(完整版)2018年北师大版小升初数学试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年北师大版小升初数学试卷
一、填空(一题1分,共12分)
1.(1.00分)10098400读作,四舍五入到万位是.
2.(1.00分)一个数被2、3、7除结果都余1,这个数最小为.3.(1.00分)两个质数的积为偶数,其中一个必定是.
4.(1.00分)20千克比轻20%.米比5米长.
5.(1.00分)甲数的4倍是乙数的,甲数比乙数为.
6.(1.00分)一段电线,长米,截去后,再接上4米,结果比原来电线长米.
7.(1.00分)甲、乙两数的平均数是16,甲、乙、丙三数平均数是20,可算出丙数为.
8.(1.00分)某商品在促销时期降价10%,促销过后又涨10%,这时商品价格是原来价格的.
9.(1.00分)在,2.84,283.3%,2.8383…中,从大到小排为.10.(1.00分)吨=吨千克.
11.(1.00分)一项工作,6月1日开工,原定一个月完成,实际施工时,6月25日完成任务,到6月30日超额完成%.
12.(1.00分)一个长方体表面积是4000cm2,把这个长方体平均切成两块正好是两个相等的正方体,若把两个这样的长方体拼成一个长方体,这个长方体的表面积最多是.
二、判断题(一题一分,共5分)
13.(1.00分)两个比可以组成比例.(判断对错)
14.(1.00分)一个正方体棱长和为24厘米,它的体积是8立方厘米..(判断对错)
15.(1.00分)面积相等的两个三角形一定能拼成一个平行四边形..(判
断对错)
16.(1.00分)甲比乙长,乙就比甲短..(判断对错)17.(1.00分)如果a>b>0,那么一定小于..(判断对错)
三、选择(只有一个正确,共16分)
18.(2.00分)用同样长的铁丝围成下面图形,()面积最大.
A.三角形B.正方形C.长方形D.圆形
19.(2.00分)数一数,图中一共有()条线段.
A.4 B.6 C.8 D.10
20.(2.00分)已知,4x+6=14,则2x+2=()
A.10 B.8 C.6 D.4
21.(2.00分)一个南瓜重量约4000()
A.厘米B.千克C.克D.毫米
22.(2.00分)甲乙两股绳子,甲剪去,乙剪去米,余下铁丝()A.甲比乙短B.甲乙长度相等C.甲比乙长D.不能确定
23.(2.00分)在含盐30%的盐水中,加入6克盐14克水,这时盐水含盐百分比是()
A.等于30% B.小于30% C.大于30%
24.(2.00分)若甲数的等于乙数的3倍,那么甲数()乙数.
A.>B.= C.<
25.(2.00分)圆面积扩大16倍,则周长随着扩大()
A.16倍B.32倍C.4倍
三、计算题(共32分)
26.(5.00分)
直接写出结果÷3= 4.2÷
0.07=
11×
45+38==
0.875×24=1÷=7.2×=8﹣=
0.25﹣=×0÷
=
27.(3.00分)(16﹣15.3)××2.4
28.(3.00分)1÷(4﹣0.05×70)×1
29.(3.00分)(1×+)÷(11﹣1)
30.(3.00分)128×41﹣1×128﹣40÷
31.(3.00分)3的除以1.85与的差,商是多少?
32.(3.00分)一个数的40%比它的3倍少10,求这个数.
33.(6.00分)看图填空:小华骑车从家去相距5千米的图书馆借书,从所给的折线统计图可以看出:小华去图书馆路上停车分,在图书馆借书用分.从家中去图书馆,平均速度是每小时千米.从图书馆返回家中,速度是每小时千米.
三、应用题(每题4分,其中第8题7分,共35分)
34.(4.00分)红星机床厂,今年生产机床2600台,比去年产量的2倍还多400台,去年生产机床多少台?
35.(4.00分)一个水池,单独开甲进水管需10小时将它注满,单独开乙进水管需12小时将它注满,单独开丙放水管需30小时放完一池水,问同时开放三管,多少小时将空池注满?
36.(4.00分)一辆客车从甲地开往乙地,每小时行驶75千米,预计3小时到达,行了1小时,机器发生故障,就地维修了20分钟,要想准时到达而不误事,以后每小时应加快多少千米?
