2020高考数学刷题首秧第一章集合与常用逻辑用语考点测试1集合文含解析
2020届高考数学一轮复习第一章集合与常用逻辑用语1.1集合教师用书文(PDF,含解析)
07 命题趋势 1.高考对集合的考查比较稳定,考查内容、
频率、题型、难度均变化不大. 2.适当关注 集 合 与 充 分、 必 要 条 件 相 结 合
的命题方 式; 适 当 了 解 命 题 及 其 真 假 判 定问题,在 不 同 背 景 下 抽 象 出 数 学 本 质 的方法值得关注.
������������������������������������������������������������������������������������������������������������������������������������������������������������������
( 自然数集)
符号
N
正整数集 N∗ 或 N+
整数集 有理数集 实数集
Z
Q
R
注意 1.集合中元素互异性的应用:(1) 利用集合中元素的 互异性找到解题的切入点;(2) 在解答完毕时,注意检查集合中 的元素是否满足互异性,以确保答案正确.
2.N 为自然数集( 即非负整数集),包含 0,而 N∗ 或 N+ 表示 正整数集,不包含 0.
或第二题,难度不大,分值为 5 分. 2.常用逻辑用语偶尔出现,难度属容易,分
值为 5 分.
最新真题示例
03 命题特点 1. 集合的 交、 并、 补 运 算 是 高 频 考 点, 元 素
与集合间的关系偶有出现,难度较小. 2.充分、必要条件的判定,命题及其真假判
定,逻辑联结词等内容出现较少,难度以 中等偏下为主,一般是“小综合” 类型.
题常常需要合理利用数轴、Venn 图帮助分析.
对于涉及 A∪B = A 或 A∩B = A 的问题,可利用集合的运算
高中数学第一章集合与常用逻辑用语考点专题训练(带答案)
高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第一章 集合与常用逻辑用语 Word版含解析.doc
第一章 集合与常用逻辑用语第一节 集合题型1 集合的基本概念——暂无题型2 集合间的基本关系——暂无题型3 集合的运算1.(2017江苏01)已知集合{}1,2A =,{}2,3B a a =+,若{}1AB =,则实数a 的值为 . 解析 由题意233a +…,故由{}1A B =,得1a =.故填1.2.(2017天津理1)设集合{}1,2,6A =,{}2,4B =,{}|15C x x =∈-R 剟,则()A B C =( ).A.{}2B.{}1,2,4C.{}1,2,4,6D.{}|15x x ∈-R 剟解析 因为{1,2,6},{2,4}A B ==,所以{1,2,6}{2,4}{1,2,4,6}AB ==, 从而(){1,2,4,6}[1,5]{1,2,4}A BC =-=.故选B .3.(2017北京理1)若集合{}–2<1A x x =<,{}–13B x x x =<>或,则AB =( ). A.{}–2<1x x <- B.{}–2<3x x <C.{}–1<1x x <D.{}1<3x x <解析 画出数轴图如图所示,则{}21A B x x =-<<-.故选A.31-1-2 4.(2017全国1理1)已知集合{}1A x x =<,{}31x B x =<,则( ).A. {}0A B x x =<B. A B =RC. {}1A B x x =>D. A B =∅解析{}1A x x =<,{}{}310x B x x x =<=<,所以{}0AB x x =<,{}1A B x x =<.故选A. 5.2017全国2理2)设集合{}1,2,4A =,{}240B x x x m =-+=.若1A B =,则B =( ).A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 解析 由题意知1x =是方程240x x m -+=的解,代入解得3m =,所以2430x x -+=的解为1x =或3x =,从而{}13B =,.故选C.6.(2017全国3理1)已知集合A ={}22(,)1x y x y +=,{}(,)B x y y x ==,则A B 中元素的个数为( ).A .3B .2C .1D .0 解析 集合A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,如图所示,所以AB 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2.故选B.7.(2017山东理1)设函数y =A ,函数()ln 1y x =-的定义域为B ,则A B =( ).A.()1,2B.(]1,2C.()2,1-D.[)2,1-解析 由240x -…,解得22x -剟,所以[]22A =-,.由10x ->,解得1x <,所以(),1B =-∞.从而{}{}{}=|22|1|21A B x x x x x x -<=-<剟?.故选D. 8.(2017浙江理1)已知集合{}11P x x =-<<,{}02Q x x =<<,那么P Q =( ).A.()1,2-B.()01,C.()1,0-D.()1,2解析 P Q 是取,P Q 集合的所有元素,即12x -<<.故选A .第二节 命题及其关系、充分条件与必要条件题型4 四种命题及真假关系1.(2017山东理3)已知命题:p 0x ∀>,()ln 10x +>;命题:q 若a >b ,则22a b >,下列命题为真命题的是( ).A.p q ∧B.p q ∧⌝C.p q ⌝∧D.p q ⌝∧⌝解析 由011x x >⇒+>,所以ln(1)0x +>恒成立,故p 为真命题;令1a =,2b =-,验证可知,命题q 为假.故选B.题型5 充分条件、必要条件、充要条件的判断1.(2017天津理4)设θ∈R ,则“ππ1212θ-<”是“1sin 2θ<”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 ππ10sin 121262θθθπ-<⇔<<⇒<.但0θ=,1sin 2θ<,不满足ππ1212θ-<,所以“ππ1212θ-<”是“1sin 2θ<”的充分不必要条件.故选A. 2.(2017北京理6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( ).A.充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件解析若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180,则0⋅<m n .若0⋅<m n ,也可能夹角为(90,180⎤⎦,方向并不一定相反,故不一定存在.故选A.3.(2017浙江理6)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件解析 46111466151021S S a d a d a d +=+++=+,5121020S a d =+. 当0d >时,有4652S S S +>,当4652S S S +>时,有0d >.故选C .题型6 充分条件、必要条件中的含参问题——暂无第三节 简单的逻辑联结词、全称量词与存在量词题型7 判断含逻辑联结词的命题的真假——暂无题型8 全(特)称命题——暂无题型9 根据命题真假求参数的范围——暂无。
2020高中数学 第一章 集合与常用逻辑用语 1.1..2 补集及综合应用练习(含解析)第一册
第2课时补集及综合应用知识点补集1.全集在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,全集通常用U表示.2.补集状元随笔全集并不是一个含有任何元素的集合,仅包含所研究问题涉及的所有元素.∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A ⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.[基础自测]1.设全集U=R,集合P={x|-2≤x〈3},则∁U P等于( )A.{x|x〈-2或x≥3}B.{x|x<-2或x〉3}C.{x|x≤-2或x>3} D.{x|x≤-2且x≥3}解析:由P={x|-2≤x〈3}得∁U P={x|x〈-2或x≥3}.答案:A2.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=( )A.{1,2,5,6} B.{1}C.{2}D.{1,2,3,4}解析:∵∁U B={1,5,6},∴A∩(∁U B)={1,2}∩{1,5,6}={1}.答案:B3.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁(A∪B)等于( )UA.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0〈x<1}解析:A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0〈x<1}.故选D。
答案:D4.已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁A)∩B=________.U解析:先计算∁U A,再计算(∁U A)∩B.∵U={2,3,6,8},A={2,3},∴∁U A={6,8}.∴(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}题型一补集的运算[教材P18例5]例1 已知A=(-1,+∞),B=(-∞,2],求∁R A,∁R B.【解析】在数轴上表示出A和B,如图所示.由图可知∁R A=(-∞,-1],∁R B=(2,+∞).教材反思求补集的原则和方法(1)一个基本原则.求给定集合A的补集,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合即为A的补集.(2)两种求解方法:①若所给的集合是有关不等式的集合,则常借助于数轴,把已知集合及全集分别表示在数轴上,然后再根据补集的定义求解,注意端点值的取舍.②若所给的集合是用列举法表示,则用Venn图求解.跟踪训练1 (1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}(2)设全集为R,集合A={x|0〈x〈2},B={x|x≥1},则A∩(∁R B)=( )A。
(精选试题附答案)高中数学第一章集合与常用逻辑用语知识点题库
(名师选题)(精选试题附答案)高中数学第一章集合与常用逻辑用语知识点题库单选题1、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.2、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x >1,x 2≥1”的否定是“∀x >1,x 2<1”,故选:D.3、已知A ={1,x,y },B ={1,x 2,2y },若A =B ,则x −y =( )A .2B .1C .14D .23答案:C分析:由两集合相等,其元素完全一样,则可求出x =0,y =0或x =1,y =0或x =12,y =14,再利用集合中元素的互异性可知x =12,y =14,则可求出答案. 若A =B ,则{x =x 2y =2y 或{x =2y y =x 2 ,解得{x =0y =0 或{x =1y =0 或{x =12y =14, 由集合中元素的互异性,得{x =12y =14 , 则x −y =12−14=14,故选:C .4、集合A ={x ∈N|1≤x <4}的真子集的个数是( )A .16B .8C .7D .4答案:C解析:先用列举法写出集合A ,再写出其真子集即可.解:∵A ={x ∈N|1≤x <4}={1,2,3},∴A ={x ∈N|1≤x <4}的真子集为:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选:C .5、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.6、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.7、已知命题p:∃x∃N,e x<0(e为自然对数的底数),则命题p的否定是()A.∃x∃N,e x<0B.∃x∃N,e x>0C.∃x∃N,e x≥0D.∃x∃N,e x≥0答案:D分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.8、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,则甲是丁的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要答案:A分析:记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,根据题目条件得到集合之间的关系,并推出A D,,所以甲是丁的充分不必要条件.记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,由甲是乙的充分不必要条件得,A B,由乙是丙的充要条件得,B=C,由丁是丙的必要不充分条件得,C D,所以A D,,故甲是丁的充分不必要条件.故选:A.9、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A .{−1,1}B .{−1,0,1}C .{−2,−1,1,2}D .{−2,−1,0,1,2}答案:D分析:根据A ={−1,0,1}求解B ={a +b |a ∈A,b ∈A }即可由题,当a ∈A,b ∈A 时a +b 最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B = {−2,−1,0,1,2}故选:D10、已知集合A ={x |x 2−2x =0 },则下列选项中说法不正确的是( )A .∅⊆AB .−2∈AC .{0,2}⊆AD .A ⊆{y |y <3 }答案:B分析:根据元素与集合的关系判断选项B ,根据集合与集合的关系判断选项A 、C 、D.由题意得,集合A ={0,2}.所以−2∉A ,B 错误;由于空集是任何集合的子集,所以A 正确;因为A ={0,2},所以C 、D 中说法正确.故选:B .填空题11、若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M ={−1,0,13,12,1,2,3,4}的所有非空子集中,具有伙伴关系的集合个数为_________________.答案:15分析:首先确定具有伙伴集合的元素有1,−1,“3和13” ,“2和12”四种可能,它们组成的非空子集的个数为即为所求.因为1∈A ,11=1∈A ;−1∈A ,1−1=−1∈A ;2∈A ,12∈A ;3∈A ,13∈A ;这样所求集合即由1,−1,“3和13” ,“2和12”这“四大”元素所组成的集合的非空子集.所以满足条件的集合的个数为24−1=15,所以答案是:15.12、集合A={﹣1,2,4},B={2,m2},B⊆A,则m=___.答案:±2分析:根据B⊆A,得到集合B的元素都是集合A的元素,进而求出m的值.∵集合A={−1,2,4},B={2,m2},B⊆A,∴m2=4,解得m=±2.所以答案是:±2.13、已知命题p:∀x∈R,x2+x﹣a>0为假命题,则实数a的取值范围是 __.答案:a≥−14分析:根据命题p为假命题,则它的否定¬p是真命题,利用判别式Δ≥0求出实数a的取值范围. 解:因为命题p:∀x∈R,x2+x﹣a>0为假命题,所以它的否定¬p:∃x∈R,x2+x﹣a≤0为真命题,.所以Δ=12﹣4×(﹣a)≥0,解得a≥−14所以答案是:a≥−1414、能够说明“∀x∈N∗,2x≥x2”是假命题的一个x值为__________.答案:3分析:取x=3代入验证即可得到答案.因为x=3∈N∗,而23<32,∴说明“∀x∈N∗,2x≥x2”是假命题.所以答案是:3小提示:本题考查命题与简易逻辑,属于基础题.15、若3∈{m−1,3m,m2−1},则实数m=_______.答案:4或±2分析:分三种情况讨论即得.∵3∈{m−1,3m,m2−1},∴m−1=3,即m=4,此时3m=12,m2−1=15符合题意;3m=3,即m=1,此时m−1=0,m2−1=0,不满足元素的互异性,故舍去;m2−1=3,即m=±2,经检验符合题意;综上,m=4或±2.所以答案是:4或±2.解答题∈N+},B={x|x=2a,a∈A}. 16、已知全集U={1,2,4,6,8},集合A={x∈N+|4x(1)求A∪B;(2)写出∁U(A∩B)的所有非空真子集.答案:(1)A∪B={1,2,4,8}(2){1},{6},{8},{1,6},{1,8},{6,8}分析:(1)根据题意求出集合A,B,然后结合并集的概念即可求出结果;(2)根据集合间的基本运算求出∁U(A∩B),进而根据非空真子集的概念即可求出结果. (1)由题意得A={1,2,4},B={2,4,8},故A∪B={1,2,4,8}.(2)由题意得A∩B={2,4},∁U(A∩B)={1,6,8},故∁U(A∩B)的所有非空真子集为{1},{6},{8},{1,6},{1,8},{6,8}.17、用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.答案:(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}分析:(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)}18、设U=R,A={x|−5<x≤6},B={x|x≤−6或x>2},求:(1)A∩B;(2)(∁U A)∪(∁U B)答案:(1){x|2<x≤6};(2){x|x≤2或x>6}.分析:(1)根据集合交集的概念及运算,即可求解;(2)根据补集的运算,求得∁U A,∁U B,再结合集合并集的运算,即可求解. (1)由题意,集合A={x|−5<x≤6},B={x|x≤−6或x>2},根据集合交集的概念及运算,可得A∩B={x|2<x≤6}.(2)由U=R,A={x|−5<x≤6},B={x|x≤−6或x>2},可得∁U A={x|≤5或x>6},∁U B={x|−6<x≤2},所以(∁U A)∪(∁U B)={x|x≤2或x>6}.19、已知集合A={x|2−a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)“x∈A”是“x∈∁R B”的充分不必要条件,求实数a的取值范围.答案:(1)A∩B={x|−1≤x≤1或4≤x≤5};(2){a|a<1}分析:(1)先求出集合A={x|−1≤x≤5},再求A∩B;(2)先求出∁R B={x|1<x<4},用集合法分类讨论,列不等式,即可求出实数a的取值范围. (1)当a=3时,A={x|−1≤x≤5}.因为B={x|x≤1或x≥4},所以A∩B={x|−1≤x≤1或4≤x≤5};(2)因为B={x|x≤1或x≥4},所以∁R B={x|1<x<4}.因为“x∈A”是“x∈∁R B”的充分不必要条件,所以A∁R B.当A=∅时,符合题意,此时有2+a<2−a,解得:a<0.当A≠∅时,要使A∁R B,只需{2+a≥2−a2+a<42−a>1,解得:0≤a<1综上:a<1.即实数a的取值范围{a|a<1}.。
