable, uniqueUses a well-defined and fixed referenceframeBased on the Earth’s rotation and center ofmass, and the Greenwich MeridianDefinition of longitude. The Earth is seen here from above the North Pole, looking along the Axis, with the Equator forming the outer circle. The location of Greenwich defines the Prime Meridian. The longitude of the point at the center of the red cross is determined by drawing a plane through it and the axis, and measuring the angle between this plane and the Prime Meridian.Definition of LatitudeRequires a model of the Earth’s shapeThe Earth is somewhat ellipticalThe N-S diameter is roughly 1/300 lessthan the E-W diameterMore accurately modeled as an ellipsoidthan a sphereAn ellipsoid is formed by rotating an ellipseabout its shorter axis (the Earth’s axis inthis case)The History of EllipsoidsBecause the Earth is not shaped precisely as an ellipsoid, initially each country felt free toadopt its own as the most accurateapproximation to its own part of the EarthToday an international standard has beenadopted known as WGS 84Its US implementation is the North AmericanDatum of 1983 (NAD 83)Many US maps and data sets still use the NorthAmerican Datum of 1927 (NAD 27)Differences can be as much as 200 mLatitude and the EllipsoidLatitude (of the blue point)is the angle between aperpendicular to the surfaceand the plane of theEquatorWGS 84Radius of the Earth at theEquator 6378.137 kmFlattening 1 part in 298.257Projections and CoordinatesThere are many reasons for wanting toproject the Earth’s surface onto a plane,rather than deal with the curved surfaceThe paper used to output GIS maps is flatFlat maps are scanned and digitized to create GISdatabasesRasters are flat, it’s impossible to create a rasteron a curved surfaceThe Earth has to be projected to see all of it atonceIt’s much easier to measure distance on a planeDistortionsAny projection must distort the Earth in some wayTwo types of projections are important in GIS Conformal property: Shapes of small features arepreserved: anywhere on the projection thedistortion is the same in all directionsEqual area property: Shapes are distorted, butfeatures have the correct areaBoth types of projections will generally distortdistancesCylindrical ProjectionsConceptualized as the result of wrapping acylinder of paper around the EarthThe Mercator projection is the best-knowncylindrical projectionThe cylinder is wrapped around the EquatorThe projection is conformal•At any point scale is the same in both directions•Shape of small features is preserved•Features in high latitudes are significantly enlargedConic ProjectionsConceptualized as the result of wrapping acone of paper around the EarthStandard Parallels occur where the cone intersectsthe EarthThe Lambert Conformal Conic projection iscommonly used to map North AmericaOn this projection lines of latitude appear as arcsof circles, and lines of longitude are straight linesradiating from the North PoleThe “Unprojected” Projection Assign latitude to the y axis and longitude to the x axisA type of cylindrical projectionIs neither conformal nor equal areaAs latitude increases, lines of longitude are muchcloser together on the Earth, but are the samedistance apart on the projectionAlso known as the Plate Carrée or CylindricalEquidistant ProjectionThe Universal Transverse Mercator (UTM) ProjectionA type of cylindrical projectionImplemented as an internationally standard coordinate systemInitially devised as a military standardUses a system of 60 zonesMaximum distortion is 0.04%Transverse Mercator because the cylinder is wrapped around the Poles, not the EquatorZones are each six degrees of longitude, numbered as shown at the top, from W to EImplications of the Zone System Each zone defines a different projectionTwo maps of adjacent zones will not fit along their common borderJurisdictions that span two zones must makespecial arrangementsUse only one of the two projections, and acceptthe greater-than-normal distortions in the otherzoneUse a third projection spanning the jurisdictionE.g. Italy is spans UTM zones 32 and 33UTM CoordinatesIn the N Hemisphere define the Equatoras 0 mNThe central meridian of the zone isgiven a false easting of 500,000 mEEastings and northings are both inmeters allowing easy estimation ofdistance on the projectionA UTM georeference consists of a zonenumber, a hemisphere, a six-digiteasting and a seven-digit northingE.g., 14, N, 468324E, 5362789NState Plane CoordinatesDefined in the US by each stateSome states use multiple zonesSeveral different types of projections areused by the systemProvides less distortion than UTMPreferred for applications needing veryhigh accuracy, such as surveyingConverting GeoreferencesGIS applications often require conversion ofprojections and ellipsoidsThese are standard functions in popular GISpackagesStreet addresses must be converted tocoordinates for mapping and analysisUsing geocoding functionsPlacenames can be converted to coordinates using gazetteersThe Global Positioning System Allows direct, accurate measurement of latitude and longitudeAccuracy of 10m from a simple, cheapunitDifferential GPS capable of sub-meteraccuracySub-centimeter accuracy if observationsare averaged over long periods。