37.(4.00分)甲乙两仓库的货物重量比是7:8,如果从乙仓库运出,从甲仓库运进6吨,那么甲仓库比乙仓库多14吨,求:甲乙两仓库原有货物各有多少吨?
38.(4.00分)筑路队计划5天修完一条公路,第一天修了全程的22%,第二天修了全程的23%,最后三天修的路程之比是4:4:3,最后一天修27米,则这条公路多长?
39.(4.00分)一块合金含铜与锌比为3:4,用此合金制造铜锌之比为1:2的新合金63克,问要加铜还是加锌,加多少克?
40.(4.00分)脱粒用的电动机的传动轮直径为0.16米,脱粒机的传动轮直径为0.24米,若电动机每分钟转3600转,则脱粒机的转动轮每分钟转多少转?41.(7.00分)某校学生举行春游,若租用45座客车,则有15人没有座位,若租用同样数目的60座客车,则一辆客车空车.已知45座客车租金220元,60座客车租金300元.
问:(1)这个学校一共有学生多少人?
(2)怎样租车,最经济合算?
2018年北师大版小升初数学试卷(34)
参考答案与试题解析
一、填空(一题1分,共12分)
1.(1.00分)10098400读作一千零九万八千四百,四舍五入到万位是1010万.
【分析】(1)多位数的读法:从高位到底位,一级一级地读,每一级末尾的0都不读出来,其它数位连续几个0都只读一个零;据此来读;
(2)四舍五入到万位就是求近似数,对万位的下一位千位上数字进行四舍五入,然后去掉尾数加上计数单位
“万”.
【解答】解:(1)10098400读作:一千零九万八千四百;
(2)10098400≈1010万;
故答案为:一千零九万八千四百,1010万.
【点评】本题主要考察多位数的读法和求近似数,写数时注意补足0的个数,求近似数时注意带计数单位.
2.(1.00分)一个数被2、3、7除结果都余1,这个数最小为43.
【分析】因为这个数除以2,除以3,除以7都余1,要求这个数最小是多少,就是用2、3、7的最小公倍数加上1即可.
【解答】解:2×3×7+1
=42+1
=43
答:这个数最小是43.
故答案为:43.
【点评】此题考查了带余除法,根据题目特点,先求3个数的最小公倍数,然后加上余数,解决问题.
3.(1.00分)两个质数的积为偶数,其中一个必定是偶数.
【分析】根据:偶数×偶数=偶数,奇数×奇数=奇数,偶数×奇数=偶数,据此解答.
【解答】解:因为:偶数×偶数=偶数,偶数×奇数=偶数,
所以积为偶数的两个质数,其中一个必为偶数;
故答案为:偶数.
【点评】本题主要考查两数相乘积的奇偶性,掌握偶数×偶数=偶数,奇数×奇数=奇数,偶数×奇数=偶数的规律.
4.(1.00分)20千克比25千克轻20%.米比5米长.
【分析】(1)20%的单位“1”是要求的量,20千克是单位“1”的1﹣20%,求单位“1”用除法.
(2)的单位“1”是5米,要求的数量是单位“1”的1+,用乘法可以求出.【解答】解:(1)20÷(1﹣20%)=25(千克);
(2)5×(1+)=(米);
故答案为:25千克,.
【点评】解答此题的关键是找单位“1”,进一步发现比单位“1”多或少百分之几,由此解决问题.
5.(1.00分)甲数的4倍是乙数的,甲数比乙数为3:22.
【分析】由题意可知:甲数×4=乙数×,然后根据比例的基本性质:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质,解答即可.【解答】解:甲数×4=乙数×
甲数:乙数=:4=3:22
故答案为:3:22.
【点评】此题主要应用比例的基本性质解决问题.
6.(1.00分)一段电线,长米,截去后,再接上4米,结果比原来电线长 3.92米.
【分析】由题意可知:把这根电线的总长度看作单位“1”,则这根电线截去后,还剩(1﹣),剩下的电线再加4米,然后减去原来的长度,就是现在的长度比原来的长的长度.
【解答】解:×(1﹣)+4﹣,
=×+4﹣,
=+﹣,
=﹣,
=,
=3.92(米);
答:结果比原来电线长3.92米.
故答案为:3.92.
【点评】解答此题的关键是明白:多的长度,就等于现在的长度减原来的长度.
7.(1.00分)甲、乙两数的平均数是16,甲、乙、丙三数平均数是20,可算出丙数为28.