高中数学必修一第一章集合与常用逻辑用语必练题总结(带答案)
高中数学必修一第一章集合与常用逻辑用语必练题总结单选题1、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D2、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:A.5B.10C.15D.20答案:C分析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x=y+5,因为y max=10,所以x max=10+5=15.故选:C.小提示:关键点点睛:本题考查集合的应用,解题关键是用集合A,B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.3、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.4、命题“∀x<0,x2+ax−1≥0”的否定是()A.∃x≥0,x2+ax−1<0B.∃x≥0,x2+ax−1≥0C.∃x<0,x2+ax−1<0D.∃x<0,x2+ax−1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x<0,x2+ax−1≥0”的否定是“∃x<0,x2+ax−1<0”.故选:C5、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.6、集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.7、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C8、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.多选题9、(多选题)下列各组中M,P表示不同集合的是()A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=x2+1,x∈R},P={x|x=t2+1,t∈R}D.M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}答案:ABD分析:选项A中,M和P的代表元素不同,是不同的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,解出集合M和P.选项D中,M和P的代表元素不同,是不同的集合.选项A中,M是由3,-1两个元素构成的集合,而集合P是由点(3,-1)构成的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,M={y|y=x2+1,x∈R}=[1,+∞),P={x|x=t2+1,t∈R}=[1,+∞),故M=P;选项D中,M是二次函数y=x2-1,x∈R的所有因变量组成的集合,而集合P是二次函数y=x2-1,x∈R图象上所有点组成的集合.故选ABD.10、已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={−1,0,1,2},则()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={−1}D.A∩B的真子集个数是7答案:ACD分析:求出集合A,再由集合的基本运算以及真子集的概念即可求解.A={x|2x+1≥0,x∈Z}={x|x≥−1,x∈Z},B={−1,0,1,2},2A∩B={0,1,2},故A正确;A∪B={x|x≥−1,x∈Z},故B错误;,x∈Z},所以(∁U A)∩B={−1},故C正确;∁U A={x|x<−12由A∩B={0,1,2},则A∩B的真子集个数是23−1=7,故D正确.故选:ACD11、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.填空题12、请写出不等式a>b的一个充分不必要条件___________.答案:a>b+1 (答案不唯一)分析:根据充分不必要条件,找到一个能推出a>b,但是a>b推不出来的条件即可.因为a>b+1能推出a>b,但是a>b不能推出a>b+1,所以a>b+1是不等式a>b的一个充分不必要条件,所以答案是:a>b+1(答案不唯一)13、已知集合A={x|−2≤x≤7},B={x|m+1≤x≤2m−1},若B⊆A,则实数m的取值范围是____________.答案:(−∞,4]分析:分情况讨论:当B=∅或B≠∅,根据集合的包含关系即可求解.当B=∅时,有m+1≥2m−1,则m≤2;当B≠∅时,若B⊆A,如图,则{m+1≥−2, 2m−1≤7,m+1<2m−1,解得2<m≤4.综上,m的取值范围为(−∞,4].所以答案是:(−∞,4]14、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).解答题15、已知集合A={x|−1≤x≤2},B={y|y=ax+3,x∈A},C={y|y=2x+3a,x∈A},(1)若∀y 1∈B ,∀y 2∈C ,总有y 1≤y 2成立,求实数a 的取值范围;(2)若∀y 1∈B ,∃y 2∈C ,使得y 1≤y 2成立,求实数a 的取值范围; 答案:(1)a ≥5;(2)a ≥−14. 分析:(1)设y 1=ax +3,y 2=2x +3a ,由题设可得y 1max ≤y 2min ,建立不等式组,解之可得答案. (2)由题设可得y 1max ≤y 2max ,建立不等式组,解之可得答案.(1)设y 1=ax +3,y 2=2x +3a ,其中−1≤x ≤2, 由题设可得y 1max ≤y 2min ,即y 1max ≤3a −2,故{−a +3≤−2+3a 2a +3≤−2+3a , 解得a ≥5.(2)由题设可得y 1max ≤y 2max ,故{−a +3≤4+3a 2a +3≤4+3a ,解得a ≥−14.。
2020版高考数学一轮复习第1章集合与常用逻辑用语第1讲课后作业理含解析
第1章集合与常用逻辑用语第1讲A组基础关1.设集合P={|0≤≤2},m=3,则下列关系中正确的是( )A.m⊆P B.m P C.m∈P D.m∉P答案 D解析∵3>2,∴m∉P.2.设全集U={1,2,3,4,5,6},集合M={1,4},N={2,3},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)答案 D解析∵U={1,2,3,4,5,6},M={1,4},N={2,3},∴∁U M={2,3,5,6},∁U N={1,4,5,6},∴(∁U M)∩(∁U N)={5,6}.3.(2018·河南洛阳三模)已知集合A={0,1,2},B={1,m}.若B⊆A,则实数m的值是( )A.0 B.2C.0或2 D.0或1或2答案 C解析∵{1,m}⊆{0,1,2},∴m=0或2.4.(2018·甘肃张掖三模)已知集合A={-1,-2,0,1},B={|e<1},则集合A∩B的元素的个数为( )A.1 B.2 C.3 D.4答案 B解析∵B={|e<1}={|<0},∴A∩B={-1,-2},有2个元素.5.(2018·天津高考)设全集为R,集合A={|0<<2},B={|≥1},则A∩(∁R B)=( ) A.{|0<≤1} B.{|0<<1}C.{|1≤<2} D.{|0<<2}答案 B解析因为集合B={|≥1},所以∁R B={|<1},所以A∩(∁R B)={|0<<1}.6.设集合A={(,y)|+y=1},B={(,y)|-y=3},则满足M⊆(A∩B)的集合M的个数是( )A .0B .1C .2D .3 答案 C解析 由⎩⎨⎧ x +y =1,x -y =3,得⎩⎨⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2,-1)}.7.(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={|2-4+m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5} 答案 C解析 ∵A ∩B ={1},∴1∈B .∴1-4+m =0,即m =3. ∴B ={|2-4+3=0}={1,3}.故选C.8.已知集合A ={a ,b,2},B ={2,b 2,2a },且A ∩B =A ∪B ,则a =________. 答案 0或14解析 因为A ∩B =A ∪B ,所以A =B ,则⎩⎨⎧ a =2a ,b =b 2或⎩⎨⎧a =b 2,b =2a ,解得a =0或a =14,所以a 的值为0或14.9.设A ,B 是非空集合,定义A ⊗B ={|∈(A ∪B )且∉(A ∩B )}.已知集合A ={|0<<2},B ={y |y ≥0},则A ⊗B =________.答案 {0}∪[2,+∞)解析 由已知A ={|0<<2},B ={y |y ≥0},又由新定义A ⊗B ={|∈(A ∪B )且∉(A ∩B )},结合数轴得A ⊗B ={0}∪[2,+∞).10.已知集合A ={|2--2<0},B ={y |y =e ,<ln 3},则A ∪B =________. 答案 (-1,3)解析 由2--2<0得-1<<2, ∴A ={|-1<<2},∵y =e 在(-∞,ln 3)上为增函数, ∴当<ln 3时,y =e<e ln 3=3,∴B ={y |0<y <3}, ∴A ∪B =(-1,3).B 组 能力关1.(2018·河北邯郸一模)设全集U =(-3,+∞),集合A ={|1<4-2≤2},则∁U A =( )A .(-3,2)∪[3,+∞)B .(-2,2)∪[3,+∞)C .(-3,2]∪(3,+∞)D .[-2,2]∪(3,+∞) 答案 B解析 由⎩⎨⎧4-x 2>1,4-x 2≤2,得⎩⎪⎨⎪⎧-3<x <3,x ≤-2或x ≥ 2,A ={|-3<≤-2或2≤<3}.又∵U =(-3,+∞),∴∁U A =(-2,2)∪[3,+∞).2.设全集U =R ,A ={|2-2≤0},B ={y |y =cos ,∈R },则图中阴影部分表示的区间是( )A .[0,1]B .(-∞,-1]∪[2,+∞)C .[-1,2]D .(-∞,-1)∪(2,+∞) 答案 D解析 A ={|2-2≤0}=[0,2],B ={y |y =cos ,∈R }=[-1,1].图中阴影部分表示∁U (A ∪B )=(-∞,-1)∪(2,+∞).3.(2018·合肥质量检测)已知集合A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A解析因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1.4.若∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25 答案 A解析 由题意得,满足题意的伙伴关系的集合由以下元素构成:-1,1,12,2,13,3,其中12和2,13和3必须同时出现.所以具有伙伴关系的集合的个数为24-1=15.5.设集合A ={0,-4},B ={|2+2(a +1)+a 2-1=0,∈R }.若A ∩B =B ,则实数a 的取值范围是________.答案 a ≤-1或a =1 解析 ∵A ∩B =B ,∴B ⊆A . 又∵A ={0,-4},∴B 的可能情况有∅,{-4},{0},{-4,0}. (1)若B =∅,则Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.(2)若B ={-4},则a ∈∅. (3)若B ={0},则a =-1. (4)若B ={-4,0},则a =1. 综上知,a ≤-1或a =1.6.(2019·重庆八中月考)定义集合A ,若对于任意a ,b ∈A ,有a +b ∈A 且a -b ∈A ,则称集合A为闭集合.给出如下三个结构:①集合A={-4,-2,0,2,4}为闭集合;②集合B={n|n=3,∈}为闭集合;③若集合A1,A2为闭集合,则A1∪A2为闭集合.其中正确结论的序号是________.答案②解析①中,-4+(-2)=-6不属于A,所以①不正确;②中,设n1,n2∈B,n1=31,n2=32,1,2∈,则n1+n2∈B,n1-n2∈B,所以②正确;对于③,令A1={n|n=5,∈},A2={n|n=2,∈},则A1,A2为闭集合,但A1∪A2不是闭集合,所以③不正确.。
【高考调研】2020届高考数学总复习 第一章 集合与常用逻辑用语配套单元测试(含解析)理 新人教A版
第一章 单元测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩∁N B 等于 ( )A .{1,5,7}B .{3,5,7}C .{1,3,9}D .{1,2,3}答案 A解析 即在A 中把B 中有的元素去掉.2.已知全集U =R ,设集合A ={x |y =ln(2x -1)},集合B ={y |y =sin(x -1)},则(∁UA )∩B 为( )A .(12,+∞)B .(0,12]C .[-1,12]D .∅答案 C解析 如图,阴影部分表示集合(∁U A )∩B ,而集合A ={x |x >12},∁U A ={x |x ≤12}.B ={y |-1≤y ≤1},所以(∁U A )∩B ={x |x ≤12}∩{y |-1≤y ≤1}={x |-1≤x ≤12}.3.已知∁Z A ={x ∈Z |x <6},∁Z B ={x ∈Z |x ≤2},则A 与B 的关系是 ( ) A .A ⊆B B .A ⊇B C .A =BD .∁Z A ∁Z B4.已知集合A 为数集,则“A ∩{0,1}={0}”是“A ={0}”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 ∵“A ∩{0,1}={0}”得不出“A ={0}”,而“A ={0}”能得出“A ∩{0,1}={0}”,∴“A ∩{0,1}={0}”是“A ={0}”的必要不充分条件.5.已知命题p :∀x ∈R ,x 2-2x +1>0;命题q :∃x ∈R ,sin x =1.则下列判断正确的是( )A .綈q 是假命题B .q 是假命题C .綈p 是假命题D .p 是真命题答案 A解析 由题意可知,p 假q 真. 6.已知集合A ={x |y =x +1x -2},B ={x |x >a },则下列关系不可能成立的是( )A .A ⊆B B .B ⊆AC .A BD .A ⊆∁R B答案 D解析 由⎩⎪⎨⎪⎧x +1≥0,x -2≠0可得A =[-1,2)∪(2,+∞),前三个选项都有可能,对于选项D ,∁R B =(-∞,a ],不可能有A ⊆∁R B .7.设全集U =R ,A ={x |x 2-5x -6>0},B ={x ||x -5|<a }(a 为常数)且11∈B ,则 A .∁U A ∪B =R B .A ∪∁U B =R C .∁U A ∪∁U B =R D .A ∪B =R答案 D解析 A ={}x |x <-1或x >6,∵11∈B ,∴a >|11-5|=6.又由|x -5|<a ,得5-a <x <5+a ,而5-a <-1,5+a >11.画数轴知选D.8.下列有关命题的说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1<0” D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题解析 A 中原命题的否命题为“若x 2≠1,则x ≠1”,故A 错;在B 中,“x =-1”是“x 2-5x -6=0”的充分不必要条件,故B 错;C 中命题的否定应为“∀x ∈R ,x 2+x +1≥0”,故C 错;在D 中,逆否命题与原命题同真假,易知原命题为真,则其逆否命题也为真命题,因此D 正确.9.已知直线l 1:x +ay +1=0,直线l 2:ax +y +2=0,则命题“若a =1或a =-1,则直线l 1与l 2平行”的否命题为( )A .若a ≠1且a ≠-1,则直线l 1与l 2不平行B .若a ≠1或a ≠-1,则直线l 1与l 2不平行C .若a =1或a =-1,则直线l 1与l 2不平行D .若a ≠1或a ≠-1,则直线l 1与l 2平行 答案 A解析 命题“若A ,则B ”的否命题为“若綈A ,则綈B ”,显然“a =1或a =-1”的否定为“a ≠1且a ≠-1”,“直线l 1与l 2平行”的否定为“直线l 1与l 2不平行”,所以选A.10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是 ( ) A .a ≥4 B .a ≤4 C .a ≥5 D .a ≤5答案 C解析 命题“∀x ∈[1,2],x 2-a ≤0”为真命题的充要条件是a ≥4,故其充分不必要条件是实数a 的取值范围是集合[4,+∞)的非空真子集,正确选项为C.二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上) 11.“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的________条件. 答案 充分不必要12.设全集为R ,集合A ={x |1x≤1},则∁R A ________.