等腰三角形教学设计(第一课时)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.3.1 等腰三角形教学设计(第一课时)
【学习目标】
1.知识与能力
了解等腰三角形的有关概念,探索并掌握等腰三角形的性质;能
够用等腰三角形的知识解决相应的数学问题。
2.过程与方法
通过对性质的探究活动和例题的分析,培养学生多角度思考问题
的习惯,提高学生分析问题和解决问题的能力。
3.情感、态度与价值观
通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
【学习重点】
等腰三角形的性质的探索及应用。
【学习难点】
等腰三角形三线合一的性质的理解、证明及其应用。
【学习过程】
一、创设情境
1.出示人字型屋顶的图片(55页),提问:屋顶被设计成了哪种几何图形?
2.小学我们已经初步认识了等腰三角形,这节课我们来具体研究
等腰三角形的性质。
二、操作探究
1.动手操作
如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特征?
学生课前动手操作,剪出图形,课上从剪出的图形观察△ABC的特点,可以发现AB=AC。
学生总结出等腰三角形的概念:有两边相等的三角形叫作等腰三
角形,相等的两边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,
底边和腰的夹角叫作底角。
找出手中图形的腰、底边、顶角、底角(△ABC中,若AB=AC,则△ABC是等腰三角形,AB、AC是腰、BC是底边、∠A是顶角,∠B和∠C是底角。
)
2.探究问题
(1)刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?
学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴
(2)把剪出的△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:
重合的线段重合的角
(3)从上表中你能发现等腰三角形具有什么性质吗?说一说你的
猜想。
学生经过观察,独立完成上表,然后小组讨论交流,从表中总
结等腰三角形的性质。
引导学生归纳:
性质1 等腰三角形的两个底角相等(简写成“等边对等角”);
性质2 等腰三角形顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)
性质3 等腰三角形是轴对称图形,对称轴为顶角角平分线(或底边上的高,或底边上的中线)所在直线。
三、合作交流
1.性质的证明思路
通过上面折叠的过程的启发,你能利用三角形的全等来证明这些性质吗?。