【分析】根据“平均数×数量=总数”算出甲、乙、丙三个数的和与甲、乙两个数的和,进而用“甲、乙、丙三个数的和﹣甲、乙两个数的和”解答即可.
【解答】解:20×3﹣16×2,
=60﹣32,
=28;
故答案为:28.
【点评】解答此题的关键是:先根据平均数的计算方法分别求出三个数的和与其中的两个数的和,然后相减即可.
8.(1.00分)某商品在促销时期降价10%,促销过后又涨10%,这时商品价格是
原来价格的99%.
【分析】第一个10%的单位“1”是原价,设原价是1,降价后的价格是原价的1﹣10%,用乘法求出降价后的价格;再把降价后的价格看成单位“1”,现价是降价后价格的1+10%,用乘法求出现价,再用现价除以原价即可.
【解答】解:1×(1﹣10%)=0.9;
0.9×(1+10%),
=0.9×110%,
=0.99;
0.99÷1=99%;
答:商品价格是原来价格的99%.
故答案为:99%.
【点评】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再把数据设出,问题容易解决.
9.(1.00分)在,2.84,283.3%,2.8383…中,从大到小排为 2.84>2.8383…>>283.3%.
【分析】先把分数和百分数都化成小数,然后按小数的大小比较方法进行比较大小,先比较整数部分,如果整数部分相同就比较十分位,十分位相同就再比较百分位,百分位相同就再比较千分位,直到比较出大小为止.
【解答】解:=2.833…,
283.3%=2.833,
根据小数的大小比较方法可以得出:
2.84最大,2.8383…第二大,2.833…比2.833大,
所以上面的数从大到小的顺序为:2.84>2.8383…>>283.3%,
故答案为:2.84>2.8383…>>283.3%.
【点评】此题考查了小数的大小比较方法,注意把百分数和分数化成小数后再比较.
10.(1.00分)吨=3吨80千克.
【分析】把3吨化成复名数,整数部分3直接填入3吨,然后把吨化成千克数,用乘进率1000.即可得解.
【解答】解:×1000=80(千克);
故答案为:3,80.
【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,反之,则除以进率.
11.(1.00分)一项工作,6月1日开工,原定一个月完成,实际施工时,6月25日完成任务,到6月30日超额完成20%.
【分析】将总工作量定为1,则计划工作效率为1÷30=,实际工作效率为1÷25=,那么到6月30日超额完成(30×﹣1)÷1.
【解答】解:将总工作量定为1,实际工作效率为1÷25=,则到6月30日超额完成:
(30×﹣1)÷1,
=1,
=20%;
答:到6月30日超额完成20%.
故答案为:20%.
【点评】完成本题的关健是将总工作量当做1.
12.(1.00分)一个长方体表面积是4000cm2,把这个长方体平均切成两块正好是两个相等的正方体,若把两个这样的长方体拼成一个长方体,这个长方体的表面积最多是7200平方厘米.
【分析】(1)把这个长方体平均切成两块正好是两个相等的正方体,那么说明这个长方体的横截面是个正方形;那么以长为边的面的面积就是横截面的面积的2
倍,那么长方体的表面积就是4×2+2=10个横截面的面积之和,所以可以求得一个横截面的面积为:4000÷10=400平方厘米;
(2)把这样的2个长方体的横截面相连,组成的长方体表面积最大,正好减少了2个横截面的面积.
【解答】解:根据题干分析,长方体的表面积就是4×2+2=10个横截面的面积之和,
所以这个长方体的横截面面积为:4000÷10=400(平方厘米),
把这样的两个长方体按照横截面相连得到的大长方体的表面积为:
4000×2﹣400×2=8000﹣800=7200(平方厘米);
答:若把两个这样的长方体拼成一个长方体,这个长方体的表面积最多是7200平方厘米.
故答案为:7200平方厘米.
【点评】几个相同的长方体拼组时,把面积最大的面相连,拼组后的表面积最小;把面积最小的面相连,拼组后的表面积最大.根据表面积公式,利用方程求出这个长方体的横截面的面积,是本题的难点.
二、判断题(一题一分,共5分)
13.(1.00分)两个比可以组成比例.×(判断对错)
【分析】根据比例的意义作答,即表示两个比相等的式子叫做比例,据此解答.【解答】解:因为只有表示两个比相等的式子才组成比例;
所以两个比可以组成比例的说法是错误的;
故答案为:×.