答案 {x |0≤x <1}解析 A ={x |1x ≤1}={x |1x -1≤0}={x |1-xx≤0}={x |x ≥1或x <0},因此∁R A ={x |0≤x <1}.13.满足条件:M ∪{a ,b }={a ,b ,c }的集合M 的个数是________. 答案 4个14.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.答案 {2,4,6,8}解析 A ∪B ={x ∈N *|lg x <1}={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4}={1,3,5,7,9},∴B ={2,4,6,8}.15.“α≠π3”是“cos α≠12”的________条件.答案 必要不充分16.下列命题中是假命题的是________.①存在α,β∈R ,有tan(α+β)=tan α+tan β ②对任意x >0,有lg 2x +lg x +1>0 ③△ABC 中,A >B 的充要条件是sin A >sin B④对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 ④解析 对于①,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项①是真命题;对于②,注意到lg 2x +lg x +1=(lg x +12)2+34≥34>0,因此选项B 是真命题;对于③,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项③是真命题;对于④,注意到当φ=π2时,y =sin(2x +φ)=cos2x 是偶函数,∴④是假命题.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且A ∪B =A ,求实数m 的值组成的集合.答案 {0,-12,-13}解析 A ={x |x 2-5x +6=0}={2,3},A ∪B =A ,∴B ⊆A . ①当m =0时,B =∅,B ⊆A ;②当m ≠0时,由mx +1=0,得x =-1m.∵B ⊆A ,∴-1m∈A .∴-1m =2或-1m =3,得m =-12或-13.∴满足题意的m 的集合为{0,-12,-13}.18.(本小题满分12分)判断下列命题是否是全称命题或特称命题,若是,用符号表示,并判断其真假.(1)有一个实数α,sin 2α+cos 2α≠1;(2)任何一条直线都存在斜率;(3)所有的实数a ,b ,方程ax +b =0恰有唯一的解; (4)存在实数x 0,使得1x 20-x 0+1=2.解析 (1)是特称命题;用符号表示为:∃α∈R ,sin 2α+cos 2α≠1,是一个假命题. (2)是全称命题;用符号表示为:∀直线l ,l 存在斜率,是一个假命题.(3)是全称命题;用符号表示为:∀a ,b ∈R ,方程ax +b =0恰有唯一解,是一个假命题.(4)是特称命题;用符号表示为:∃x 0∈R ,1x 2-x 0+1=2是一个假命题.19.(本小题满分12分)已知命题“∃x ∈R ,|x -a |+|x +1|≤2”是假命题,求实数a 的取值范围.答案 (-∞,-3)∪(1,+∞)解析 依题意知,对任意x ∈R ,都有|x -a |+|x +1|>2;由于|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,因此有|a +1|>2,a +1<-2或a +1>2, 即a <-3或a >1.所以实数a 的取值范围是(-∞,-3)∪(1,+∞). 20.(本小题满分12分)已知集合E ={x ||x -1|≥m },F ={x |10x +6>1}. (1)若m =3,求E ∩F ;(2)若E ∪F =R ,求实数m 的取值范围.解析 (1)当m =3时,E ={x ||x -1|≥3}={x |x ≤-2或x ≥4}, F ={x |10x +6>1}={x |x -4x +6<0}={x |-6<x <4}.∴E ∩F ={x |x ≤-2或x ≥4}∩{x |-6<x <4}={x |-6<x ≤-2}. (2)∵E ={x ||x -1|≥m },①当m ≤0时,E =R ,E ∪F =R ,满足条件. ②当m >0时,E ={x |x ≤1-m 或x ≥1+m }, 由E ∪F =R ,F ={x |-6<x <4}, ∴⎩⎪⎨⎪⎧1-m ≥-6,1+m ≤4,m >0,解得0<m ≤3.综上,实数m 的取值范围为m ≤3.21.(本小题满分12分)已知命题p :A ={x |a -1<x <a +1,x ∈R },命题q :B ={x |x2-4x +3≥0}.(1)若A ∩B =∅,A ∪B =R ,求实数a ; (2)若綈q 是p 的必要条件,求实数a . 答案 (1)a =2 (2)a =2解析 由题意得B ={x |x ≥3或x ≤1}, (1)由A ∩B =∅,A ∪B =R ,可知A =∁R B =(1,3),∴⎩⎪⎨⎪⎧ a +1=3,a -1=1,∴a =2.(2)∵B ={x |x ≥3或x ≤1},∴綈q :{x |1<x <3}. ∴綈q 是p 的必要条件,即p ⇒綈q . ∴A ⊆∁R B =(1,3).∴⎩⎪⎨⎪⎧a +1≤3,a -1≥1,∴2≤a ≤2,∴a =2.22.(本小题满分12分)已知P ={x |x 2-8x -20≤0},S ={x ||x -1|≤m }. (1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件.若存在,求m 的范围; (2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件.若存在,求出m 的范围. 答案 (1)m 不存在 (2)m ≤3 解析 (1)P ={x |-2≤x ≤10},S ={x |1-m ≤x ≤m +1}.若x ∈P 是x ∈S 的充要条件,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴m 不存在.(2)若存在实数m ,使x ∈P 是x ∈S 的必要条件,∴S ⊆P .若m <0,即S =∅时,满足条件.若S ≠∅,应有⎩⎪⎨⎪⎧m +1≥1-m ,1-m ≥-2,m +1≤10,解之得 0≤m ≤3.综之得,m ≤3时,x ∈P 是x ∈S 的必要条件.1.已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}答案 A解析 依题意知A ={0,1},(∁U A )∩B 表示全集U 中不在集合A 中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2},选A.2.下列选项中,p 是q 的必要不充分条件的是 ( )A .p :a +c >b +d ,q :a >b 且c >dB .p :a >1,b >1,q :f (x )=a x-b (a >0,且a ≠1)的图像不过第二象限 C .p :x =1,q :x 2=xD .p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数 答案 A解析 B 选项中,当b =1,a >1时,q 推不出p ,因而p 为q 的充分不必要条件.C 选项中,q 为x =0或1,q 不能够推出p ,因而p 为q 的充分不必要条件.D 选项中,p 、q 可以互推,因而p 为q 的充要条件.故选A.3.设集合P ={x |x 2-x -2≥0},Q ={y |y =12x 2-1,x ∈P },则P ∩Q = ( )A .{m |-1≤m <2}B .{m |-1<m <2}C .{m |m ≥2}D .{-1}答案 C解析 本题考查集合的概念及运算,根据题意知P ={x |x ≥2或x ≤-1},又因为当x∈P 时,y =12x 2-1∈⎣⎢⎡⎭⎪⎫-12,+∞,故Q =⎩⎨⎧⎭⎬⎫ y |y ≥-12,故P ∩Q ={m |m ≥2}. 4.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数.则下列命题中为真命题的是( )A .(綈p )或qB .p 且qC .(綈p )且(綈q )D .(綈p )或(綈q )答案 D解析 由于命题p 是真命题,命题q 是假命题,因此,命题綈q 是真命题,于是(綈p )或(綈q )是真命题.5.如下四个电路图,视“开关甲闭合”为条件甲,“灯泡乙亮”为结论乙,以贴切、形象的诠释甲是乙的必要不充分条件的图形是( )答案 B6.(2012·江西)若全集U ={x ∈R |x 2≤4},则集合A ={x ∈R ||x +1|≤1}的补集∁U A 为 A .{x ∈R |0<x <2} B .{x ∈R |0≤x <2} C .{x ∈R |0<x ≤2} D .{x ∈R |0≤x ≤2}答案 C解析 由已知得,全集U ={x ∈R |-2≤x ≤2},集合A ={x ∈R |-2≤x ≤0},结合数轴得∁U A ={x ∈R |0<x ≤2},故选C 项.7.(2012·陕西)集合M ={x |lg x >0},N ={x |x 2≤4},则M ∩N = ( ) A .(1,2) B .[1,2) C .(1,2] D .[1,2]答案 C解析 因为M ={x |x >1},N ={x |-2≤x ≤2},所以M ∩N ={x |1<x ≤2}=(1,2].故选C 项.8.(2012·福建)下列命题中,真命题是 ( )A .∃x 0∈R ,≤0B .∀x ∈R,2x>x 2C .a +b =0的充要条件是ab=-1 D .a >1,b >1是ab >1的充分条件 答案 D解析 ∵a >1>0,b >1>0,∴由不等式的性质,得ab >1. 即a >1,b >1⇒ab >1.9.(2012·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 l 1与l 2平行的充要条件为a (a +1)=2×1且a ×4≠1×(-1),可解得a =1或a =-2,故a =1是l 1∥l 2的充分不必要条件.10.(2012·安徽)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由面面垂直的性质定理,可得α⊥β,α∩β=m ,b ⊂β,b ⊥m ⇒b ⊥α.又∵a ⊂α,∴a ⊥b ,但反之则不成立.11.已知命题p :“x >3”是“x 2>9”的充要条件,命题q :“a c 2>b c2”是“a >b ”的充要条件,则( )A .“p 或q ”为真B .“p 且q ”为真C .p 真q 假D .p ,q 均为假答案 A解析 由x >3能够得出x 2>9,反之不成立,故命题p 是假命题;由a c 2>b c2能够推出a >b ,反之,因为1c 2>0,所以由a >b 能推出a c 2>bc2成立,故命题q 是真命题.因此选A.12.已知命题p :∃x ∈(-∞,0),2x <3x,命题q :∀x ∈(0,1),log 2x <0,则下列命题为真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧qD .p ∨(綈q )答案 C解析 由指数函数的图像与性质可知,命题p 是假命题,由对数函数的图像与性质可知,命题q 是真命题,则命题“p ∧q ”为假命题,命题“p ∨(綈q )”为假命题,命题“(綈p )∧q ”为真命题,命题“p ∧(綈q )”为假命题,故选C.13.有下列四个命题,其中真命题是( )A .∀n ∈R ,n 2≥nB .∃n ∈R ,∀m ∈R ,m ·n =mC .∀n ∈R ,∃m ∈R ,m 2<nD .∀n ∈R ,n 2<n答案 B解析 对于选项A ,令n =12即可验证其不正确;对于选项C 、选项D ,可令n =-1加以验证,均不正确,故选B.14.设x ,y ∈R ,则“|x |≤4且|y |≤3”是“x 216+y 29≤1”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 画图易知,{(x ,y )||x |≤4且|y |≤3}⊇{(x ,y )| x 216+y 29≤1}. 15.命题“∃x ∈R ,x 2+ax -4a <0”为假命题,是“-16≤a ≤0”的________条件.答案 充要解析 ∵“∃x ∈R ,x 2+ax -4a <0”为假命题,∴“∀x ∈R ,x 2+ax -4a ≥0”为真命题,∴Δ=a 2+16a ≤0,即-16≤a ≤0.故为充要条件.16.已知命题p :α=β是tan α=tan β的充要条件.命题q :∅⊆A .下列命题中为真命题的有________.①p 或q ②p 且q ③綈p ④綈q答案 ①③17.已知集合A ={1,a,5},B ={2,a 2+1}.若A ∩B 有且只有一个元素,则实数a 的值为________.答案 0或-2解析 若a =2,则a 2+1=5,A ∩B ={2,5},不合题意舍去.若a 2+1=1,则a =0,A ∩B ={1}.若a 2+1=5,则a =±2.而a =-2时,A ∩B ={5}.若a 2+1=a ,则a 2-a +1=0无解.∴a=0或a=-2.18.命题“若x2<1,则-1<x<1”的逆否命题是________.答案若x≥1或x≤-1,则x2≥1解析原命题的逆否命题是把条件和结论都否定后,再交换位置,注意“-1<x<1”的否定是“x≥1或x≤-1”.。
2020高考数学刷题首秧第一章集合与常用逻辑用语考点测试1集合文含解析
第一章 集合与常用逻辑用语考点测试1 集合高考概览本考点在高考中是必考知识点,常考题型为选择题,分值5分,低难度考纲研读1.了解集合的含义,体会元素与集合的属于关系2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题3.理解集合之间包含与相等的含义,能识别给定集合的子集4.在具体情境中,了解全集与空集的含义5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集7.能使用韦恩(Venn)图表达集合的关系及运算一、基础小题1.已知集合A={0,1,2},B={y|y=2x,x∈A},则A∩B=( )A.{0,1,2} B.{1,2}C.{1,2,4} D.{1,4}答案 B解析 由题意可知B={1,2,4},所以A∩B={1,2},故选B.2.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( ) A.1 B.2 C.3 D.4答案 B解析 集合M={a1,a2}或{a1,a2,a4},有2个,故选B.3.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是( )答案 B解析 由N={x|x2+x=0},得N={-1,0},则N M.故选B.4.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x-y∈A},则B的子集共有( ) A.2个 B.4个 C.6个 D.8个答案 A解析 由已知B ={(2,1)},所以B 的子集有2个,故选A .5.下列六个关系式:①{a ,b }⊆{b ,a },②{a ,b }={b ,a },③{0}=∅,④0∈{0},⑤∅∈{0},⑥∅⊆{0},其中正确的个数为( )A .6B .5C .4D .3答案 C解析 ①正确,任何集合是其本身的子集.②考查了元素的无序性和集合相等的定义,正确.③错误,{0}是单元素集合,而∅不包含任何元素.④正确,考查了元素与集合的关系.⑤集合与集合的关系是包含关系,错误.⑥正确,∅是任何集合的子集.故选C .6.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},A ∩(∁U B )={3},则B =( )A .{1,2}B .{2,4}C .{1,2,4}D .∅答案 A解析 由∁U (A ∪B )={4},得A ∪B ={1,2,3}.由A ∩(∁U B )={3},得3∈A 且3∉B .现假设1∉B :∵A ∪B ={1,2,3},∴1∈A .又∵1∉A ∩(∁U B )={3},∴1∉∁U B 即1∈B ,矛盾.故1∈B .同理2∈B .7.已知I 为全集,B ∩(∁I A )=B ,则A ∩B =( )A .AB .BC .∁I BD .∅答案 D解析 由B ∩(∁I A )=B 可得B ⊆∁I A .因为A ∩(∁I A )=∅,所以A ∩B =∅.故选D .8.已知集合A =xy =,B ={x |x >a },则下列选项不可能成立的是( )x +1x -2A .A ⊆B B .B ⊆AC .A ∩B ≠∅D .A ⊆∁R B答案 D解析 由Error!得x ≥-1且x ≠2,所以A =[-1,2)∪(2,+∞),又B =(a ,+∞),所以选项A ,B ,C 都有可能成立,对于选项D ,∁R B =(-∞,a ],不可能有A ⊆∁R B .故选D .9.如图,已知全集U =R ,集合A ={x |x <-1或x >4},B ={x |-2≤x ≤3},则图中阴影部分表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x ≤-1}D.{x|-1≤x≤3}答案 D解析 U=R,A={x|x<-1或x>4},所以∁U A={x|-1≤x≤4},则阴影部分表示的集合为B∩(∁U A)={x|-2≤x≤3}∩{x|-1≤x≤4}={x|-1≤x≤3},故选D.10.设集合A=Error!,B={x|1<x≤2},则A∩B=( )A.(1,2) B.(1,2] C.[-1,2] D.[-1,2)答案 A解析 A={x|-1≤x<2},B={x|1<x≤2},∴A∩B={x|1<x<2}.故选A.11.已知A={x|x2-3x+2=0},B={x|ax-2=0},若A∩B=B,则实数a的值为( ) A.0或1或2 B.1或2C.0 D.0或1答案 A解析 由题意A={1,2},当B≠∅时,∵B⊆A,∴B={1}或{2}.当B={1}时,a·1-2=0,解得a=2;当B={2}时,a·2-2=0,解得a=1.当B=∅时,a=0.故a的值为0或1或2.故选A.12.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是( )A.(-∞,2] B.(2,4] C.[2,4] D.(-∞,4]答案 D解析 当B=∅时,有m+1≥2m-1,则m≤2;当B≠∅时,若B⊆A,如图所示,则Error!