2018年济南市市中区中考数学三模试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年济南市市中区中考数学三模试卷
一、选择题(每小题4分,共48分)
1.下图中几何体的主视图是()
A.B.C.D.
2.请将780000用科学计数法表示为()
A.78×104B.7.8×105C.7.8×106D.0.78×106
3.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是()
A.30°B.45°C.60°D.70°
4.下列既是中心对称又是轴对称图形的()
A.B.
C.D.
5.下列计算正确的是()
A.a4+a2=a6B.2a•4a=8a C.(a2)3=a5D.a5÷a2=a3
6.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()
A.1~2月份利润的增长快于2~3月份分利润的增长
B.1~4月份利润的极差与1~5月份利润的极差不同
C.1~5月份利润的众数是130万元
D.1~5月份利润的中位数为120万元
7.化简:的结果是()
A.﹣1 B.(x+1)(x﹣1)C.D.
8.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=
9.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()
A.1 B.2 C.3 D.4
10.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC 的中点,则矮建筑物的高CD为()
A.20米B.米C.米D.米
11.如图,在矩形ABCD中,AB=,AD=3,点E从点B出发,沿BC边运动到点C,连结DE,点E作DE的垂线交AB于点F.在点E的运动过程中,以EF为边,在EF 上方作等边△EFG,则边EG的中点H所经过的路径长是()
A.2B.3C.D.
12.如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x =1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;④使得M=1的x值是或.
其中正确的是()
A.①②B.①④C.②③D.③④
二、填空题(每小题4分,共24分)
13.分解因式:2x3﹣8=.
14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.
15.分式方程=1﹣的解为.
16.一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为.
17.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是.
18.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为.
三、解答题(本大题共9小题,共78分)
19.(6分)计算:()﹣1﹣(π﹣2)0+||+2sin60°.
20.(6分)解不等式组:
21.(6分)如图,在▱ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.
22.(8分)某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.
(1)若小王按需购买A、B两种品牌文具套装共用2000元,则各购买多少套?
(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元.设A品牌文具套装买了x包,请求出y与x之间的函数关系式.
23.(8分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.
(1)求证:BC是⊙O的切线;
(2)若DC=4,AC=6,求圆心O到AD的距离.
24.(10分)“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用
A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调
查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.
25.(10分)如图1所示,已知函数y=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0).动点M是y轴正半轴上点B上方的点.动点N在射线AP 上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C.
(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;
(3)在(2)的条件下,在平面直角坐标系中是否存在点S,使得以点D、Q、N、S为顶点的四边形为平行四边
形?如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.
26.(12分)(1)如图①,点E是正方形ABCD边BC上任意一点,过点C作直线CF⊥AE,垂足为点H,直线CF交直线AB于点F,过点E作EG∥AB,交直线AC于点G.则线段AD,EG,BF之间满足的数量关系是;
(2)如图②,若点E在边CB的延长线上,其他条件不变,则线段AD,EG,BF之间满足的数量关系是,证明你的结论;
(3)如图③,在(2)的条件下,若正方形ABCD的边长为4,tan∠F=,将一个45°角的顶点与点A重合,并绕点A旋转,这个角的两边分别交直线EG于M,N两点.当EN=2时,求线段GM的长.
27.(12分)如图,过点C(4,3)的抛物线的顶点为M(2,﹣1),交x轴于A、B两点(点A在点B的左侧),交y轴于点D.
(1)求抛物线的解析式及点D的坐标;
(2)点P是抛物线对称轴上的一个动点,求使△PBC为直角三角形的点P坐标;
(3)若点Q在第一象限内,且tan∠AQB=2,线段DQ是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由.
参考答案
一、选择题
1.下图中几何体的主视图是()
A.B.C.D.
【分析】找到从正面看所得到的图形即可.