异形子弹校准高g值加速度计的数值模拟

异形子弹校准高g值加速度计的数值模拟

异形子弹校准高g 值加速度计的数值模拟苏实,卢玉斌,张书,汪覃(西南科技大学制造过程测试技术教育部重点实验室,四川绵阳621010)来稿日期:2017-12-24基金项目:NSAF 国家自然科学基金(U1430110)作者简介:苏实,(1994-),男,山西人,本科,主要研究方向:冲击力学研究;卢玉斌,(1980-),男,陕西人,博士研究生,副研究员,主要研究方向:冲击动力学研究1引言随着MEMS 技术的不断进步,使加速度计的应用越来越广泛。

高g 值加速度计是对高量程加速度计的统称,是MEMS 技术应用于高速撞击过程中冲击载荷测量的关键之一[1]。

现代战争中,攻击高强度高价值防护目标实现最大损伤,已成为国内外军事领域研究的热点。

高g 值加速度计作为仪表被广泛应用于动态撞击过程及高速运动中冲击载荷的测量,特别应用于一些深层侵彻系统的研究及靶板目标特性的研究[2]。

在民用方面,其也可应用于汽车碰撞试验和飞机抗坠毁实验中的过载测量。

高g 值加速度传感器在很多场合都可以反复使用,但在多次使用过后,由于承受高载荷的作用,灵敏度等参数可能会发生变化,需要经常校准。

如何保证加速度校准过程的精确度和可靠性是加速度计设计中需解决的重要问题。

计算器波形记录仪激光干涉仪信号调试仪压缩空气真空夹具安装座加速度计子弹整形器Hopkonson 杆光栅图1微型霍普金森压杆装置示意图Fig.1Micro Hopkinson Pressure Bar Device Schematic Diagram现今国内外主要采用微型霍普金森(Hopkinson )压杆技术对高g 值加速度计进行动态校准。

近几年研究表明,霍普金森压杆受到撞击后所产生的应力波形具有一定上升沿时比上升沿时很短的近似矩形波形在波传播弥散等方面有很大的改善,因此对子弹撞击后所产生的波形进行整形无疑会对校准精度的提高有很摘要:高g 值加速度计是MEMS 技术应用于高速撞击/冲击过程中冲击载荷测量的关键之一,现今主要采用微型霍普金森压杆技术对高g 值加速度计进行动态校准。

一种提取体式显微镜图像特征点的方法

一种提取体式显微镜图像特征点的方法

一种提取体式显微镜图像特征点的方法张芸蕾;范胜利;王一刚【摘要】精确提取标定板的特征点是体视显微镜标定的关键,其结果会影响体标定的准确性和稳定性。

针对体视显微镜图像噪声大和部分图像清晰度低的问题,提出一种基于分水岭算法的标定板图像特征提取方法,利用区域信息来表征图像特征,以提高检测的稳定性。

首先采用高斯高通滤波器锐化得到边缘清晰图像;然后用大津法对图像二值化,并进行形态学腐蚀,接着采用分水岭算法提取图像特征区域,最后通过求取区域几何重心来获取特征点。

实验结果表明该特征提取方法具有较强的稳定性。

%Extracting the feature points of calibration board accurately is the key point of stereo light microscope calibration,whose results will influence the accuracy and stability of calibration.Due to the lots of noise and partly fuzzy of the stereo light microscope image,a feature points extract method based on watershed algorithm is pro-posed,which applies the regional information to represent the image characteristics to improve the stability of the test.Firstly,Gaussian High-pass Filter is used to sharpen the target image and an image with clear edges is got. Secondly,OTSU is applied to binary the clear edge image,and the binary image is corrodedby binary mathematical morphology.Finally,watershed algorithm is used to segment the corroded image,and then the geometric center of the separated regions is extracted,which are the feature points of the target image.The experimental results show that this extraction method has strong stability.【期刊名称】《太原科技大学学报》【年(卷),期】2016(037)002【总页数】5页(P103-107)【关键词】分水岭算法;特征点提取;摄像机标定;体视显微镜【作者】张芸蕾;范胜利;王一刚【作者单位】太原科技大学电子信息工程学院,太原 030024;浙江大学宁波理工学院信息科学与工程学院,浙江宁波 315100;浙江大学宁波理工学院信息科学与工程学院,浙江宁波 315100【正文语种】中文【中图分类】TP391作为一种常用的三维微观测量仪器,体视显微镜在生物学、医学和工业等领域有着广泛的应用。