解得2<m≤4.综上有m≤4,故选D.二、高考小题13.(2018·全国卷Ⅰ)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}答案 A解析 根据集合交集的概念,可以求得A∩B={0,2}.故选A.14.(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2}答案 C解析 因为集合A={x|x≥1},所以A∩B={1,2}.故选C.15.(2018·北京高考)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1} B.{-1,0,1}C.{-2,0,1,2} D.{-1,0,1,2}答案 A解析 化简A={x|-2<x<2},∴A∩B={0,1},故选A.16.(2018·天津高考)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}答案 C解析 由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.17.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅答案 A解析 由3x<1,得x<0,所以B={x|x<0},故A∩B={x|x<0}.故选A.18.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3} B.{1,0} C.{1,3} D.{1,5}答案 C解析 ∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.19.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为( )A.3 B.2 C.1 D.0答案 B解析 集合A表示以原点O为圆心,以1为半径的圆上的所有点的集合,集合B表示直线y=x上的所有点的集合.由图形可知,直线与圆有两个交点,所以A∩B中元素的个数为2.故选B.20.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A .9B .8C .5D .4答案 A解析 ∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1,当x =-1时,y =-1,0,1;当x =0时,y =-1,0,1;当x =1时,y =-1,0,1,所以A 中元素共有9个,故选A .三、模拟小题21.(2018·广东华南师大附中测试三)已知集合A ={-1,0},B ={0,1},则集合∁A ∪B (A ∩B )=( )A .∅B .{0}C .{-1,1}D .{-1,0,1}答案 C解析 A ∪B ={-1,0,1},A ∩B ={0},则∁A ∪B (A ∩B )={-1,1},故选C .22.(2018·湖北联考二)已知集合A =x ∈Z ≤0,B ={y |y =x 2,x ∈A },则集合B x -2x +2的子集的个数为( )A .7B .8C .15D .16答案 B解析 由题意得集合A ={-1,0,1,2},则集合B ={0,1,4},所以集合B 的子集的个数为23=8,故选B .23.(2018·广东三校联考)设集合M ={x |x 2=10x },N ={x |lgx <1},则M ∪N =( )A .(-∞,10]B .(0,10]C .[0,10)D .[0,10]答案 D解析 因为M ={x |x 2=10x }={0,10},N ={x |lg x <1}={x |0<x <10},所以M ∪N ={x |0≤x ≤10},故选D .24.(2018·山西、内蒙六校联考四)设集合A ={x |x 2-x -6<0},则满足A ∩B =B 的集合B 不可能为( )A .{0,1}B .(0,3)C .(-2,2)D .(-3,1)答案 D解析 因为A ={x |x 2-x -6<0}={x |-2<x <3},又A ∩B =B ,所以B ⊆A ,所以集合B 不可能为(-3,1),故选D .25.(2018·江西赣州摸底)已知集合A={x|x2-x>0},B={x|log2x<0},则( )A.A∩B={x|x<0} B.A∪B=RC.A∩B=∅ D.A∪B={x|x>1}答案 C解析 由于集合A={x|x2-x>0}={x|x<0或x>1},B={x|log2x<0}={x|0<x<1},则A∩B=∅,故选C.26.(2018·湖北八校3月联考)设集合P={3,log3a},Q={a,b},若P∩Q={0},则P∪Q=( )A.{3,0} B.{3,0,2}C.{3,0,1} D.{3,0,1,2}答案 C解析 因为P∩Q={0},所以log3a=0,所以a=1,b=0,所以P∪Q={0,1,3},故选C.27.(2018·长沙雅礼、河南实验联考)设集合A={(x,y)|x2+y2=1},B={(x,y)|y=3x},则A∩B的子集的个数是( )A.4 B.3 C.2 D.1答案 A解析 因为指数函数y=3x的图象与圆x2+y2=1有两个交点,则A∩B中含有2个元素,所以A∩B有4个子集,故选A.28.(2018·山东太原二模)设U为全集,集合A,B,C满足A⊆C,B⊆∁U C,则下列结论中不成立的是( )A.A∩B=∅ B.B⊆(∁U A)C.(∁U B)∩A=A D.A∪(∁U B)=U答案 D解析 用Venn图表示出全集U,集合A,B,C的关系如图,由图可得选项A,B,C都正确,又A⊆∁U B,则A∪(∁U B)=∁U B,D错误,故选D.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2018·山东聊城月考)已知R 为全集,A ={x |log (3-x )≥-2},B =Error!.12(1)求A ∩B ;(2)求(∁R A )∩B 与(∁R A )∪B .解 (1)由log (3-x )≥-2,即log (3-x )≥log 4,121212得Error!解得-1≤x <3,即A ={x |-1≤x <3}.由≥1,得≤0,解得-2<x ≤3,5x +2x -3x +2即B ={x |-2<x ≤3},∴A ∩B ={x |-1≤x <3}.(2)由(1)得∁R A ={x |x <-1或x ≥3},故(∁R A )∩B ={x |-2<x <-1或x =3},(∁R A )∪B =R .2.(2019·云南师大附中月考)设集合A =x ≤2x ≤4,B ={x |x 2+(b -a )x -ab ≤0}.12(1)若A =B 且a +b <0,求实数a ,b 的值;(2)若B 是A 的子集,且a +b =2,求实数b 的取值范围.解 (1)A =x ≤2x ≤4={x |-1≤x ≤2},12∵a +b <0,∴a <-b ,∴B ={x |(x -a )(x +b )≤0}={x |a ≤x ≤-b },∵A =B ,∴a =-1,b =-2.(2)∵a +b =2,∴B ={-b ≤x ≤2-b },∵B 是A 的子集,∴-b ≥-1且2-b ≤2,解得0≤b ≤1.。
2020届山东省新高考高三优质数学试卷分项解析 专题01 集合,常用逻辑用语(解析版)
专题1 集合,常用逻辑用语1.集合的运算.高考对集合基本运算的考查,集合由描述法呈现,转向由离散元素呈现.解决这类问题的关键在于正确理解集合中元素所具有属性的,明确集合中含有的元素,进一步进行交、并、补等运算.常见选择题.2. 充要条件.高考对命题及其关系和充分条件、必要条件的考查,主要命题形式是选择题.由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要集中在以函数、方程、不等式、立体几何线面关系、数列等为背景的充分条件和必要条件的判定.3.关于存在性命题与全称命题,一般考查命题的否定. 预测2020年将保持稳定,必考且难度不会太大.一、单选题1.(2020届山东省潍坊市高三上期中)已知集合{}220A x x x =-≥,{}03B x x =<<,则A B =I ( )A .()1,3-B .(]0,2C .[)2,3D .()2,3【答案】C 【解析】{|0A x x =≤Q 或2}x ≥,{|03}B x x =<<, [2,3)A B ∴⋂=.故选:C.2.(2020届山东省烟台市高三上期末)命题“2x ,10R x x ∀∈-+>”的否定是( )A .2x ,10R x x ∀∈-+≤B .2x ,10R x x ∀∈-+<C .2000x ,10R x x ∃∈-+≤D .2000x ,10R x x ∃∈-+<【答案】C 【解析】全称命题的否定“20,10x R x x ∃∈-+≤”,故选C.3.(2020届山东省日照市高三上期末联考)若集合 A={﹣2,﹣1,0,1,2},B={x|x 2>1},则 A∩B=( ) A .{x|x <﹣1或x >1}B .{﹣2,2} C .{2}D .{0}【答案】B 【解析】由B 中不等式解得:x >1或x <﹣1,即B={x|x >1或x <﹣1}, ∵A={﹣2,﹣1,0,1,2}, ∴A∩B={﹣2,2}, 故选B .4.(2020届山东省枣庄市高三上学期统考)已知集合{}04A x Z x =∈<<,()(){}120B x x x =+-<,则A B =I ( ) A .()0,2 B .()1,2-C .{}0,1D .{}1【答案】D 【解析】由题意,集合{}{}041,2,3A x Z x =∈<<=, ()(){}{}12012B x x x x x =+-<=-<<, 所以{}1A B ⋂=. 故选D .5.(2020·云南省玉溪第一中学高二期末(理))“1x =”是“2210x x -+=”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 【答案】A 【解析】1x =时,2210x x -+=成立,故是充分的,又当2210x x -+=时,即2(1)0x -=,1x =,故是必要的的,因此是充要条件.故选A .6.(2020届山东省泰安市高三上期末)若全集U =R ,集合2{|16}A x Z x =∈<,{|10}B x x =-≤,则()U A B ⋂=ð( ) A .{|14}x x <„ B .{|14}x x << C .{1,2,3} D .{2,3}【答案】D 【解析】{|44}{3,2,1,0,1,2,3}A x x =∈-<<=---Z , {|1}U B x x =>ð,(){2,3}U A B =I ð.故选:D7.(2020届山东省烟台市高三上期末)已知集合{}2|20A x x x =--≤,{|B x y ==,则A B =U ( )A .{}1|2x x -≤≤B .{}|02x x ≤≤C .{}1|x x ≥-D .{}|0x x ≥【答案】C 【解析】由题,因为220x x --≤,则()()210x x -+≤,解得12x -≤≤,即{}|12A x x =-≤≤; 因为0x ≥,则{}|0B x x =≥, 所以{}|1A B x x ⋃=≥- 故选:C8.(2020届山东省潍坊市高三上期中)m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】//m α,则存在l α⊂有//m l .而由//m n 可得//n l ,从而有//n α.反之则不一定成立,,m n 可能相交,平行或异面.所以//m n 是//n α的充分不必要条件,故选A9.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】必要性:设()sin 1f x a x =+,当0a >时,()[]1,1f x a a ∈-+,所以10a -<,即1a >;当0a <时,()[]1,1f x a a ∈+-,所以10a +<,即1a <-.故1a >或1a <-. 充分性:取02x π=,当1a <-时,0sin 10a x +<成立.答案选A10.(2020届山东省枣庄、滕州市高三上期末)已知集合{|11}A x x =-≤≤,则A N ⋂=( ) A .{1} B .{0,1} C .{}1- D .{0,1}-【答案】B 【解析】由题意{0,1}A N =I . 故选:B.11.(2020届山东省九校高三上学期联考)已知集合{}|21xA x =≤,(){}|lg 1B x y x ==-,则()R A C B =I ( ) A .∅ B .(0,1) C .(,1]-∞ D .(,0]-∞【答案】D 【解析】由题:{|21}{0}xA x x x =≤=≤,(){|lg 1}{|1}B x y x x x ==-=>, {1}RC B x x =≤,()(,0]R A C B =-∞I故选:D12.(2020届山东省日照市高三上期末联考)设,a b r r 是非零向量,则2a b =r r是a a bb =r r rr 成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 【解析】由2a b =v v 可知:a b v v , 方向相同,a b a bvv v v , 表示 a b v v , 方向上的单位向量所以a ba b=v v v v 成立;反之不成立.故选B13.(2020届山东省德州市高三上期末)已知全集U =R ,{}2|9A x x =<,{}|24B x x =-<<,则()R A B I ð等于( )A .{}|32x x -<<-B .{}|34x x <<C .{}|23x x -<<D .{}|32x x -<≤-【答案】D 【解析】{}{}2933A x x x x =<=-<<Q ,{}24B x x =-<<,则{2U B x x =≤-ð或}4x ≥,因此,(){}32R A B x x ⋂=-<≤-ð. 故选:D.14.(2020届山东省滨州市三校高三上学期联考)设集合{2,1,0,1,2}P =--,{}2|20Q x x x =+-<,P Q =I ( )A .{1,0}-B .{1,0,1}-C .{0,1}D .{0,1,2}【答案】C 【解析】{}{}2|20|21Q x x x x x =+-<=-<<,所以P Q =I {0,1}, 故选:C.15.(2020·全国高三专题练习(文))“[]1,2x ∀∈,210ax +≤”为真命题的充分必要条件是( ) A .1a ≤- B .14a -≤ C .2a ≤- D .0a ≤【答案】A 【解析】Q “[]1,2x ∀∈,210ax +≤”为真命题,21a x ∴≤-对任意的[]1,2x ∈恒成立,由于函数21y x=-在区间[]1,2上单调递增,则min 1y =-,1a ∴≤-. 故选:A.16.(2020届山东省滨州市三校高三上学期联考)命题“对任意x ∈R ,都有221x x +<”的否定是( ) A .对任意x ∈R ,都有221x x +> B .对任意x ∈R ,都有221x x +≥ C .存在x ∈R ,使得221x x +> D .存在x ∈R ,使得221x x +≥【答案】D 【解析】命题“对任意x ∈R ,都有221x x +<”的否定是存在x ∈R ,使得221x x +≥. 故选:D.17.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .18.(2020届山东师范大学附中高三月考)已知集合{}2230A x x x =--<,{}22B x x =-<<,若A B =I ( )A .(2,2)-B .(2,1)-C .(1,3)-D .(1,2)-【答案】D 【解析】由(3)(1)0x x -+<得13x -<<,(1,3)A ∴=-,又(2,2)B =-Q ,(1,2)A B ∴=-I , 故选:D.19.(2020届山东师范大学附中高三月考)已知命题:p “,10x x R e x ∃∈--≤”,则命题:p ⌝( )A .,10x x R e x ∀∈-->B .,10x x R e x ∀∉-->C .,10x x R e x ∀∈--≥D .,10x x R e x ∃∈-->【答案】A 【解析】因为命题“,p q ∃”的否定为:,p q ∀⌝,因此命题:p “,10xx R e x ∃∈--≤”的否定为:,10xx R e x ∀∈-->,选A.20.(2020届山东师范大学附中高三月考)函数()log (0,1)a f x x a a =>≠是增函数的一个充分不必要条件是( ) A .102a <<B .01a <<C .1a >D .24a <<【答案】D 【解析】∵1a >时,()log (0,1)a f x x a a =>≠是增函数,∴函数()log (0,1)a f x x a a =>≠是增函数的一个充分不必要条件是(1,)∈+∞a 的一个子集,又(2,4)(1,)⊂+∞,故选:D.21.(2020届山东省潍坊市高三上期末)已知集合{}{}2230,21A x x x B x x x Z =--≤=-≤<∈且,则A B =I ( )A .{}2,1--B .{}1,0-C .{}2,0-D .{}1,1-【答案】B 【解析】2230x x --≤解得:13x -≤≤ ,{}13A x x ∴=-≤≤,{}2,1,0B =--, {}1,0A B ∴=-I .故选:B22.(2020·山东省淄博实验中学高三上期末)已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =I ,则实数a 的取值范围为( )A .(),0-∞B .(],0-∞C .()1,+∞D .[)1,+∞ 【答案】A 【解析】(){}|1001A x x x x =-≤⇒≤≤ (){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A23.(2020届山东省济宁市高三上期末)设集合{|11}M x x =-≤≤,{|124}xN x =<<,则M N =IA .{|10}x x -≤<B .{|01}x x <≤C .{|12}x x ≤<D .{|12}x x -≤<【答案】B 【解析】因为{|11}M x x =-≤≤,{}|124{|02}xN x x x =<<=<<,所以{|01}M N x x ⋂=<≤,故选B.24.(2020届山东省枣庄、滕州市高三上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】∵,x R ∀∈2210ax ax ++>,∴0a =或2440a a a >⎧⎨∆=-<⎩,即0a =或01a <<,∴01a ≤<.