解:从正面可看到的几何体的左边有2个正方形,中间只有1个正方形,右边有1个正方形.故选C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
2.请将780000用科学计数法表示为()
A.78×104B.7.8×105C.7.8×106D.0.78×106
【分析】科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解:780000=7.8×105,
故选:B.
【点评】此题考查科学计数法的表示方法.科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是()A.30°B.45°C.60°D.70°
【分析】依据平行线的性质,可得∠ABC,再根据∠CBD=90°,即可得到∠α=90°﹣30°=60°.
解:如图所示,∵l1∥l2,
∴∠A=∠ABC=30°,
又∵∠CBD=90°,
∴∠α=90°﹣30°=60°,
故选:C.
【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
4.下列既是中心对称又是轴对称图形的()
A.B.
C.D.
【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.
解:A、不是中心对称图形,是轴对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形又是轴对称图形,故本选项正确;
D、不是中心对称图形,是轴对称图形,故本选项错误.
故选:C.
【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.下列计算正确的是()
A.a4+a2=a6B.2a•4a=8a C.(a2)3=a5D.a5÷a2=a3
【分析】直接利用合并同类项法则以及幂的乘方运算法则、单项式乘以单项式、同底数幂的乘除运算法则分别计算得出答案.
解:A、a4+a2,无法计算,故此选项错误;
B、2a•4a=8a2,故此选项错误;
C、(a2)3=a6,故此选项错误;
D、a5÷a2=a3,故此选项正确;
故选:D.
【点评】此题主要考查了合并同类项以及幂的乘方运算、单项式乘以单项式、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
6.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()
A.1~2月份利润的增长快于2~3月份分利润的增长
B.1~4月份利润的极差与1~5月份利润的极差不同
C.1~5月份利润的众数是130万元
D.1~5月份利润的中位数为120万元
【分析】解决本题需要从统计图获取信息,再对选项一一分析,选择正确结果.
解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;
B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,
极差相同,故选项错误;
C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;
D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,
故选项错误.
故选:C.
【点评】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.
7.化简:的结果是()
A.﹣1 B.(x+1)(x﹣1)C.D.
【分析】根据分式的运算法则即可求出答案.
解:原式=•
=
故选:D.
【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=
【分析】根据方程的系数结合根的判别式,即可得出△=9﹣8m=0,解之即可得出结论.解:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
∴△=32﹣4×2m=9﹣8m=0,
解得:m=.
故选:C.
【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
9.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()
A.1 B.2 C.3 D.4
【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.
解:如图,
①当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),
②当∠B为直角时,过点B作垂线与直线的交点S(2,2.5),
③若∠C为直角
则点C在以线段AB为直径、AB中点E(﹣3,0)为圆心、5为半径的圆与直线y=﹣的交点上.
在直线y=﹣中,当x=0时y=4,即Q(0,4),
当y=0时x=,即点P(,0),
则PQ==,
过AB中点E(﹣3,0),作EF⊥直线l于点F,
则∠EFP=∠QOP=90°,
∵∠EPF=∠QPO,
∴△EFP∽△QOP,
∴=,即=,
解得:EF=5,
∴以线段AB为直径、E(﹣3,0)为圆心的圆与直线y=﹣恰好有一个交点.
所以直线y=﹣上有一点C满足∠C=90°.
综上所述,使△ABC是直角三角形的点C的个数为3,
故选:C.
【点评】本题考查的是一次函数综合题,在解答此题时要分三种情况进行讨论,关键是根据圆周角定理判断∠C为直角的情况是否存在.
10.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC 的中点,则矮建筑物的高CD为()
A.20米B.米C.米D.米
【分析】根据点G是BC中点,可判断EG是△ABC的中位线,求出AB,在Rt△ABC中求出BC,在Rt△AFD中求出DF,继而可求出CD的长度.
解:∵点G是BC中点,EG∥AB,
∴EG是△ABC的中位线,
∴AB=2EG=30米,
在Rt△ABC中,∠CAB=30°,
则BC=AB tan∠BAC=30×=10米.