基于光纤Sagnac干涉仪的高精度宽谱光源平均波长测量技术

基于光纤Sagnac干涉仪的高精度宽谱光源平均波长测量技术

第31卷第1期仪器仪表学报V ol.31 No. 1 2010年1月Chinese Journal of Scientific Instrument Jan. 2010 基于光纤Sagnac干涉仪的高精度宽谱光源平均波长测量技术徐宏杰,刘海锋,张春熹,罗永锋(北京航空航天大学仪器科学与光电工程学院北京100191)摘 要:精确测量宽谱光源平均波长对研制高精度光纤陀螺具有重要意义。

提出了一种高精度宽谱光源平均波长测量方法。

采用全保偏Sagnac环形干涉仪实现宽谱光信号的干涉,采用微弱相位信号检测技术实现光波长信息的提取。

推导出了宽谱光平均波长的数学模型,提出了光路设计方案和信号处理方案,提出了不敏感Sagnac效应的四态方波偏置调制单边解调的波长检测算法。

精度分析表明该方案可以实现高精度的宽谱光源平均波长测量。

设计了基于FPGA的微弱信号检测电路实现±π/2 ±3π/2四态方波偏置调制单边解调加闭环反馈算法,验证了该测量方法的可行性。

关键词:宽谱光源;平均波长;光纤陀螺;标度因数中图分类号:TP212.14文献标识码:A国家标准学科分类代码:510.20High precision measurement of broadband optical wavelength based on fiberoptic sagnac interferometerXu Hongjie, Liu Haifeng, Zhang Chunxi, Luo Yongfeng(School of Instrument Science & Optoelectronics Engineering, Beihang University, Beijing 100191, China)Abstract:Precise measurement of broadband optical signal wavelength is important for high precision FOG. A method of high precision measurement of broadband optical signal average wavelength is promoted. Based on the theory, an optical interferometer is designed; the signal processing solution and detection algorithm are promoted. The precision of the solution is proved to be high. A weak signal detection circuit is designed to realize the algo-rithm. Experiment result indicates the solution is feasible.Key words:broadband optical source; average wavelength; fiber optic gyroscope; scale factor1引 言精确测量宽谱光源平均波长对研制高精度光纤陀螺具有重要意义,除用光谱仪测量外,目前还没有专业用来测宽谱光源平均波长的技术。

一种指纹奇异点区域图像增强算法

一种指纹奇异点区域图像增强算法

一种指纹奇异点区域图像增强算法席诗琼;韩胜;耿卫东【摘要】指纹图像奇异点附近区域的增强一直是指纹图像增强的难点,针对Separable Gabor滤波会破坏指纹邻近奇异点区域的纹线结构,方向傅里叶滤波在一般区域修复指纹纹线效果不明显这一问题,本文融合两种算法的优势,提出一种新的滤波方法(FS-Gabor).先对指纹图像进行预处理,得到指纹的方向、频率信息和掩膜信息.接着找出指纹图像的奇异点,并在奇异点附近标记出一定大小区域.最后根据像素点的位置采用不同的滤波方法.同时,本文提出了一种改进的指纹图像频率估计方法,扩大了指纹图像有效区域面积.实验结果表明,经本文方法滤波的指纹图像的EER(Equal Error Rate)比方向傅里叶滤波低26%,比Separable Gabor低49%.【期刊名称】《液晶与显示》【年(卷),期】2018(033)009【总页数】7页(P801-807)【关键词】指纹增强;方向傅里叶滤波;SeparableGabor;指纹奇异点【作者】席诗琼;韩胜;耿卫东【作者单位】南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室 ,天津 300350;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室 ,天津 300350;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室 ,天津300350【正文语种】中文【中图分类】TP394.1;TH691.91 引言指纹特征点的提取很大程度依赖于指纹图像的质量[1]。