∴“01a <<”是“,x R ∀∈2210ax ax ++>”的充分不必要条件. 故选:A.25.(2020届山东省临沂市高三上期末)设集合()(){}160A x x x =-->,{}20B x x =->,则A B =I ( ) A .{}6x x > B .{}12x x <<C .{}1x x <D .{}26x x <<【答案】C【解析】()(){}{1601A x x x x x =-->=<Q 或}6x >,{}{}202B x x x x =->=<,因此,{}1A B x x ⋂=<. 故选:C.26.(2020届山东省潍坊市高三上学期统考)设集合{}|1A x x =<,(){}|30B x x x =-<,则A B =U ( ) A .()1,0- B .()0,1C .()1,3D .()1,3-【答案】D 【解析】集合A ={x||x|<1}={x|﹣1<x <1}, B ={x|x (x ﹣3)<0}={x|0<x <3}, 则A ∪B ={x|﹣1<x <3}=(﹣1,3). 故选:D .27.(2020届山东省滨州市高三上期末)已知{}|13A x x =-≤<,{}0,2,4,6B =,则A B =I ( ) A .{}0,2 B .{}1,0,2-C .{}|02x x ≤≤D .{}1|2x x -≤≤【答案】A 【解析】因为{}|13A x x =-≤<,{}0,2,4,6B =, 所以{}0,2A B =I . 故选:A.28.(2020届山东省临沂市高三上期末)“游客甲在烟台市”是“游客甲在山东省”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】因为烟台是山东省的一个地级市,所以如果甲在烟台市,那么甲必在山东省,反之不成立,故“游客甲在烟台市”是“游客甲在山东省”的充分不必要条件 故选:A .29.(2020届山东实验中学高三上期中)命题:“(),0,34xxx ∀∈-∞≥”的否定为( )A .[)0000,,34xx x ∃∈+∞<B .[)0000,,34xx x ∃∈+∞≤C .()000,0,34xx x ∃∈-∞<D .()000,0,34xxx ∃∈-∞≤【答案】C 【解析】命题“(),0,34xxx ∀∈-∞≥”是全称命题,则命题的否定是特称命题即()000,0,34xxx ∃∈-∞<,故选:C .30.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.31.(2020届山东省济宁市高三上期末)已知A ,B ,C 为不共线的三点,则“AB AC AB AC +=-u u u r u u u r u u u r u u u r”是“ABC∆为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若AB AC AB AC +=-u u u r u u u r u u u r u u u r ,两边平方得到222222AB AC AB AC AB AC AB AC ++⋅=+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,0AB AC ∴⋅=u u u r u u u r ,即AB AC ⊥u u u r u u u r 故ABC ∆为直角三角形,充分性;若ABC ∆为直角三角形,当B Ð或C ∠为直角时,AB AC AB AC +≠-u u u r u u u r u u u r u u u r ,不必要;故选:A32.(2020届山东实验中学高三上期中)设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集个数有A .2B .3C .4D .8【答案】D【解析】 {}2|8150{3,5}A x x x =-+==,因为A B B =I ,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 二、多选题33.(2020届山东省济宁市高三上期末)下列命题中的真命题是( )A .1,20x x R -∀∈>B .()2,10x N x *∀∈->C .00,lg 1x R x ∃∈<D .00,tan 2x R x ∃∈= 【答案】ACD【解析】A. 1,20x x R -∀∈>,根据指数函数值域知A 正确;B. ()2,10x N x *∀∈->,取1x =,计算知()210x -=,B 错误;C. 00,lg 1x R x ∃∈<,取01x =,计算0lg 01x =<,故C 正确;D. 00,tan 2x R x ∃∈=,tan y x =的值域为R ,故D 正确;故选:ACD34.(2020届山东省潍坊市高三上学期统考)下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件;C .若随机变量ξ服从二项分布:414,B ξ⎛⎫~ ⎪⎝⎭,则()1E ξ=; D .22am bm >是a b >的充分不必要条件.【答案】ABCD【解析】A .已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.79,则曲线关于x =1对称,可得P (ξ>4)=1﹣0.79=0.21,P (ξ≤﹣2)=P (ξ>4)=0.21,故A 正确;B .若α∥β,∵直线l ⊥平面α,∴直线l ⊥β,∵m ∥β,∴l ⊥m 成立.若l ⊥m ,当m ∥β时,则l 与β的位置关系不确定,∴无法得到α∥β.∴“α∥β”是“l ⊥m ”的充分不必要条件.故B 对;C .由于随机变量ξ服从二项分布:ξ~B (4,14),则Eξ=4×0.25=1,故C 对; D .“am 2>bm 2”可推出“a >b ”,但“a >b ”推不出“am 2>bm 2”,比如m =0,故D 对;故选:ABCD .35.(2019·山东高三月考)下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件;C .若随机变量ξ服从二项分布:414,B ξ⎛⎫~ ⎪⎝⎭,则()1E ξ=; D .22am bm >是a b >的充分不必要条件.【答案】ABCD【解析】A .已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.79,则曲线关于x =1对称,可得P (ξ>4)=1﹣0.79=0.21,P (ξ≤﹣2)=P (ξ>4)=0.21,故A 正确;B .若α∥β,∵直线l ⊥平面α,∴直线l ⊥β,∵m ∥β,∴l ⊥m 成立.若l ⊥m ,当m ∥β时,则l 与β的位置关系不确定,∴无法得到α∥β.∴“α∥β”是“l ⊥m ”的充分不必要条件.故B 对;C .由于随机变量ξ服从二项分布:ξ~B (4,14),则Eξ=4×0.25=1,故C 对; D .“am 2>bm 2”可推出“a >b ”,但“a >b ”推不出“am 2>bm 2”,比如m =0,故D 对;故选:ABCD .三、填空题36.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________.【答案】1-【解析】由“x R ∃∈,220x x a --<”为假命题,可知,“x R ∀∈,220x x a --≥”为真命题,22a x x ∴≤-恒成立,由二次函数的性质可知,221x x -≥-,则实数1a ≤-,即a 的最大值为1-.故答案为:1-.37.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________. 【答案】10,2⎡⎤⎢⎥⎣⎦【解析】 由题意得,21:01x p x -<-,解得112x <<,所以1:12p x <<,由()()2:2110q x a x a a -+++?,解得1a x a ≤≤+,即:1q a x a ≤≤+,要使得p 是q 的充分不必要条件,则11{12a a +≥≤,解得102a ≤≤,所以实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦. 四、解答题38.(2020届山东省枣庄市高三上学期统考)非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<(Ⅰ)当3a =时,求A B I ;(Ⅱ)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.【答案】(I ){}|38A B x x =<<I ;(Ⅱ)(]1,11,22⎡⎫⎪⎢⎣⎭U【解析】(I )当3a =时,{}2|10160A x x x =-+<()(){}|280x x x =--< {}|28x x =<<;{}2|14330B x x x =-+<()(){}|3110x x x =--<{}|311x x =<<;故{}|38A B x x =<<I .(Ⅱ)()(){}|2310A x x x a =---<⎡⎤⎣⎦.()(){}2|20B x x a x a ⎡⎤=--+<⎣⎦. ∵22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴22a a +>.∴{}2|2B x a x a =<<+.∵q 是p 的必要条件,∴A B ⊆.①当1a =时,312a -=,A =∅,不符合题意;②当1a >时,312a ->,{}|231A x x a =<<-,要使A B ⊆,需要212312a a a a >⎧⎪≤⎨⎪-≤+⎩∴12a <≤.③当1a <时,312a -<,{}|312A x a x =-<<,要使A B ⊆,需要213122a a a a <⎧⎪≤-⎨⎪≤+⎩ ∴112a ≤<.综上所述,实数a 的范围是(]1,11,22⎡⎫⎪⎢⎣⎭U .。
高中数学必修一第一章集合与常用逻辑用语近年高考文科真题汇总习题(含答案)
15.(2019 天津文 1)设集合 A 1,1, 2,3,5 , B 2,3, 4 , C {x R |1 x 3},
则(AC) B ( )
A.{2}
B.{2,3}
C.{-1,2,3}
D.{1,2,3,4}
16.(2020 全国 I 文 1)已知集合 A x|x2 3x 4 0 , B 4,1,3,5 ,则 A B
A.0,1
B.1, 0,1
C.2, 0,1, 2
D.1, 0,1, 2
7.(2019 江苏 1)已知集合 A {1, 0,1, 6}, B {x | x 0, x R},则 A B .
8.(2019 全国Ⅱ文 1)已知集合 A={x | x 1}, B {x | x 2} ,则 A∩B=( )
第二节 命题及其关系、充分条件与必要条件 题组 2 充分条件、必要条件的判断
1 1.(2018 上海 14)已知 a R ,则“ a 1”是“ 1 ”的( )
a
A.充分非必要条件 C.充要条件
B.必要非充分条件 D.既非充分又非必要条件
2.(2019 天津文 3)设 x R ,则“ 0 x 5 ”是“ x 1 1 ”的( )
A.充分而不必要条件 C.充要条件
B.必要而不充分条件 D.既不充分也不必要条件
3.(2018 天津文 3)设 x R ,则“ x3 8 ”是“|x | 2 ” 的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
4.(2018 北京文 4)设 a,b,c, d 是非零实数,则“ ad bc ”是“ a,b,c, d 成等比数列”的( )
A. {x |1 x 2}
2020版高考数学大一轮复习 第一章集合与常用逻辑用语 课时达标理含解析
第1讲 集合的概念与运算课时达标一、选择题1.设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4}D .{1,3,4}A 解析 依题意得A ∪B ={1,2,3,4}.故选A.2.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32 B .A ∩B =∅C .A ∪B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32 D .A ∪B =R A 解析 由A ={x |x <2},B =得A ∩B =,A ∪B ={x |x <2}.故选A.3.(2018·全国卷Ⅰ)已知集合A ={}x |x 2-x -2>0,则∁R A =( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}B 解析 由x 2-x -2>0得A ={x |x <-1或x >2},所以∁R A ={x |-1≤x ≤2}.故选B. 4.(2018·天津卷)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( )A .{x |0<x ≤1}B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2}B 解析 由B ={x |x ≥1}得∁R B ={x |x <1},又A ={x |0<x <2},故A ∩(∁R B )={x |0<x <1}.5.若全集U =R ,集合A ={x |x 2-5x -6<0},B ={x |2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}C 解析 A ={x |-1<x <6},B ={x |x <0},阴影表示数字集合A ∩(∁U B ),而∁U B ={x |x ≥0},所以A ∩(∁U B )={x |0≤x <6}.故选C.6.(2019·烟台调研)已知集合M =⎩⎨⎧⎭⎬⎫x |x =k π4+π4,k ∈Z ,集合N =⎩⎨⎧⎭⎬⎫x |x =k π8-π4,k ∈Z ,则( )A .M ∩N =∅B .M ⊆NC .N ⊆MD .M ∪N =MB 解析 由题意可知,M ==x ⎪⎪⎪⎭⎬⎫x =2n π8-π4,n ∈Z ,N=x ⎪⎪⎪⎭⎬⎫x =2k π8-π4或x =k -8π-π4,k ∈Z ,所以M ⊆N ,故选B.二、填空题7.设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-12<x <12,N ={x |x 2≤x },则M ∩N =________.解析 因为N =[0,1],所以M ∩N =⎣⎢⎡⎭⎪⎫0,12.答案 ⎣⎢⎡⎭⎪⎫0,12 8.若{3,4,m 2-3m -1}∩{2m ,-3}={-3},则m =________.解析 由集合中元素的互异性可得⎩⎪⎨⎪⎧m 2-3m -1=-3,2m ≠-3,2m ≠3,2m ≠4,所以m =1.答案 19.已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为________.解析 由x 2-2x -3≤0得-1≤x ≤3,x ∈N ,所以A ={0,1,2,3},而A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B }={1,2,3,4,5,6},所以数字之和为21.答案 21 三、解答题10.已知全集为R ,集合A ={x |x ≥2或x <0},B ={x |1<x ≤3},求A ∩B ,A ∪B ,∁R A . 解析 根据交集的定义可得A ∩B ={x |2≤x ≤3},根据并集的定义可求得A ∪B ={x |x <0或x >1},因为全集为R ,所以根据补集的定义可求得∁R A ={x |0≤x <2}.11.已知集合P ={x |a +1≤x ≤2a +1},集合Q ={x |-2≤x ≤5}. (1)若a =3,求集合(∁R P )∩Q ; (2)若P ⊆Q ,求实数a 的取值范围.解析 (1)当a =3时,P ={x |4≤x ≤7},所以∁R P ={x |x <4或x >7},所以(∁R P )∩Q ={x |x <4或x >7}∩{x |-2≤x ≤5}={x |-2≤x <4}.(2)①当P =∅时,满足P ⊆Q ,有2a +1<a +1,即a <0; ②当P ≠∅时,满足P ⊆Q ,则应有⎩⎪⎨⎪⎧2a +1≥a +1,2a +1≤5,a +1≥-2,所以0≤a ≤2.综上,实数a 的取值范围为(-∞,2].12.(2019·衡水中学测试)已知集合A ={x ∈R |x 2-ax +b =0},B ={x ∈R |x 2+cx +15=0},A ∩B ={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值;(2)设集合P ={x ∈R |ax 2+bx +c ≤7},求集合P ∩Z .解析 (1)因为A ∩B ={3},所以3∈B ,所以32+c ×3+15=0,解得c =-8,所以B ={x ∈R |x 2-8x +15=0}={3,5}.而A ∩B ={3},A ∪B ={3,5},所以A ={3},方程x 2-ax +b =0有两个相等的实数根都是3,所以a =6,b =9.所以a =b ,b =9,c =-8.(2)由(1)得6x 2+9x -8≤7,所以2x 2+3x -5≤0,P ={x ⎪⎪⎪⎭⎬⎫-52≤x ≤1,所以P ∩Z ={-2,-1,0,1}.13.[选做题]已知k 为合数,且1<k <100,当k 的各数位上的数字之和为质数时,称此质数为k 的“衍生质数”.(1)若k 的“衍生质数”为2,则k =________;(2)设集合A ={P (k )|P (k )为k 的“衍生质数”},B ={k |P (k )为k 的“衍生质数”},则集合A ∪B 中元素的个数是________.解析 (1)依题意设k =10a +b (a ∈N *,b ∈N ),则a +b =2,又a ∈N *,b ∈N ,则a =2,b =0或a =1,b =1,故k =20或k =11(舍去);(2)由(1)知“衍生质数”为2的合数有20,同理可推“衍生质数”为3的合数有12,21,30,“衍生质数”为5的合数有14,32,50,“衍生质数”为7的合数有16,25,34,52,70,“衍生质数”为11的合数有38,56,65,74,92,“衍生质数”为13的合数有49,58,76,85,94,“衍生质数”为17的合数有98,所以集合A 有7个元素,集合B 有23个元素,故集合A ∪B 中有30个元素.答案 (1)20 (2)30第2讲 命题及其关系、充分条件与必要条件课时达标一、选择题1.