简易方程的解法(归纳)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、解形如X±a=b的方程
X+a=b X-a=b 解:X+a-a=b-a 解:X-a+a=b+a X=b-a X=b+a
2、解形如a-X=b的方程※
a-X=b
解:a-x+x=b+x
a=b+x
a-b=b-b+x
x=a-b
3、解形如ax=b的方程
aX=b
解; ax÷a=b÷a
X=b÷a
4、解形如a÷x=b的方程※
a÷X=b
解:a÷X×X=b×X
a=b×X
a÷b=b÷b×X
X=a÷b
5、解形如x÷a=b的方程※
X÷a=b
解:X÷a×a=b×a
X=b×a 6、解形如ax±b=c(a≠0)的方程
aX-b=c(a≠0)把“ax”看作一个整体
解:ax-b+b=c+b
ax=c+b
ax÷a=(c+b) ÷a
x=(c+b) ÷a
aX+b=c(a≠0)
解:ax+b-b=c-b 把“ax”看作一个整体方程的两边同时减去b ax=c-b
ax÷a=(c-b)÷a
x=(c-b)÷a
7、解形如ax±ab=c(a≠0)的方程
可以转化为:a(x±b)=c 再解
8、解形如a(x+b)=c (a≠0)的方程
把“x+b”看作一个整体,方程的两边同时除以a
书写格式
例如 80-X=60
解:80-X+X=60+X 检验:x=20代入原方程
80=60+X 方程左边=80-X
80-60=60-60+X =80-20
X=20 =60
=方程的右边
所以x=20是方程的解
定律、公式
1、加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
2、乘法交换律:a ×b=b ×a
乘法结合律:(a ×b)×c=a ×(b ×c) 乘法分配律:(a+b)×c=a ×c+b ×c
或 (a-b)×c=a ×c-b ×c
3、减法性质:a-b-c=a-(b+c)
a-b-c=a-c-b
4、除法性质:
a ÷
b ÷c=a ÷(b ×c) a ÷b ÷c=a ÷
c ÷b
5、去括号: a+(b-c)=a+b-c a-(b-c)=a-b+c
a ÷
b ×c= a ÷(b ÷c)
6、长方形:
a
长方形周长
=(长
+宽)×2 字母公式:C=(a+b)×2 长方形面积=长×宽 字母公式:S=ab 7、正方形:
正方形周长=边长×4 字母公式:C=4a 正方形面积=S=a ×a 8、平行四边形
字母公式:S=ah 9、三角形
a
三角形的面积=底×高÷2 字母公式:S=ah ÷2 三角形的 底=面积×2÷高;
三角形的 高=面积×2÷底) 10、梯形 上底a
下底b
梯形的面积=(上底+下底)×高÷2 母字公式: S=(a+b)h÷2 上底=面积×2÷高-下底
下底=面积×2÷高-上底
高=面积×2÷(上底+下底)
古希腊哲学大师亚里士多德说:人有两种,一种即“吃饭是为了活着”,一种是“活着是为了吃饭”.一个人之所以伟大,首先是因为他有超于常人的心。
“志当存高远”,“风物长宜放眼量”,这些古语皆鼓舞人们要树立雄心壮志,要有远大的理想。
有一位心理学家到一个建筑工地,分别问三个正在砌砖的工人:“
你在干什么?”
第一个工人懒洋洋地说:“我在砌砖。
” 第二个工人缺乏热情地说:“我在砌一堵墙。
” 第三个工人满怀憧憬地说:“我在建一座高楼!”
听完回答,心理学家判定:第一个人心中只有砖,他一辈子能把砖砌好就不错了;第二个人眼中只有墙,好好干或许能当一位技术员;而第三个人心中已经立起了一座殿堂,因为他心态乐观,胸怀远大的志向!
井底之蛙,只能看到巴掌大的天空;摸到大象腿的盲人,只能认为大象长得像柱子;登上五岳的人,才能感觉“一览众山小”;看到大海的人,就会顿感心胸开阔舒畅;
心中没有希望的人,是世界上最贫穷的人;心中没有梦想的人,是普天下最平庸的人;目光短浅的人,是最没有希望的人。
清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个人的希望和梦想,决定了他的人生暗淡或辉煌。