【点评】本题主要考查了比例的意义:表示两个比相等的式子叫做比例.
14.(1.00分)一个正方体棱长和为24厘米,它的体积是8立方厘米.正确.(判断对错)
【分析】根据正方体的棱长有12条长度相等的棱,所以可计算出每条棱的长度,再根据正方体的体积公式可计算出正方体的体积,列式解答即可得到答案.【解答】解:正方体的棱长为:24÷12=2(厘米),
正方体的体积为:2×2×2=8(立方厘米),
答:这个正方体的体积为8立方厘米.
故答案为:正确.
【点评】解答此题的关键是确定正方体的每条棱的棱长,然后再根据正方体的体积公式进行计算即可.
15.(1.00分)面积相等的两个三角形一定能拼成一个平行四边形.×.(判断对错)
【分析】因为只有完全一样的三角形才可以拼成平行四边形,面积相等的三角形,未必底边和高分别相等.例如:底边长为4厘米,高为3厘米和底边长为2厘米,高为6厘米的两个直角三角形,面积相等,但是不能拼成平行四边形.
【解答】解:
如上图,两个直角三角形,面积相等,但是不能拼成平行四边形.
所以,面积相等的两个三角形一定能拼成平行四边形,说法错误.
故答案为:×.
【点评】此题应认真进行分析,通过举例进行验证,故而得出问题答案.
16.(1.00分)甲比乙长,乙就比甲短.错误.(判断对错)
【分析】此题的解题关键是确定单位“1”,甲比乙长,把乙数看作单位“1”,甲数是乙数的(1+),乙就比甲短1﹣1÷(1+)=,由此得出判断.
【解答】解:甲比乙长,把乙数看作单位“1”,甲数是乙数的(1+),即甲数是乙数的,
乙就比甲短1﹣1÷=.
故此题错误.
【点评】此题的解题关键是确定单位“1”,关键是明确题中的两个所对应的单位“1是不同的,甲比乙长是把乙数看作单位“1”,乙比甲短是把甲数看作单位“1”.
17.(1.00分)如果a>b>0,那么一定小于.√.(判断对错)
【分析】=,=,如果a>b>0,根据同分子分数大小比较方法“分子相同,则分母小的分数大”可知,<,即<.据此解答.
【解答】解:=,=,
如果a>b>0,则<,即<.
故答案为:√.
【点评】此题考查了同分子分数大小比较方法的灵活运用.
三、选择(只有一个正确,共16分)
18.(2.00分)用同样长的铁丝围成下面图形,()面积最大.
A.三角形B.正方形C.长方形D.圆形
【分析】根据题意可设铁丝的长为12.56米,那么根据正方形、长方形、圆形、三角形可分别计算出他们的边长,然后再利用他们的面积公式进行计算后再比较即可得到答案.
【解答】解:设铁丝的长为12.56米,
正方形的边长是:12.56÷4=3.14(米),
正方形的面积是:3.14×3.14=9.8596(平方米);
长方形的长和宽的和是:12.56÷2=6.28(米),
长和宽越接近面积越大,长可为3.15米,宽为3.13米,
长方形的面积是:3.15×3.13=9.8595(平方米);
假设是正三角形,其边长是:12.56÷3≈4.2(米),
三角形的高小于斜边,所以三角形的面积就小于4.2×4.2÷2=8.82(平方米);圆的半径是:12.56÷2÷3.14=2(米),
圆的面积是:2×2×3.14=12.56(平方米);
8.82<9.8595<9.8596<12.56;
所以围成的圆的面积最大.
故选:D.
【点评】此题主要考查的是:在周长相等的所有图形中,围成的圆的面积最大.
19.(2.00分)数一数,图中一共有()条线段.
A.4 B.6 C.8 D.10
【分析】这条线上一共有5个点,每两个点都可以组成一条线段,一共有5×4种排列情况,又由于每两个点都重复了一次,比如AB和BA就是同一条线段,所以这条线上的5个点,一共有5×4÷2种组合.
【解答】解:根据题意,这条线上的5个点,它的组合情况是:
5×4÷2=20÷2=10(条);
答:图中一共有10条线段.
故选:D.