已知命题p :正数a 的平方不等于0,命题q :若a 不是正数,则它的平方等于0,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定B 解析 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.2.(2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A 解析 由⎪⎪⎪⎪⎪⎪x -12<12得0<x <1,由x 3<1得x <1,而0<x <1⇒x <1,x <1⇒/0<x<1.故选A .3.原命题为“△ABC 中,若cos A <0,则△ABC 为钝角三角形”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )A .真、真、真B .假、假、真C .真、真、假D .真、假、假B 解析 因为cos A <0,0<A <π,则A 必为钝角,△ABC 为钝角三角形,所以原命题为真,从而逆否命题也为真;△ABC 为钝角三角形,可能是B 或C 为钝角,A 为锐角,则cos A >0,所以逆命题为假,从而否命题也为假.故选B .4.(2018·浙江卷)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件A 解析 由立体几何知识知m ⊄α,n ⊂α,m ∥n ⇒m ∥α.但m ∥α时,m 与α内的直线n 可能异面.故选A .5.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≤4 B .a ≥4 C .a ≤5D .a ≥5D 解析 命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充要条件是∀x ∈[1,2],a ≥x2恒成立,即a ≥4.故命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是D 项.6.(2019·北京东城期末)下列四个选项中错误的是( )A .命题“若x ≠1,则x 2-3x +2≠0”的逆否命题是“若x 2-3x +2=0,则x =1” B .存在x 0∈R ,使x 20+2x 0+3=0C .“若α=β,则sin α=sin β”的逆否命题为真命题D .“x >2”是“x 2-3x +2>0”的充分不必要条件B解析对于A项,显然正确;对于B项,因为Δ=4-12<0,所以方程无实根,故B 项错误;对于C项,“若α=β,则sin α=sin β”为真命题,所以其逆否命题也为真命题,故C项正确;对于D项,x2-3x+2>0的解是x>2或x<1,故D项正确.二、填空题7.已知命题p:若a>b>0,则log12a<log12b+1,命题p的原命题、逆命题、否命题、逆否命题中真命题的个数为________.解析因为a>b>0,所以log12a<log12b,所以命题p为真命题,其逆命题为:若log12a<log12b+1,则a>b>0,因为a=2,b=2时,log12a<log12b+1,而a=b,所以逆命题为假命题.根据命题与其逆否命题的真假相同,逆命题与否命题的真假相同知命题p的原命题、逆命题、否命题、逆否命题中只有2个是真命题.答案 28.能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.解析取a=-1,b=-2,c=-3,满足a>b>c,但a+b=-3=c,不满足a+b>c,故原命题为假命题.答案-1,-2,-3(答案不唯一)9.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x ∈A”是“x∈B”的充分条件,则实数a的取值范围为________.解析由x2+x-6<0得A=(-3,2),由x-a>0得B=(a,+∞),若“x∈A”是“x∈B”的充分条件,则A⊆B,则a≤-3.答案(-∞,-3]三、解答题10.写出“若x=2,则x2-5x+6=0”的逆命题、否命题、逆否命题,并判断其真假.解析逆命题:若x2-5x+6=0,则x=2,是假命题;否命题:若x≠2,则x2-5x+6≠0,是假命题;逆否命题:若x2-5x+6≠0,则x≠2,是真命题.11.已知函数f(x)=lg(x2-2x-3)的定义域为集合A,函数g(x)=2x-a(x≤2)的值域为集合B.(1)求集合A,B;(2)已知命题p:m∈A,命题q:m∈B,若¬p是¬q的充分不必要条件,求实数a的取值范围.解析(1)A={x|x2-2x-3>0}={x|(x-3)(x+1)>0}={x|x<-1或x>3},B={y|y =2x-a,x≤2}={y|-a<y≤4-a}.(2)因为¬p 是¬q 的充分不必要条件,所以q 是p 的充分不必要条件,所以B A ,所以4-a <-1或-a ≥3,所以a ≤-3或a >5,即实数a 的取值范围是(-∞,-3]∪(5,+∞).12.已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }. (1)若A ∩B =[1,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围.解析 (1)由题意得A ={x |-1≤x ≤3,x ∈R },B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R },因为A ∩B =[1,3],所以m -3=1,解得m =4.(2)因为p 是¬q 的充分条件,所以A ⊆(∁R B ),因为∁R B ={x |x <m -3或x >m +3,x ∈R ,m ∈R },所以m -3>3或m +3<-1,解得m >6或m <-4,即实数m 的取值范围是(-∞,-4)∪(6,+∞).13.[选做题](2019·商南高中模拟)在△ABC 中,设命题p :a sin B =b sin C =csin A ,命题q :△ABC 是等边三角形,那么命题p 是命题q 的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件A 解析 a sinB =b sinC =c sin A ,即2R sin A sin B =2R sin Bsin C,R 为△ABC 外接圆半径,所以sin A sin C =sin 2B ①;2R sin B sin C =2R sin C sin A,sin A sin B =sin 2C ②.①-②,得(sin C -sin B )(sin A +sin B +sin C )=0,则sin C =sin B ,所以C =B .代入①得C =A ,所以A =B =C ,则△ABC 是等边三角形.当△ABC 为等边三角形时,即A =B =C ,a =b =c 时,a sin B =b sin C =csin A=2R 成立,所以命题p 是命题q 的充要条件.故选A .第3讲 简单的逻辑联结词、全称量词与存在量词课时达标一、选择题1.(2016·浙江卷)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2D 解析 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *,n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,n <x 2”.故选D .2.(2019·北京朝阳期中)已知命题p :∀x ∈R,2x>0;命题q :在曲线y =cos x 上存在斜率为2的切线,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(¬q )是真命题D .(¬p )∧q 是真命题C 解析 易知命题p 是真命题,对于命题q ,y ′=-sin x ,设切点坐标为(x 0,cos x 0),则切线斜率k =-sin x 0≠2,即不存在x 0∈R ,使得-sin x 0=2,所以命题q 为假命题,所以¬q 为真命题,所以p ∧(¬q )是真命题,故C 项正确.3.(2019·忻州二中期末)已知命题p :x >2是x 2>4的充要条件,命题q :若ac 2>b c2,则a >b ,那么( )A .“p ∨q ”为真B .“p ∧q ”为真C .p 真q 假D .p ,q 均为假A 解析 由已知得命题p 是假命题,命题q 是真命题,根据真值表可知A 项正确. 4.已知命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2>0.下列结论正确的是( ) A .命题p ∧q 是真命题 B .命题p ∧(¬q )是假命题 C .命题(¬p )∨q 是真命题 D .命题(¬p )∧(¬q )是假命题D 解析 取x 0=π4,有tan π4=1,故命题p 是真命题;当x =0时,x 2=0,故命题q是假命题.再根据复合命题的真值表,知D 项正确.5.命题p :∀x ∈R ,ax 2+ax +1≥0,若¬p 是真命题,则实数a 的取值范围是( ) A .(0,4] B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)D 解析 命题p 的否定是¬p :∃x ∈R ,ax 2+ax +1<0成立,即不等式ax 2+ax +1<0有解.当a =0时,1<0,不等式无解;当a ≠0时,要使不等式有解,则a 2-4a >0,解得a >4或a <0,综上,a 的取值范围是(-∞,0)∪(4,+∞).故选D .6.(2019·太原模拟)已知命题p :∃x 0∈R ,e x 0-mx 0=0,q :∀x ∈R ,x 2+mx +1≥0,若p ∨(¬q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .[0,2]C .RD .∅B 解析 若p ∨(¬q )为假命题,则p 假q 真.命题p 为假命题时,有0≤m <e ;命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(¬q )为假命题时,m 的取值范围是0≤m ≤2.二、填空题7.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则f (a +b )=________.解析 若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=0.答案 08.(2019·甘肃高台一中第三次检测)设p :∃x ∈⎝ ⎛⎭⎪⎫1,52,使函数g (x )=log 2(tx 2+2x-2)有意义.若¬p 为假命题,则实数t 的取值范围为________.解析 因为命题¬p 为假命题,所以命题p 为真命题.∃x ∈⎝ ⎛⎭⎪⎫1,52,使函数g (x )=log 2(tx 2+2x -2)有意义等价于∃x ∈⎝ ⎛⎭⎪⎫1,52,使tx 2+2x -2>0成立,即∃x ∈⎝ ⎛⎭⎪⎫1,52,使t >2x 2-2x 成立.令h (x )=2x 2-2x ,x ∈⎝ ⎛⎭⎪⎫1,52,则∃x ∈⎝ ⎛⎭⎪⎫1,52,使t >2x 2-2x 成立等价于t >h (x )min .因为h (x )=2x 2-2x =2⎝ ⎛⎭⎪⎫1x -122-12,x ∈⎝ ⎛⎭⎪⎫1,52,所以当1x =12,即x =2时,h (x )min =-12,所以t >-12. 答案 ⎝ ⎛⎭⎪⎫-12,+∞ 9.(2019·黄冈中学期中)下列结论:①若命题p :∃x ∈R ,sin x =-1;命题q :∀x ∈R ,x 2-x +1>0;则命题p ∧(¬q )是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧(¬q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确,所以正确结论的序号为①③.答案 ①③三、解答题10.(2019·岳阳一中月考)已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x ≤1+m (m >0). (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,p ∨q 为真命题,p ∧q 为假命题,求实数x 的取值范围.解析 (1)设使命题p 成立的集合为A ,命题q 成立的集合为B ,则A ={x |-1≤x ≤5},B ={x |1-m ≤x ≤1+m },所以A ⊆B ,所以⎩⎪⎨⎪⎧m >0,1+m ≥5,1-m ≤-1,解得m ≥4.故实数m 的取值范围为[4,+∞).(2)根据条件可知p ,q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧-1≤x ≤5,x >6或x <-4,无解.当p 假q 真时,⎩⎪⎨⎪⎧x >5或x <-1,-4≤x ≤6,解得-4≤x <-1或5<x ≤6.故实数x 的取值范围为[-4,-1)∪(5,6].11.(2019·忻州二中期中)已知a >0,命题p :函数f (x )=ax 2-4x 在(-∞,2]上单调递减;命题q :∀x ∈R,16x 2-16(a -1)x +1≠0.若命题p ∧q 为真命题,求实数a 的取值范围.解析 若p 为真,则对称轴x =--42a =2a 在区间(-∞,2]的右侧,即2a ≥2,所以0<a ≤1.若q 为真,则方程16x 2-16(a -1)x +1=0无实数根.所以Δ=[-16(a -1)]2-4×16<0,所以12<a <32.因为命题p ∧q 为真命题,所以命题p ,q 都为真,所以⎩⎪⎨⎪⎧0<a ≤1,12<a <32,所以12<a ≤1.故实数a 的取值范围为⎝ ⎛⎦⎥⎤12,1. 12.已知命题p :∃x ∈[0,2],log 2(x +2)<2m ;命题q :关于x 的方程3x 2-2x +m 2=0有两个相异实数根.(1)若(¬p )∧q 为真命题,求实数m 的取值范围;(2)若p ∨q 为真命题,p ∧q 为假命题,求实数m 的取值范围.解析 令f (x )=log 2(x +2),则f (x )在(-2,+∞)上是增函数,故当x ∈[0,2]时,f (x )最小值为f (0)=1,故若p 为真,则2m >1,m >12;对于q :Δ=4-12m 2>0,即m 2<13时,方程3x 2-2x +m 2=0有两相异实数根,所以-33<m <33.(1)若(¬p )∧q 为真,则实数m 满足⎩⎪⎨⎪⎧m ≤12,-33<m <33,故-33<m ≤12,即实数m 的取值范围为⎝ ⎛⎦⎥⎤-33,12. (2)若p ∨q 为真命题,p ∧q 为假命题,则p ,q 一真一假,若p 真q 假,则实数m 满足⎩⎪⎨⎪⎧m >12,m ≤-33或m ≥33,即m ≥33;若p 假q 真,则实数m 满足⎩⎪⎨⎪⎧m ≤12,-33<m <33,即-33<m ≤12.综上所述,实数m 的取值范围为⎝ ⎛⎦⎥⎤-33,12∪⎣⎢⎡⎭⎪⎫33,+∞. 13.[选做题]命题p :f (x )=-x 2+2ax +1-a 在x ∈[0,1]时的最大值不超过2,命题q :正数x ,y 满足x +2y =8,且a ≤2x +1y恒成立,若p ∨(¬q )为假命题,求实数a 的取值范围.解析 当a ≤0时,f (x )max =f (0)=1-a ≤2,解得-1≤a ≤0; 当0<a <1时,f (x )max =f (a )=a 2-a +1≤2,解得0<a <1; 当a ≥1时,f (x )max =f (1)=a ≤2,解得1≤a ≤2. 所以使命题p 为真的a 的取值范围是[-1,2]. 由x +2y =8得x 8+y4=1,又x ,y 都是正数,所以2x+1y =⎝ ⎛⎭⎪⎫2x +1y ⎝ ⎛⎭⎪⎫x 8+y 4=12+⎝ ⎛⎭⎪⎫x 8y +y 2x ≥12+2x 8y ·y2x=1,当且仅当⎩⎪⎨⎪⎧x 8y =y 2x ,x +2y =8,即⎩⎪⎨⎪⎧x =4,y =2时,等号成立,故⎝ ⎛⎭⎪⎫2x +1y min =1.因为a ≤2x +1y恒成立,所以a ≤1,所以使命题q 为真的a 的取值范围是(-∞,1].因为p ∨(¬q )为假命题,所以p 假q 真,所以⎩⎪⎨⎪⎧a <-1或a >2,a ≤1,则a <-1,故实数a 的取值范围是(-∞,-1).11。
(常考题)人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)(1)