如图,过点D作DF⊥AF于点F.
在Rt△AFD中,AF=BC=10米,
则FD=AF•tanβ=10×=10米,
综上可得:CD=AB﹣FD=30﹣10=20米.
故选:A.
【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
11.如图,在矩形ABCD中,AB=,AD=3,点E从点B出发,沿BC边运动到点C,
连结DE,点E作DE的垂线交AB于点F.在点E的运动过程中,以EF为边,在EF 上方作等边△EFG,则边EG的中点H所经过的路径长是()
A.2B.3C.D.
【分析】连接FH,取EF的中点M,连接BM,HM,依据BM=EM=HM=FM,可得点B,E,H,F四点共圆,连接BH,则∠HBE=∠EFH=30°,进而得到点H在以点B为端点,BC上方且与射线BC夹角为30°的射线上,再过C作CH'⊥BH于点H',根据点E 从点B出发,沿BC边运动到点C,即可得到点H从点B沿BH运动到点H',再利用在Rt△BH'C中,BH'=BC•cos∠CBH'=3×=,即可得出点H所经过的路径长是.
解:如图,连接FH,取EF的中点M,连接BM,HM,
在等边三角形EFG中,EF=FG,H是EG的中点,
∴∠FHE=90°,∠EFH=∠EFG=30°,
又∵M是EF的中点,
∴FM=HM=EM,
在Rt△FBE中,∠FBE=90°,M是EF的中点,
∴BM=EM=FM,
∴BM=EM=HM=FM,
∴点B,E,H,F四点共圆,
连接BH,则∠HBE=∠EFH=30°,
∴点H在以点B为端点,BC上方且与射线BC夹角为30°的射线上,
如图,过C作CH'⊥BH于点H',
∵点E从点B出发,沿BC边运动到点C,
∴点H从点B沿BH运动到点H',
在Rt△BH'C中,∠BH'C=90°,
∴BH'=BC•cos∠CBH'=3×=,
∴点H所经过的路径长是.
故选:C.
【点评】本题属于四边形综合题,主要考查了等边三角形的性质,矩形的性质,轨迹问题,解直角三角形以及四点共圆的综合运用,解决问题的关键是作辅助线构造直角三角形,利用直角三角形斜边上中线的性质以及含30°角的直角三角形的性质得出结论.12.如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x =1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;④使得M=1的x值是或.
其中正确的是()
A.①②B.①④C.②③D.③④
【分析】利用图象与坐标轴交点以及M值的取法,分别利用图象进行分析即可得出答案.解:∵当x>0时,利用函数图象可以得出y2>y1;∴①错误;
∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y
≠y2,取y1、y2中的较小值记为M;
1
∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②错误;
∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在;
∴使得M大于2的x值不存在,∴③正确;
∵当﹣1<x<0时,
使得M=1时,可能是y1=﹣2x2+2=1,解得:x1=,x2=﹣,
当y2=2x+2=1,解得:x=﹣,
由图象可得出:当x=>0,此时对应y1=M,
∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0),
∴当﹣1<x<0,此时对应y2=M,
故M=1时,x1=,x2=﹣,
使得M=1的x值是或.∴④正确;
故正确的有:③④.
故选:D.
【点评】此题主要考查了二次函数与一次函数综合应用,利用数形结合得出函数增减性是解题关键.
二、填空题(本大题共6小题,每小题4分,共24分)
13.分解因式:2x3﹣8=2(x3﹣4).
【分析】直接找出公因式,再提取公因式法分解因式即可.
解:2x3﹣8=2(x3﹣4).
故答案为:2(x3﹣4).
【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.
【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多
少即可.
解:抬头看信号灯时,是绿灯的概率为.
故答案为:.
【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.
15.分式方程=1﹣的解为x=﹣1 .