【点评】本题的解答可以按排列组合的方法解答,也可按顺序一条一条得数出,当直线上的点比较多时,可以用公式:线段的条数=n×(n﹣1)÷2,(n为点的个数)计算.
20.(2.00分)已知,4x+6=14,则2x+2=()
A.10 B.8 C.6 D.4
【分析】先根据4x+6=14求出x的值,进而把x的值代入2x+2中,进行解答即可.
【解答】解:4x+6=14,
4x=14﹣6,
4x=8,
x=2;
2x+2,
=2×2+2,
=6;
故选:C.
【点评】解答此题的关键是先求出x的值,进而根据题意,解答即可.
21.(2.00分)一个南瓜重量约4000()
A.厘米B.千克C.克D.毫米
【分析】根据生活经验、对质量单位大小的认识和数据的大小,可知计量一个南瓜的重量应用“克”做单位,据此进行选择.
【解答】解:一个南瓜重量约4000克.
故选:C.
【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.
22.(2.00分)甲乙两股绳子,甲剪去,乙剪去米,余下铁丝()A.甲比乙短B.甲乙长度相等C.甲比乙长D.不能确定
【分析】首先区分两个的区别:第一个是把把甲的绳长看作单位“1”,剪去的占总长度的;第二个是一个具体的数量;两个意义不一样,且两股绳子的原长的大小关系不知道,因而无法比较大小.
【解答】解:因为两个意义不一样,因而无法比较大小,
假设两股绳子的原长相等,则:
比如说两根绳子都长2米,那第一根剩下1.5米,第二根剩下的是1.75米,则乙比甲长;
另外,比如说两根绳子都长1米,那第一根剩下0.75米,第二根剩下的也是0.75米,则余下的长度相等;
再如两根绳子都长0.4米,那第一根剩下0.3米,第二根剩下的是0.15米,则甲
比乙长;
故选:D.
【点评】此题重在区分分数在具体的题目中的区别:有些表示是某些量的几分之几,有些就表示具体的数,要做到正确区分.
23.(2.00分)在含盐30%的盐水中,加入6克盐14克水,这时盐水含盐百分比是()
A.等于30% B.小于30% C.大于30%
【分析】因为6克盐14克水制成的盐水的含盐百分比是6÷(6+14)=30%,所以,在含盐30%的盐水中,加入6克盐14克水,这时盐水含盐百分比仍是30%.【解答】解:因为用6克盐14克水制成的盐水的含盐百分比是6÷(6+14)=30%,所以,在含盐30%的盐水中,加入6克盐14克水,这时盐水含盐百分比仍是30%.故选:A.
【点评】完成本题的关健是明确加入的盐水的含盐的百分比是多少.
24.(2.00分)若甲数的等于乙数的3倍,那么甲数()乙数.
A.>B.= C.<
【分析】两两相乘的积相等,与较小数相乘的那个数较大,比较与3的大小,即可解答.
【解答】解:由甲数的等于乙数的3倍可得:
甲数×=乙数×3,
因为<3,
所以甲数>乙数.
故选:A.
【点评】此题关键明白两两相乘的积相等,与较小数相乘的那个数较大.
25.(2.00分)圆面积扩大16倍,则周长随着扩大()
A.16倍B.32倍C.4倍
【分析】本题根据圆的面积公式和周长公式求出圆的面积和半径以及周长和半径的比例关系来求解.
【解答】解:S=πr2
π是恒值,那么S与r2成正比,圆面积扩大16倍,半径的平方就扩大了16倍,半径扩大4倍;
C=πr
π是恒值,那么C与r成正比,半径扩大4倍,周长也扩大4倍.
故选:C.
【点评】本题圆的面积和半径以及周长和半径的比例关系来求解.圆的面积和半径的平方成正比,周长和半径成正比.
三、计算题(共32分)
26.(5.00分)
直接写出结果
45+38=÷3= 4.2÷
0.07=
11×
=
0.875×24=1÷=7.2×=8﹣=
0.25﹣=×0÷
=
【分析】÷3把48分解成48+,除法变成乘法,再运用乘法分配律简算;×0÷根据有关0的运算直接得出结果;其他题目按照运算法则计算.【解答】解:
45+38=83,÷
3=16,4.2÷
0.07=60
11×
=133,
0.875×24=21,1÷=,7.2×
=2.7,
8﹣=4,
0.25﹣=0.05,
×0÷=0.