一、选择题1.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( ) A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞2.已知集合()(){}225A x x x =+-<,(){}2log 1,B x x a a N =->∈,若A B =∅,则a 的可能取值组成的集合为( )A .{}0B .{}1C .{}0,1D .*N3.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假状况是( )A .原命题与逆命题均为真命题B .原命题真,逆命题假C .原命题假,逆命题真D .原命题与逆命题均为真命题4.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥5.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,26.已知集合{}1,2,3,4,5A =,且A B A =,则集合B 可以是( )A .{}|21xx >B .{}21x xC .{}2log 1x xD .{}1,2,37.“0a =”是“函数2()sin cos f x x a x =+为奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}9.“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”11.设,a b 是向量,“a a b =+”是“0b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知a ,b R ∈,“1a b +<”是“11a b a b ⎧+<⎪⎨-<⎪⎩”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 14.已知{}210A x x =-=,{}20B x mx =-=,且A B A ⋃=,求实数m 组成的集合为______.15.命题“数列的前n 项和()2*3n S n n n N=+∈”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母n ) 16.方程2210ax x 至少有一个正实数根的充要条件是________;17.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.18.命题“000,1x x R ex ∃∈>+”的否定是______________________.19.给出下列四个命题:⑴“直线a ∥直线b ”的必要不充分条件是“a 平行于b 所在的平面”; ⑵“直线l ⊥平面α”的充要条件是“l 垂直于平面α内的无数条直线”; ⑶“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件; ⑷“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 上面命题中,所有真命题的序号为______.20.已知“x m ≥”是“121x +>”的充分不必要条件,且m Z ∈,则m 的最小值是________.三、解答题21.已知集合{}{}|321,|53A x a x a B x x =-≤≤+=-≤≤,全集U =R . (1)当1a =时,求()UA B ;(2)若A B ⊆,求实数a 的取值范围.22.已知22:|27|3,:430p x q x mx m -<-+<,其中m >0. (1)若m =4且p ∧q 为真,求x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.23.已知命题:p 实数t 满足22540t at a -+<,:q 实数t 满足曲线22126x yt t+=--为双曲线.(1)若1a =,且p ⌝为假,求实数t 的取值范围;(2)若0a >,且q 是p 的充分不必要条件,求实数a 的取值范围. 24.已知命题p :2320x x -+≤,命题q :()222100x x m m -+-≤>(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若4m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围.25.已知命题}{:210p x x -<<,命题{:1q x x a ≤-或}1x a ≥+,若p ⌝是q 的充分不必要条件,求实数a 的取值范围.26.(1)已知直线:3420l x y+=-,求与直线l 平行且到直线l 距离为2的直线方程;(2)若关于x 的不等式2(1)0x a x a -++<的解集是[0,1)的子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立, 所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.2.D解析:D 【分析】解不等式确定集合,A B ,然后由交集的结果确定参数a 的取值范围. 【详解】()(){}{}22533A x x x x x =+-<=-<<,(){}{}2log 1,2,B x x a a N x x a a N =->∈=>+∈,因为AB =∅,所以23a +≥,1a ≥.又a N ∈,∴*a N ∈.故选:D . 【点睛】本题考查由集合交集的结果求参数范围,解题时可先确定两个集合中的元素,然后分析交集的结果得出结论.3.B解析:B 【分析】写出原命题的逆否命题,判断其逆否命题为真,从而得到原命题也为真. 【详解】原命题的逆否命题为:若,a b 中没有一个大于等于1,则2a b +<,等价于“若1,1a b <<,则2a b +<”,显然这个命题是对的,所以原命题正确; 原命题的逆命题为:“若,a b 中至少有一个不小于1,则2a b +≥”,取5,5a b ==-则,a b 中至少有一个不小于1,但0a b +=,所以原命题的逆命题不正确. 【点睛】至少有一个的否定为“0个”,“不小于”等价于“大于等于”,同时注意若原命题的真假性不好判断,而等价于判断其逆否命题.4.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.5.A解析:A 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .6.A解析:A 【分析】 由A B A =可知,A B ⊆,据此逐一考查所给的集合是否满足题意即可. 【详解】由AB A =可知,A B ⊆,对于A :0{|212}x x >=={|0}x x A ⊇>,符合题意.对于B :{}21x x ={|11}x x x <->或,没有元素1,所以不包含A ; 对于C :22{|log 1log 2}x x >=={|2}x x >,不合题意; D 显然不合题意, 本题选择A 选项. 【点睛】本题主要考查集合的表示方法,集合之间的关系等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【分析】先将根据函数2()sin cos f x x a x =+为奇函数求参数0a =,判断前后两个条件相互等价,即可解题. 【详解】解:∵函数2()sin cos f x x a x =+为奇函数, ∴(0)0f =即2sin0cos 00a +=,解得:0a =, ∴ 0a =⇔函数2()sin cos f x x a x =+为奇函数,∴“0a =”是“函数2()sin cos f x x a x =+为奇函数”的充要条件. 故选:C. 【点睛】本题考查根据函数的奇偶性求参数、判断p 是q 的什么条件,是中档题.8.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.9.B解析:B 【分析】根据异面直线的定义及直线与平面平行的定义即可判定. 【详解】因为满足“一条直线l 与平面α内无数条直线异面”这样条件的直线可以和平面相交, 所以推不出“这条直线与平面α平行”,当直线满足与平面α平行时,可以推出这条直线与平面α内无数条直线异面, 所以“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件、必要条件,直线与平面的位置关系,属于中档题.10.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.11.B解析:B 【分析】根据向量的运算性质结合充分条件和必要条件的判定,即可得出答案. 【详解】 当12a b =-时,1122a b b b b a +=-+==,推不出0b =当0b =时,0b =,则0a b a a +=+= 即“a a b =+”是“0b =”的必要不充分条件 故选:B 【点睛】本题主要考查了判断必要不充分条件,属于中档题.12.C解析:C 【分析】由绝对值不等式的基本性质,集合充分必要条件的判定方法,即可求解. 【详解】由题意,a ,b R ∈,1a b +<,可得1a b a b +≤+<且1a b a b -≤+<,所以充分性是成立的;反之11a b a b ⎧+<⎪⎨-<⎪⎩,可得1111a b a b -<+<⎧⎨-<-<⎩,即1a b +<,所以必要性是成立的,综上可得:a ,b R ∈,1a b +<是11a b a b ⎧+<⎪⎨-<⎪⎩成立的充要条件.故选:C . 【点睛】本题主要考查了绝对值不等式的基本性质,以及充分条件、必要条件的判定方法,其中解答中熟练应用绝对值不等式的性质是解答的关键,着重考查了推理与运算能力.二、填空题13.【分析】对分类讨论计算可得【详解】解:因为命题使得不等式是真命题当时恒成立满足条件;当时则解得综上可得即故答案为:【点睛】本题考查全称命题为真求参数的取值范围属于中档题 解析:[]0,4【分析】对m 分类讨论,计算可得. 【详解】解:因为命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题 当0m =时,10≥恒成立,满足条件;当0m ≠时,则2040m m m >⎧⎨-≤⎩解得04m <≤综上可得04m ≤≤即[]0,4m ∈ 故答案为:[]0,4 【点睛】本题考查全称命题为真求参数的取值范围,属于中档题.14.0【分析】根据题意解方程可得结合分析可得进而对分3种情况讨论::①②③分别求出的值综合可得答案【详解】根据题意若则有对分3种情况讨论:①即方程无解分析可得②即方程的解为即解可得③即方程的解为即解可得解析:{2-,0,2} 【分析】根据题意,解方程21x =可得结合A ,分析AB A =,可得B A ⊆,进而对B 分3种情况讨论::①、B =∅,②、{1}B =,③、{1}B =-,分别求出m 的值,综合可得答案. 【详解】根据题意,2{|1}{1A x x ===-,1},若AB A =,则有B A ⊆,对B 分3种情况讨论:①、B =∅,即方程2mx =无解,分析可得0m =, ②、{1}B =,即方程2mx =的解为1x =,即12m ⨯=,解可得2m =, ③、{1}B =-,即方程2mx =的解为1x =-,即(1)2m ⨯-=,解可得2m =-, 综合可得:实数m 的值组成的集合为{2-,0,2}; 故答案为:{2-,0,2}. 【点睛】本题考查集合间的包含关系的运用,注意集合B 可能为空集.15.数列为等差数列且【分析】根据题意设该数列为由数列的前项和公式分析可得数列为等差数列且反之验证可得成立综合即可得答案【详解】根据题意设该数列为若数列的前项和则当时当时当时符合故有数列为等差数列且反之当解析:数列为等差数列且14a =,6d =.【分析】根据题意,设该数列为{}n a ,由数列的前n 项和公式分析可得数列为等差数列且14a =,6d =,反之验证可得23n S n n =+成立,综合即可得答案.【详解】根据题意,设该数列为{}n a ,若数列的前n 项和23n S n n =+,则当1n =时,114a S ==,当2n 时,162n n n a S S n -=-=-, 当1n =时,14a =符合62n a n =-, 故有数列为等差数列且14a =,6d =,反之当数列为等差数列且14a =,6d =时,62n a n =-,21()232n n a a S n n +⨯==+; 故数列的前n 项和23(*)n S n n n N =+∈”成立的充要条件是数列为等差数列且14a =,6d =,故答案为:数列为等差数列且14a =,6d =. 【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.16.【分析】讨论和三种情况计算得到答案【详解】当时方程为满足条件当时方程恒有两个解且两根一正一负满足条件当时即此时两根均为正数满足条件综上所述:故答案为:【点睛】本题考查了充要条件分类讨论是一个常用的方 解析:[)1,a ∈-+∞【分析】讨论0a =,0a >和0a <三种情况,计算得到答案. 【详解】当0a =时,方程为1210,2x x -==满足条件. 当0a >时,2210,440axx a 方程恒有两个解,且1210x x a=-<,两根一正一负,满足条件 当0a <时,2210,4401axx a a ,即01a ,此时,1210x x a=->, 1220x x a+=->,两根均为正数,满足条件 综上所述:1a ≥- 故答案为:[)1,a ∈-+∞ 【点睛】本题考查了充要条件,分类讨论是一个常用的方法,需要同学们熟练掌握.17.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查解析:1a <-或 10a -<<或1a ≥ 【解析】 【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥. 【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<, 又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥, 故答案为:1a <-或 10a -<<或1a ≥. 【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题.18.【解析】因为命题的否定是所以命题的否定是 解析:,1x x R e x ∀∈≤+【解析】因为命题“,p x ∃”的否定是“,p x ∀⌝” 所以命题“000,1x x R ex ∃∈>+”的否定是,1x x R e x ∀∈≤+19.⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断【详解】(1)a 平行于b 所在的平面是直线a ∥直线b 的既不充分也不必要条件;所以(1)错;(2)l 垂直于平面α内的无数条直线是直线l ⊥平面α的必解析:⑶⑷ 【分析】根据线面位置关系以及充要关系概念进行逐一判断. 【详解】(1)“a 平行于b 所在的平面” 是“直线a ∥直线b ”的既不充分也不必要条件;所以(1)错;(2)“l 垂直于平面α内的无数条直线” 是“直线l ⊥平面α”的必要不充分条件;所以(2)错;(3)若“平面α∥平面β”则“α内有无数条直线平行于平面β”,若 “α内有无数条直线平行于平面β”则“平面α,平面β不一定平行”,所以“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件;(4)若“有一条与α平行的直线l 垂直于β”,则α内存在一条直线垂直于β,即“平面α⊥平面β”,所以“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”.综上填(3)(4)【点睛】本题考查线面位置关系以及充要关系,考查基本分析判断能力,属基础题.20.0【分析】根据是的充分不必要条件且即可得出【详解】由是的充分不必要条件且则的最小值是故答案为:【点睛】本题考查了充分不必要条件的判定方法考查了推理能力与计算能力属于基础题解析:0.【分析】1121221x x x +->⇔>⇔>-.根据x m ”是“+121x >”的充分不必要条件,且m Z ∈,即可得出.【详解】由1211x x +>⇒>-,“x m ”是“+121x >”的充分不必要条件,且m Z ∈,0m ∴,则m 的最小值是0.故答案为:0.【点睛】本题考查了充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.三、解答题21.(1){}|52x x -≤<-;(2)4a或21a -≤≤. 【分析】(1)求出集合A 从而求U A ,再与集合B 取交集即可;(2)分A φ=和A φ≠两种情况讨论根据A B ⊆列出不等式(组)求a 的取值范围.【详解】(1)依题意,当1a =时,{}|23A x x =-≤≤,则|2U A x x =<-{或3}x >,又{}|53B x x =-≤≤, 则()|2U A B x x =<-{或{}{}|53|3}52x x x x x -≤≤->=≤<-.(2)若A B ⊆,则有{}{}|321|53x a x a x x -≤≤+⊆-≤≤,于是有: 当A φ=时,A B ⊆显然成立,此时只需321a a ->+,即4a;当A φ≠时,若A B ⊆,则 35221313214a a a a a a a -≥-≥-⎧⎧⎪⎪+≤⇒≤⎨⎨⎪⎪-≤+≥-⎩⎩,所以:21a -≤≤综上所述,a 的取值范围为:4a 或21a -≤≤.【点睛】易错点点睛:在利用集合的包含关系求参数时注意以下两点:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.22.(1)45x <<(2)523m ≤≤ 【分析】(1)分别求解绝对值不等式和一元二次不等式,化简p 与q ,结合p q ∧为真,解不等式组,即可得出x 的取值范围;(2)由p 是q 的充分不必要条件,建立关于m 的不等式组,求解即可得出答案.【详解】(1)由|27|3x -<,解得25x <<由22430x mx m -+<以及0m >,解得3m x m <<当4m =时,q :412x << p q ∧为真,25412x x <<⎧∴⎨<<⎩,解得45x << (2):25,:3p x q m x m <<<<p 是q 的充分不必要条件2350m m m ≤⎧⎪∴≥⎨⎪>⎩,解得523m ≤≤ 当53m =时,5:53q x <<成立 当2m =时,:26q x <<成立 523m ∴≤≤ 【点睛】本题主要考查了根据复合命题的真假求参数的范围以及由充分不必要条件求参数的范围,属于中档题.23.(1)()1,4;(2)322a ≤≤ . 【分析】(1)可知p 为真,解出不等式即可;(2)由题可知命题p 等价于{}|4A t a t a =<<,命题q 等价于{}|26B t t =<<,由q 是p 的充分不必要条件可得集合B 是集合A 的真子集,由此列出不等式即可求解.【详解】解:(1)p ⌝为假,∴p 为真,21,540a t t =∴-+<, 解得()1,4t ∈;(2):p 由22540t at a -+<得()(4)0t a t a --<:q 由实数t 满足曲线22126x y t t+=--为双曲线.得(2)(6)0t t --<解之26t << 由0a >且()(4)0t a t a --<得,4a t a <<设{}|4A t a t a =<<,{}|26B t t =<<,因为q 是p 的充分不必要条件,所以集合B 是集合A 的真子集,故有0246a a a >⎧⎪≤⎨⎪≥⎩,得322a ≤≤. 【点睛】本题考查利用集合的关系判断命题的充分不必要条件,其中涉及一元二次不等式和对双曲线方程的理解,属于基础题.24.(1)1m ≥;(2)[)(]3,12,5-⋃.【分析】(1)先解不等式,再根据充分条件得集合之间包含关系,最后解不等式得结果;(2)根据p q ∨为真命题,p q ∧为假命题,得,p q 一真一假,再分别求对应x 的取值范围.【详解】(1)p :232012x x x -+≤∴≤≤,q :()22210011x x m m m x m -+-≤>∴-≤≤+因为p 是q 的充分条件,所以11112m p q m m -≤⎧⊆∴∴≥⎨+≥⎩; (2)4m =时,q :35x -≤≤因为p q ∨为真命题,p q ∧为假命题,所以,p q 一真一假,1253x x x ≤≤⎧∴⎨><-⎩或或3521x x x -≤≤⎧⎨><⎩或 x ∴∈∅或31x -≤<或25x <≤实数x 的取值范围为[)(]3,12,5-⋃【点睛】本题考查根据充分条件求参数、根据复合命题真假求参数,考查基本分析求解能力,属中档题.25.03a <≤【分析】根据题意,求出p ⌝表示的集合,利用p ⌝是q 的充分不必要条件得到集合间的包含关系,进而得到关于a 的不等式组,解不等式即可.【详解】由题意知,:2p x ⌝≤-或10x ≥,因为p ⌝是q 的充分不必要条件, 所以{2x x ≤-或}10x ≥ {1x x a ≤-或}1x a ≥+, 所以121100311a a a a a -≥-⎧⎪+≤⇒<≤⎨⎪+>-⎩,所以实数a 的取值范围为03a <≤.【点睛】本题考查利用充分不必要条件和集合间的包含关系求参数的取值范围;考查逻辑推理能力和运算求解能力;根据题意,正确得出集合间的包含关系是求解本题的关键;属于中档题. 26.(1)34120x y -+=或3480x y --=;(2)[]0,1【分析】(1)根据两直线平行,设所求直线为340x y c -+=,利用两平行线间的距离公式,求出c 的值,从而得到答案;(2)解一元二次不等式,然后按1a <,1a =,1a >进行分类讨论,得到答案.【详解】(1)设与直线:3420l x y+=-平行的直线方程为340x y c -+=,2=,解得12c =或8c =-,所以所求直线方程为34120x y -+=或3480x y --=.(2)解关于x 的不等式2(1)0x a x a -++<, 可化为()()10x x a --<,①当1a <时候,解集为(),1a ,要使(),1a 是[)0,1的子集,所以0a ≥,所以得到[)0,1a ∈,②当1a =时,解集为∅,满足解集是[)0,1的子集,符合题意,③当1a >时,解集为()1,a ,此时解集不是[)0,1的子集,不符合题意.综上所述,a 的取值范围为[]0,1.【点睛】本题考查根据平行求直线方程,根据平行线间的距离求参数,根据集合的包含关系求参数的范围,属于中档题.。