然而,由于手指的皮肤状况(过干或过湿),传感器噪声和伤疤等原因,有相当一部分的指纹图像质量较低[2]。

利用图像增强技术改善指纹图像的结构清晰度,在指纹识别过程中就显得十分重要[3-5]。

然而由于指纹奇异点附近指纹纹线曲率较大,给指纹图像增强过程增加了许多难度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BIOGRAPHIES
Michael Cramer is a research associate in the Institute of Photogrammetry. He received his diploma in surveying from the University of Stuttgart in 1993. From 1993 till 1995 he was employed in the special research group "SFB 228 { High precision navigation", mainly related to the topic attitude determination using multiantenna GPS and low-cost INS. Now he is working in the eld of GPS/INS integration for georeferencing of digital airborne and satellite three line CCD scanner. Dirk Stallmann took his Dipl. Ing. in Geodesy and Surveying Engineering from the University of Hannover, Germany, in 1989. From 1989 till 1995 he was working at the Swiss Federal Institute of Technology, Zurich, on image matching for image/object tracking, precise measurement and automatic digital terrain model generation from airborne and satellite images (SPOT, MOMS02). Since 1995 he is working at the University of Stuttgart on photogrammetric processing of airborne and satellite based three line CCD scanner and sensor integration. Norbert Haala received his diploma in surveying from the University of Stuttgart in 1990. He started as a research associate at the Institute for Photogrammetry as a member of the special research group "SFB 228 { High precision navigation". He has been working extensively in the eld of image reconstruction and nished his Ph. D. thesis "Building reconstruction from aerial images and DSM data" in 1996. Since 1995 he is associate professor and head of the research group "Sensor-Integration". (INS). Additionally, due to the along-track stereo capability of the camera error terms for position and attitude can be estimated by photogrammetric constraints utilizing ground control points and corresponding image points. In order to get a high accuracy position and attitude are determined by integrating all available information (GPS, INS and stereo image data). Within the article the geometric processing of the high precision and high resolution scanner imagery will be described and results of the performed test ight in October 1996 will be presented.
ABSTRACT
The registration and geometric recti cation of airborne scanner imagery is an essential prerequisite for the processing and analysis of this type of images. The Digital Photogrammetric Assembly (DPA) is an airborne camera consisting of three pan-chromatic line arrays for stereo imaging and four line arrays for multi-spectral imaging. For georeferencing the sensor system is completed by a module consisting of a di erential GPS receiver con guration and an Inertial Navigation System
determined in a least squares adjustment.
2 THE DPA SENSOR SYSTEM
The devtem started in the late eighties and was done by the Daimler{ Benz Aerospace (DASA), formerly the Messerschmitt{ Bolkow-Blohm (MBB) company. The philosophy of the system is to get single path pan-chromatic stereo coverage and multispectral coverage of the terrain. This is similar to other imaging airborne sensors like the MEIS imager 7] or the MOMS-02 sensor 1] for space applications. Originally, the camera system consists of three panchromatic CCD line arrays for the in- ight stereo imaging connected with an INS providing linear accelerations and angular rates measurements. First tests to evaluate the potential of the stereo module were done in 1992 and are published in 5]. Later, the camera was completed by the multispectral module for acquisition of multispectral images in the red, green, blue and nearinfrared band. Additionally, a di erential GPS receiver con guration was synchronized with the system. The optical part together with the sensor electronics and the INS are mounted in a Zeiss Jena SM2000 platform for stabilization of the imaging system during the ight. The components for operating the system and storing the recorded data are xed in two racks. The complete camera system is shown in gure 1.
1 INTRODUCTION
The DPA is an integrated airborne push-broom scanning system with real time data collection capability. The fundamental idea of this system is to obtain high quality 3D and multispectral information of a scene simultaneously. In order to acquire geometric information three high resolution CCD lines are used providing panchromatic images in forward, nadir and backward direction of the ight path. The ground pixel size for these images at the ying height of approximately 2000 m above ground is in the order of 0.25 m. For multispectral purposes four CCD lines are used to acquire images of the spectral bands red, green, blue and near infrared. For georeferencing of the digital image data, a six degree of freedom strap-down INS is utilized. Additionally, a di erential GPS receiver con guration is synchronized to overcome the well known systematic INS error e ects. Hence, for every scan line the fully exterior orientation parameters of position and attitude are available. More details about the georeferencing process in general are given in e. g. 8], 9]. Within this paper the algorithm for georeferencing the image data is described. In contrary to the common approach of determining the exterior orientation for the complete trajectory by using a Kalman lter starting with an initial alignment procedure, a strip-wise approach is utilized. The in- ight alignment of the INS is realized using ground control points in the three channels. By using the collinearity condition of the the o sets and drift (linear rates) for the attitude angles are
相关文档
最新文档