故答案为:83,16,60,133,21,,2.7,4,0.05,0.
【点评】本题考查了基本的计算,计算时要细心,注意小数点的位置.
27.(3.00分)(16﹣15.3)××2.4
【分析】先算小括号里面的减法,再根据乘法结合律简算.
【解答】解:(16﹣15.3)××2.4
=0.8×(×2.4)
=0.8×0.4
=0.32
【点评】本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.
28.(3.00分)1÷(4﹣0.05×70)×1
【分析】先算小括号里面的乘法,再算小括号里面的减法,然后算括号外的除法,最后算括号外的乘法.
【解答】解:1÷(4﹣0.05×70)×1
=1÷(4﹣3.5)×1
=1÷×1

=2
【点评】本题考查了四则混合运算,计算时先理清楚运算顺序,根据运算顺序逐步求解即可.
29.(3.00分)(1×+)÷(11﹣1)
【分析】先算小括号里面的乘法,再同时计算两个小括号里面的加减法,最后算括号外的除法.
【解答】解:(1×+)÷(11﹣1)
=(+)÷(11﹣1)
=÷9

=
【点评】本题考查了四则混合运算,计算时先理清楚运算顺序,根据运算顺序逐步求解即可.
30.(3.00分)128×41﹣1×128﹣40÷
【分析】先把除法变成乘法,再根据乘法分配律简算.
【解答】解:128×41﹣1×128﹣40÷
=128×41﹣1×128﹣40×128
=128×(41﹣1﹣40)
=128×0
=0
【点评】乘法分配律是最常用的简便运算的方法,要熟练掌握,灵活运用.
31.(3.00分)3的除以1.85与的差,商是多少?
【分析】根据题意,可用乘,再用所得的积除以1.85减去的差,列式解答即可得到答案.
【解答】解:(×)÷(1.85﹣)
=÷1.6
=
答:的除以1.85与的差,商是.
【点评】解答此题的关键是根据题干的表述确定算式的运算顺序,然后再列式解答即可.
32.(3.00分)一个数的40%比它的3倍少10,求这个数.
【分析】把这个数看成单位“1”,一个数的40%比它的3倍少这个数的(3﹣40%),它对应的数量是10,由此用除法求出这个数.
【解答】解:10÷(3﹣40%)
=10÷260%
=3
答:这个数是3.
【点评】本题的关键是找出单位“1”,并找出数量对应了单位“1”的几分之几,再用除法就可以求出单位“1”的量.
33.(6.00分)看图填空:小华骑车从家去相距5千米的图书馆借书,从所给的折线统计图可以看出:小华去图书馆路上停车20分,在图书馆借书用40分.从家中去图书馆,平均速度是每小时5千米.从图书馆返回家中,速度是每小时15千米.
【分析】根据统计图知,小华骑车从家去图书馆借书,行驶20分钟后停留了20分钟,继续前行,又经过20分钟后,共行驶了5千米到达图书馆,在图书馆逗留40分钟后骑车回家只用了20分钟;据此可以求得小华去的时候的平均速度及返回的平均速度.
【解答】解:(1)20+40=60分钟=1小时,
5÷1=5(千米),
(2)5,
=5×3,
=15(千米),
答:小华去图书馆路上停车20分,在图书馆借书用40分.从家中去图书馆,平均速度是每小时5千米.
从图书馆返回家中,速度是每小时15千米.
故答案为:20;40;5;15.
【点评】此题考查了用折线统计图来表示行驶时间与行驶路程的数量关系,以及利用统计图中数据解决实际问题的方法.
三、应用题(每题4分,其中第8题7分,共35分)
34.(4.00分)红星机床厂,今年生产机床2600台,比去年产量的2倍还多400台,去年生产机床多少台?
【分析】由今年生产机床2600台,比去年产量的2倍还多400台,可知去年的产量×2+400就等于今年的产量,把去年的产量看做单位“1”,又是所求的问题,因此用方程解决比较简单.
【解答】解:设去年生产机床x台,由题意得:
2x+400=2600
2x=2200
x=2200÷2
x=2200×
x=1000
答:去年生产机床1000台.
【点评】此题考查基本数量关系,今年的产量=去年产量×2+400,由此列出方程,解答即可.