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:2x=x﹣2+1,
解得:x=﹣1,
经检验x=﹣1是分式方程的解.
故答案为:x=﹣1.
【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
16.一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为 1 .【分析】根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径.
解:设底面圆的半径为r,则:
2πr==2π.
∴r=1.
故答案是:1.
【点评】本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径.
17.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是1+.
【分析】根据反比例函数图象上点的坐标特征由A点坐标为(﹣2,2)得到k=﹣4,即反比例函数解析式为y=﹣,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B′的坐标可表示为(﹣,t),于是利用PB=PB′得t﹣2=|﹣|=,然后解方程可得到满足条件的t的值.
解:如图,
∵点A坐标为(﹣2,2),
∴k=﹣2×2=﹣4,
∴反比例函数解析式为y=﹣,
∵OB=AB=2,
∴△OAB为等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵点B和点B′关于直线l对称,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y轴,
∴点B′的坐标为(﹣,t),
∵PB=PB′,
∴t﹣2=|﹣|=,
整理得t2﹣2t﹣4=0,解得t1=1+,t2=1﹣(不符合题意,舍去),
∴t的值为1+.
故答案为1+.
【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质;会用求根公式法解一元二次方程.
18.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为.
【分析】根据定义先列不等式:2x﹣1≥﹣x+3和2x﹣1≤﹣x+3,确定其y=min{2x﹣1,﹣x+3}对应的函数,画图象可知其最大值.
解:由题意得:
,
解得:,
当2x﹣1≥﹣x+3时,x≥,
∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,
由图象可知:此时该函数的最大值为;
当2x﹣1≤﹣x+3时,x≤,
∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,
由图象可知:此时该函数的最大值为;
综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,
如图所示,当x=时,y=,
故答案为:.
【点评】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.
三、解答题(本大题共9小题,共78分)
19.(6分)计算:()﹣1﹣(π﹣2)0+||+2sin60°.
【分析】直接利用负指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案.
解:原式=2﹣1+2﹣+2×
=3.
【点评】此题主要考查了实数运算,正确化简各数是解题关键.
20.(6分)解不等式组:
【分析】先求出每个不等式的解集,再求出不等式组的解集即可.
解:
∵解不等式①得:x>1,
解不等式②得:x<2,
∴不等式组的解集为1<x<2.
【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
21.(6分)如图,在▱ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.
【分析】首先根据平行四边形的性质可得AB=CD,AB∥CD,再根据平行线的性质可得∠B=∠DCF,即可证明△ABE≌△DCF,再根据全等三角形性质可得到结论.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠B=∠DCF,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS),
∴∠BAE=∠CDF.
【点评】此题主要考查了平行四边形的性质,全等三角形的判定与性质,关键是找到证明△ABE≌△DCF的条件.
22.(8分)某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.
(1)若小王按需购买A、B两种品牌文具套装共用2000元,则各购买多少套?
(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元.设A品牌文具套装买了x包,请求出y与x之间的函数关系式.
【分析】(1)根据题意可以得到相应的二元一次方程组,从而可以解答本题;
(2)根据题意可以得到y与x的函数关系式,本题得以解决.
解:(1)设购买A种品牌的文具x套、B种品牌的文具y套,
解得,,
答:购买A种品牌的文具1000套、B种品牌的文具0套;
(2)由题意可得,
y=500+[20x+25(1000﹣x)]×0.8=﹣4x+20500,
即y与x之间的函数关系式是y=﹣4x+20500.
【点评】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组和函数关系式.
23.(8分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.
(1)求证:BC是⊙O的切线;
(2)若DC=4,AC=6,求圆心O到AD的距离.
【分析】(1)连接OD,求出∠CAD=∠OAD=∠ODA,得出OD∥AC,推出OD⊥BC,根据切线判定推出即可;
(2)根据含30度角的直角三角形性质求出BO,AC,根据勾股定理求出BD、BC,求出CD,根据勾股定理求出AD即可.
(1)证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠OAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
又∵∠C=90°,
∴∠ODB=∠C=90°,
∴OD⊥BC,
∴BC是⊙O的切线.
(2)过O作OF⊥AD于F,
由勾股定理得:AD==2,
∴DF=AD=,
∵∠OFD=∠C=90°,∠ODA=∠CAD,
∴△ACD∽△DFO,
∴,
∴,
∴FO=,
即圆心O到AD的距离是.
【点评】本题考查了切线的判定定理、勾股定理的应用、垂径定理、三角形相似的性质和判定,熟练掌握三角形相似的性质是关键.
24.(10分)“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用
A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调
查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.
【分析】(1)利用频数÷百分比=总数,求得总人数;
(2)根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;
(3)用居民区的总人数×40%即可;
(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.
解:(1)60÷10%=600(人)
答:本次参加抽样调查的居民由600人;
(2)600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%
补全统计图如图所示:
(3)8000×40%=3200(人)
答:该居民区有8000人,估计爱吃D粽的人有3200人.
(4)如图:
P(C粽)=.
【点评】本题主要考查的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的关键.
25.(10分)如图1所示,已知函数y=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0).动点M是y轴正半轴上点B上方的点.动点N在射线AP 上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C.
(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)在(2)的条件下,在平面直角坐标系中是否存在点S,使得以点D、Q、N、S为顶点的四边形为平行四边
形?如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.
【分析】(1)首先连接OP,可得S△PAB=S△PAO=xy;
(2)由四边形BQNC是菱形,AB⊥BQ,C是AQ的中点,易求得△ABQ≌△ANQ(SAS),继而可得S菱形BQNC=2=×CQ×BN,然后设CQ=BQ=x,求得x的值,继而求得答案;
(3)首先由(2),求得点D,Q,N的坐标,然后分别从以QD、DN、QN为对角线去分析求解即可求得答案.
解:(1)如图2,连接OP,
则S△PAB=S△PAO=xy=×6=3;
(2)如图1,∵四边形BQNC是菱形,
∴BQ=BC=NQ,∠BQC=∠NQC,
∵AB⊥BQ,C是AQ的中点,
∴BC=CQ=AQ,
∴∠BQC=60°,∠BAQ=30°,
在△ABQ和△ANQ中,
,
∴△ABQ≌△ANQ(SAS),
∴∠BAQ=∠NAQ=30°,
∴∠BAO=30°,
∵S菱形BQNC=2=×CQ×BN,
设CQ=BQ=x,
则BN=2×(x×)=x,
解得:x=2,
∴BQ=2,
∵在Rt△AQB中,∠BAQ=30°,
∴AB=BQ=2,
∵∠BAO=30°,
∴OA=AB=3,
又∵P点在函数y=的图象上,
∴P点坐标为(3,2);
(3)∵在Rt△AOB中,OA=3,∠OAB=30°,
∴AB=OA÷cos30°=2,
∵BC=BQ=2,
∴在Rt△BMQ中,BM=BQ•cos30°=,MQ=BQ•sin30°=1,
∴OM=OB+BM=2,
∴Q的坐标为:(1,2),N的坐标为:(3,2),
在Rt△ABD中,∠BAD=60°,AB==2,
∴AD=2AB=4,
∴点D的坐标为:(3,4),
∴若四边形QNDS是平行四边形,则DS∥QN,DS=QN,则点S的坐标为:(1,4),若四边形QNSD是平行四边形,则DS∥QN,DS=QN,则点S的坐标为:(5,4),
若四边形QSND是平行四边形,则QS∥DN,QS=DN,则点S的坐标为:(1,0).
综上所述:点S的坐标为:(1,4)或(5,4)或(1,0).
【点评】此题属于反比例函数综合题.考查了反比例函数的k几何意义、勾股定理、菱形的性质、平行四边形的性质以及全等三角形的判定与性质.注意掌握分类讨论思想的应用是解此题的关键.