35.(4.00分)一个水池,单独开甲进水管需10小时将它注满,单独开乙进水管需12小时将它注满,单独开丙放水管需30小时放完一池水,问同时开放三管,多少小时将空池注满?
【分析】把水池的容量看作单位“1”,那么甲水管工作效率就是,乙水管的工作效率就是,丙水管的工作效率就是,它们同时开放的工作效率就是=,它们工作时间就是工作量单位:1除以它们合作的工作效率,即1=(小时)
【解答】解:=
1=(小时)
答:同时开放三管,小时将空池注满.
【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时往往把工作总量看做1,再利用它们的数量关系解答.
36.(4.00分)一辆客车从甲地开往乙地,每小时行驶75千米,预计3小时到达,行了1小时,机器发生故障,就地维修了20分钟,要想准时到达而不误事,以后每小时应加快多少千米?
【分析】根据“每小时行驶75千米,预计3小时到达”,可先求出甲地到乙地的总路程,再根据“行了1小时”,可求出剩下的路程和剩下的时间,进一步求得要想准时到达的行驶速度,进而求得应加快的速度即可.
【解答】解:甲地到乙地的总路程:75×3=225(千米),
剩下的路程:225﹣75×1=150(千米),
剩下的时间:3﹣1﹣=(小时),
准时到达的行驶速度:150=90(千米),
应加快的速度:90﹣75=15(千米).
答:要想准时到达而不误事,以后每小时应加快15千米.
【点评】此题主要考查路程、速度和时间三者之间的关系,利用它们之间的数量关系解答即可.
37.(4.00分)甲乙两仓库的货物重量比是7:8,如果从乙仓库运出,从甲仓库运进6吨,那么甲仓库比乙仓库多14吨,求:甲乙两仓库原有货物各有多少吨?
【分析】本题可列方程进行解答,设乙仓库原有货物x吨,从乙仓运出后,则乙仓还有(1﹣)x吨,由甲乙两仓库的货物重量比是7:8可知甲仓库原有x 吨;又“从甲仓库运进6吨”,此时甲仓库有()吨,乙仓有[(1﹣)x+6]吨,又此时甲仓库比乙仓库多14吨,据此可得方程:(﹣6)﹣[(1﹣)x+6]=14.解此方程即得乙仓原有货物的吨数,进而求得甲仓货物的吨数.
【解答】解:设乙仓原有货物x吨,则甲仓库原有x吨,可得方程:
(﹣6)﹣[(1﹣)x+6]=14
﹣6﹣﹣6=14,
x=26,
x=208;
甲仓原有:208×=182(吨);
答:甲仓库原有货物182吨,乙仓库原有货物208吨.
【点评】通过设未知数,根据所给条件列出等量关系式是完成本题的关键.
38.(4.00分)筑路队计划5天修完一条公路,第一天修了全程的22%,第二天修了全程的23%,最后三天修的路程之比是4:4:3,最后一天修27米,则这条公路多长?
【分析】本题应先求出最后三天共修的长度,然后再求全长.最后三天修的路程
之比是4:4:3,最后一天修27米,把最后三天修的长度看作单位“1”,则最后三天共修:27÷=99(米);要求全长,把全长看作单位“1”,第一天修了全程的22%,第二天修了全程的23%,那么这99米占全长的(1﹣22%﹣23%),列出算式解答即可.
【解答】解:4+4+3=11(份);
最后三天共修:
27÷=99(米);
这条公路长:
99÷(1﹣22%﹣23%),
=99÷55%,
=180(米);
答:这条公路长180米.
【点评】解答此类问题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.
39.(4.00分)一块合金含铜与锌比为3:4,用此合金制造铜锌之比为1:2的新合金63克,问要加铜还是加锌,加多少克?
【分析】首先根据合金含铜与锌的比是3:4,新合金的铜与锌之比为1:2,可得需要添加锌;然后根据新合金的铜与锌之比为1:2,可得新合金的铜占=,再根据分数乘法的意义,用新合金的总重量乘以铜占的分率,求出铜的重量是多少克;最后根据分数除法的意义,用铜的重量除以它占原来合金的重量的分率,求出需要原来合金多少克,再用新合金的重量减去需要原来的合金的重量,求出需要添加锌多少克即可.
【解答】解:63﹣63×÷
=63﹣63×÷
=63﹣21
=63﹣49。

相关文档
最新文档