26.(12分)(1)如图①,点E是正方形ABCD边BC上任意一点,过点C作直线CF⊥AE,垂足为点H,直线CF交直线AB于点F,过点E作EG∥AB,交直线AC于点G.则线段AD,EG,BF之间满足的数量关系是AD=EG+BF;
(2)如图②,若点E在边CB的延长线上,其他条件不变,则线段AD,EG,BF之间满足的数量关系是AD=EG﹣BF,证明你的结论;
(3)如图③,在(2)的条件下,若正方形ABCD的边长为4,tan∠F=,将一个45°角的顶点与点A重合,并绕点A旋转,这个角的两边分别交直线EG于M,N两点.当EN=2时,求线段GM的长.
【分析】(1)由正方形的性质得出AD=AB=BC,∠ABC=90°,∠ACB=45°,由平行线的性质得出∠CEG=∠ABC=90°,得出△CEG是等腰直角三角形,EG=CE,由AAS 证明△ABE≌△CBF,得出对应边相等BE=BF,即可得出AD=EG+BF;
(2)由正方形的性质得出AD=AB=BC,∠ABC=90°,∠ACB=45°,由平行线的性质
得出∠CEG=∠ABC=90°,得出△CEG是等腰直角三角形,EG=CE,由AAS证明△ABE≌△CBF,得出BE=BF,即可得出AD=EG﹣BF;
(3)过A作AP⊥EG于P,过M作MQ⊥AG于Q,则四边形ABEP为矩形,得出AB=PE,AP=BE,由正方形的性质得出AB=BC=AD=PE=4,由三角函数得出BE=BF=AP=6,得出PN=2,证明△AQM∽△APN,得出对应边成比例,AQ=3QM,由勾股定理求出AG,证明△AGP∽△GMQ,得出对应边成比例,GM=QM,设GM=x,由勾股定理得出方程,解方程即可.
解:(1)AD=EG+BF,理由如下:
∵四边形ABCD是正方形,
∴AD=AB=BC,∠ABC=90°,∠ACB=45°,
∵EG∥AB,
∴∠CEG=∠ABC=90°,
∴△CEG是等腰直角三角形,
∴EG=CE,
∵CF⊥AE,垂足为点H,
∴∠CHE=∠CBF=90°,
∴∠F=∠CEH,
∵∠CEH=∠AEB,
∴∠F=∠AEB,
在△ABE和△CBF中,
,
∴△ABE≌△CBF(AAS),
∴BE=BF,
∴BC=EC+BE=EG+BF,
∴AD=EG+BF;
故答案为:AD=EG+BF;
(2)AD=EG﹣FB,理由如下:
∵四边形ABCD是正方形,
∴AD=AB=BC,∠ABC=90°,∠ACB=45°,
∵EG∥AB,
∴∠CEG=∠ABC=90°,
∴△CEG是等腰直角三角形,
∴EG=CE,
∵CF⊥AE,垂足为点H,
∴∠FHA=∠FBC=∠ABE=90°,
∴∠FAH=∠BCF,
∵∠FAH=∠BAE,
∴∠BCF=∠BAE,
在△ABE和△CBF中,
,
∴△ABE≌△CBF(AAS),
∴BE=BF,EG=CE=BE+BC=BF+AD,
∴AD=EG﹣BF;
故答案为:AD=EG﹣BF;
(3)过A作AP⊥EG于P,过M作MQ⊥AG于Q,如图所示:则四边形ABEP为矩形,
∴AB=PE,AP=BE,
∵正方形ABCD的边长为4,
∴AB=BC=AD=PE=4,
∵tan∠F==,
∴BF==6,
∴BE=BF=AP=6,
∵EN=2,
∴PN=2,
∵∠PAQ=∠MAN=45°,
∴∠MAQ=∠NAP,。