2020年高考数学(文科)复习第一单元集合与常用逻辑用语作业答案
课时作业(一)1. C [解析]••• A={x|x > 1},B={0,1,2},.・.A Q B={1,2}.2. D [解析]•••集合A={x| 0<x<a,x€ N}中有且只有一个元素,二A={1},二实数a的取值范围为(1,2].3. D [解析]•/ A={x€ N|x -2x < 0}={0,1,2},B={x|- 1< x < 2},「.AQ B={0,1,2},贝U A Q B 的子集个数为2 =8.4. A [解析]J S={1,2,a},T={2,3,4,b},且S Q T={1,2,3},二a=3,b=1,则a-b=3-1=2,故选A5. {1,-1,3}[解析]因为B? A,所以a - 2a=-1 或a - 2a=3,解得a=1 或a=-1 或a=3.6. D [解析]•••集合A={x|x +x- 6>0}={x|x<- 3或x>2},集合B={x|- 1<x<3}, AA U B={x|x<- 3或x>- 1},又Ta € (A U B),结合选项知a可以是3.故选D.7. B [解析]因为A={-1,0,1,2}, B=—所以A U B=- - ,即A U B中元素的个数为6.故选B.8. B [解析]由题知A={x| 0<x<2},B={x|- 2<x<2},可知集合A为集合B的子集,由集合间的关系可知A Q B=AA U B=B.故选B.9. C [解析]由题意得A={x€ Z|x -3x-4< 0}={x€ Z|- 1<x <4}={- 1,0,1,2,3,4},B={x| 0<ln2 3x<2}={x| 1 <x<e }, A A Q B={2,3,4},A A Q B 的真子集的个数为2 -1 =7.10. A [解析]T M=;0,1,2},N=X|X• (x- 2) • log 2x=0}={1,2}, A N 是M的真子集.故选A.11. D [解析]T•集合A={x|x>a },B={x|x -3x+2>0}={x|x< 1 或x>2},A U B=^AA ? B Aa >2, A实数a 的取值范围是[2, +①故选D.12. C [解析]•••集合Q=(x,y)|x € Ry=2),A 集合Q=(x,y)|x € R,y=2x>0}.又T集合P={(x,y)|x € Ry=k}, 且P Q Q=? , Ak< 0.2 2 213. 0 [解析]•/ A={1,3},B={a +2,3},且A U B={1,2,3},Aa +2=2, Aa =0, A a=0,即实数a 的值为0.14. {3,0,1}[解析]因为集合P={3,log 2a},Q=a,b},且P Q Q=0},所以log 2a=0则a=1,所以b=0,因此P={3,0},Q=1,0},则P U Q=3,0,1}.15. D [解析]因为M= - €= 一€,N= - €=——€ 所以N? M.故选D.16. [0,4)[解析]当a=0时,显然成立;2当a^0 时若使A=?,必有a>0,且△ =a-4a<0,可得0<a<4.综上,实数a的取值范围是[0,4).课时作业(二)1. D [解析]因为a=b=0即为a=0且b=0,所以其否定为a丰0或b^ 0,所以所给命题的逆否命题为D.. x -x -x x x -x2. C [解析]如果函数f(x)=m・ 2 +2 为偶函数则f(-x)=f(x),「.m - 2 +2 =m- 2 +2 ,-x x -x x -x x x -x•'•m(2 - 2 )=2 -2 , A (m-1)(2 -2 )=0, A m=, •••"m=T 是"函数f(x)=n r 2+2 为偶函数”的充要条件.故选C23. B [解析]易知命题P是真命题,则其逆否命题也为真命题其逆命题“若x>i,则x>i ”是假命题,则其否命题也是假命题.综上可得,四个命题中真命题的个数为 2.4. 若b€ M则a?M [解析]原命题与其逆否命题为等价命题.5. 充分不必要[解析]当C=时,A二-B,所以sin A=sin -B =cos B充分性成立;当sin A=cos B时,可取A—,B=-,此时sin A=cos B成立,但此时C=,所以必要性不成立.综上知“ C="是“ sin A=cos B” 的充分不必要条件.6. C [解析]由四种命题之间的关系知,s是p的逆命题t的否命题.7. B [解析]设?p为“不到长城” ,?q为“非好汉”,则?p? ?q,则q? p,即“好汉” ?“到长城”,故“到长城”是“好汉”的必要条件.故选B8. D [解析]原命题:已知ab>0,若a>b,则-J,-ab>0,..— >0又a>b, •—>—, •.->-,即-V-,故原命题是真命题,故逆否命题也为真命题.逆命题:已知ab>0,若-v-则a>b,-ab>0,—v—, • b<a艮卩a>b,故逆命题是真命题,故否命题也为真命题.故选D9. A [解析]由△ =a - 4>0得av- 2或a>2,则q:a<- 2或a>2又p:a>2所以p是q的充分不必要条件.故选A10. A [解析]命题的否命题和它的逆命题是等价命题,真假相同.故选A11. B [解析]由lg (x+1)vi可得0<x+1<10,即-1<x<9,结合选项可得,使lg (x+1)<1成立的必要不充分条件是x>-1.12. ③[解析]对于命题①,其原命题和逆否命题为真命题,但逆命题和否命题为假命题;对于命题②,其原命题和逆否命题为假命题,但逆命题和否命题为真命题;对于命题③,其原命题、逆命题、否命题、逆否命题全部为真命题;对于命题④,其原命题、逆命题、否命题、逆否命题全部为假命题.13. -1 [解析]由x2>1,得xv-1或x>1.因为“ x2>1 ”是“ x<a”的必要不充分条件,所以由“ xva”可2 2以推岀“ x>1”,由“X>1”不能推岀“ x<a” ,所以a<-1,即a的最大值为-1.14. ①②④[解析]当n丄a时,“ n丄B” ? “a//B”,所以当n丄a时,“ n丄B”是“ a//B ”的充要条件,故①中说法正确当m? a时,“ mL B” ? “a丄B”,“a丄B "推不岀“ m±B”,所以当m? a时,“ m±B”是“ a丄的充分不必要条件,故②中说法正确当m? a时,“ n// a” ?“ m// n或m与n异面”,“ mil n” ? “n// a或n? a” ,所以当m? a时,“ n// a”是“ m// n”的既不充分也不必要条件,故③中说法错误当m? a时,“n丄a” ? “m丄n” , “mln”推不岀“ n丄a ” ,所以当m? a 时,“ n丄a ”是“ ml n”的充分不必要条件,故④中说法正确,故填①②④.215. A [解析]由x +2x- 3>0,得xv- 3或x>1.由q的一个充分不必要条件是p,即p是q的充分不必要条件,可知q是p的充分不必要条件,故a> 1.故选A16. C [解析]当a>b>0 时,a>b? a2>b2? a|a|>b|b| ;当a,b 是一正一负时,a>b? a>O>b? a|a|> 0>b|b| ;2 2当0>a>b 时,0 >a>b? a <b ? -a|a|<-b|b| ? a|a|>b|b|. 综上可得a>b? a|a|>b|b| ,故选C课时作业(三)1. B [解析]因为全称命题的否定是特称命题,所以命题p:? x € Re x》x+1的否定p为?X Q€R, <X o+1.故选B2. D [解析]因为命题p V q是真命题,所以命题p与命题q中至少有一个命题为真命题,又命题?p是假命题,所以命题p为真命题,故命题q是真命题或假命题.故选D.3. B [解析]p是假命题,q是真命题J (?p)人q是真命题.4. 1 [解析]①由于? x € Rin (x2+1)>ln 1=0,故①为假命题;②若x=4,则x2=2x=16,故②为假命题;③若a =60° ,p =30° ,则sin (a - p )=sin 30° =,sin a -sin p =sin 60 ° - sin 30 ° = -------------- 工-,故③为假命题;④若q是?p成立的必要不充分条件,则p是?q成立的必要不充分条件,则?q是p成立的充分不必要条件,故④为真命题.故真命题的个数为1.5. 若ab=0,则a^ 0且b丰0 [解析]一般命题的否定,只需要否定结论,并且结论为“ p或q”形式,其否定为“ ?p且?q”形式.6. A [解析]由指数函数y=2x的值域知,命题p为真命题.因为“ x>1 ”是“ x>2”的必要不充分条件,所以命题q为假命题,所以q为真命题,p A (?q)为真命题.故选A.7. A [解析]对于A若p V q为真命题则p,q至少有一个为真命题,若p A q为真命题,则p,q都为真命题,则“p V q为真命题”是“ p A q为真命题”的必要不充分条件,故A中说法正确;对于B根据向量数量积,向量a,b满足a • b>0时,a与b的夹角为锐角或a与b同向做B中说法错误;对于C如果m=0,2 的定义则am w bm成立时,a< b不一定成立,故C中说法错误;对于D, “? x o€ R -x0< 0”的否定是“ ? x€2Rx -x>0”,故D中说法错误.故选A单调递增,.••当 x °€ L_,e -时,f (x °)€ |[- J ,因二』? " 0如8. B [解析]因为e >0恒成立所以命题p 为假命题,由|a- 1|=|b- 2|,得 a-1=b-2或a-1=2-b,即a-b=- 1 或a+b=3,所以q 是假命题做?q 是真命题做选B.9. B [解析]对于命题p,因为△ ABC 为钝角三角形所以当B 为钝角时,cos B<0<sin A,不等式sin A<cos B 不成立,即p 是假命题,故?p 是真命题;对于命题q,其逆否命题为“若x=- 1且y=3,则x+y=2”,显然为真 命题,所以q 是真命题.所以(?p)人q 是真命题,故选B 故选C211. B [解析]命题“ ? X 0€ R -x 0- 2=0"的否定是“ ? x € Rx-x-2工0”,故A 中说法正确;“$二” 是“ y=sin (2x+$ )为偶函数"的充分不必要条件,故B 中说法错误;命题“若a=0,则ab=0"的否命题是 “若a ^ 0,则ab ^ 0”做C 中说法正确;若 p V q 为假命题,则p,q 均为假命题,故D 中说法正确.12. ? x °€ (0,+x ), <x °+1 [解析]因为特称命题的否定是全称命题命题 p 的否定是“ ? x € (0,+ %), >x+1”,所以命题 p 是“ ? x o € (0,+ %), <X o +113. (1,2)[解析]若p 人q 为真命题则p,q 均为真命题.2对于p,由函数f(x)=lg (ax -2X+1)的定义域为R 得实数a 的取值范围是1<a<2.10. C [解析]在平面直角坐标系中作岀区域D,如图中阴影部分所示 .由题意知,?解得a>1.对于q,当x € -2时,x+-> 2,当且仅当x=1时取等号,由当x €[解析]f (x)=e 'in x+丿,令 g(x)=lnx+-,则 g' (x)h- ,•••当 0<x<1 时,g' (x)<0,当 x>1 X 0>0, € D 正确.时,x+->a 恒成立,得a<2.综上可得,时,g' (x)>0,「.g x)在L—,"上单调递减,在(1,e]上单调递增,^g(x)>g(1)=1,「. f (x)>0,「.f (x)在L -,e 上单调递增,.••当x°€ L_,e-时,f(x°)€|[- J,因二』? " 0如15. B [解析]函数g(x)= --的最小正周期为-,因此命题p是假命题.对于函数f (x)=ln——,由一>0,得(x+3)(x-3)<0,解得-3<x<3,即f(x)的定义域为(-3,3),因为f (-x )=1 n 一=-1n —=-f (x),所以函数f (x)是奇函数,其图像关于原点中心对称,所以命题q是真命题.则p V q为真命题.16. C [解析]由p V (?q)为假命题可得p假q真若p为假命题,则e x=mx无解,可得0< m<e;若q为真命题,则m=0或可得0< m<4.故实数m的取值范围是[0,e).故选C。
2020高考数学刷题首秧单元测试一集合与常用逻辑用语文含解析
单元质量测试(一) 时间:120分钟 满分:150分第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.全集U={1,2,3,4,5,6},M={2,3,4},N={4,5},则∁U(M∪N)=( ) A.{1,3,5} B.{2,4,6} C.{1,5} D.{1,6}答案 D解析 ∵M={2,3,4},N={4,5},∴M∪N={2,3,4,5},则∁U(M∪N)={1,6}.故选D.2.(2018·合肥质检二)命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,则綈p 为( )A.∃a<0,关于x的方程x2+ax+1=0有实数解B.∃a<0,关于x的方程x2+ax+1=0没有实数解C.∃a≥0,关于x的方程x2+ax+1=0没有实数解D.∃a≥0,关于x的方程x2+ax+1=0有实数解答案 C解析 由全称命题的否定为特称命题知,綈p为∃a≥0,关于x的方程x2+ax+1=0没有实数解,故选C.3.(2019·安徽百所重点高中模拟)已知集合A={1,2,4},B={x|x2∈A},则集合A∩B 的子集的个数为( )A.1 B.2 C.3 D.4答案 D2解析 由题意知B={±1,±,±2},则A∩B={1,2},故A∩B的子集的个数为4.故选D.4.(2018·湖南六校联考)下列有关命题的说法正确的是( )A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.命题“若xy=0,则x=0”的逆否命题为真20C.命题“∃x0∈R,使得x+x0+1<0”的否定是“∀x∈R,均有x2+x+1≥0”D.“m=1”是“直线x-my=0和直线x+my=0互相垂直”的充要条件答案 C解析 命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故选项A不正确;命题“若xy=0,则x=0”为假命题,从而其逆否命题为假命题,故选项B不正确;由特称命题的否定为全称命题可知选项C正确;“直线x-my=0和直线x+my=0互相垂直”等价于m=±1,从而选项D不正确.综上,故选C.5.(2018·河南洛阳二模)设全集U=R,集合A={x|log2x≤1},B={x|x2+x-2≥0},则A∩∁U B=( )A.(0,1] B.(-2,2) C.(0,1) D.[-2,2]答案 C解析 不等式log2x≤1即log2x≤log22,由y=log2x在(0,+∞)上单调递增,得不等式的解集为(0,2],即A=(0,2].由x2+x-2≥0,得(x+2)(x-1)≥0,得B={x|x≤-2或x≥1},所以∁U B=(-2,1),从而A∩∁U B=(0,1).故选C.6.已知命题p:有的四边形是平行四边形,则( )A.綈p:有的四边形不是平行四边形B.綈p:有的四边形是非平行四边形C.綈p:所有的四边形都是平行四边形D.綈p:所有的四边形都不是平行四边形答案 D解析 命题p:有的四边形是平行四边形,其中“有的”是存在量词,所以对它的否定,应该改存在量词为全称量词“所有”,然后对结论进行否定,故有綈p:所有的四边形都不是平行四边形.故选D.7.(2019·唐山模拟)设集合A={x∈Z|y=log2(9-x2)},B={x|x∈N},则A∩B中元素的个数为( )A.5 B.4 C.3 D.2答案 C解析 因为集合A={x∈Z|y=log2(9-x2)},所以A={x∈Z|9-x2>0}={-2,-1,0,1,2}.又B={x|x∈N},所以A∩B={0,1,2},所以A∩B中的元素的个数为3.故选C.8.给出以下四个命题:①若2≤x<3,则(x-2)(x-3)≤0;②已知x,y∈R,若x=y=0,则x2+y2=0;③若x2-3x+2=0,则x=1或x=2;④若x,y都是偶数或x,y都是奇数,则x+y是偶数.则下列判断正确的是( )A.①的否命题为真 B.②的逆命题为假C.③的否命题为真 D.④的逆否命题为假答案 C解析 因为①的否命题“若x<2或x≥3,则(x-2)(x-3)>0”不成立,所以选项A错误;因为②的逆命题“已知x,y∈R,若x2+y2=0,则x=y=0”成立,所以选项B错误;因为③的否命题“若x2-3x+2≠0,则x≠1且x≠2”成立,所以选项C正确;因为④的原命题为真,所以它的逆否命题“若x+y不是偶数,则x,y不都是偶数且x,y不都是奇数”必为真,故选项D错误.综上,应选C.9.(2018·湖南八市联考)已知数列{a n }是等差数列,m ,p ,q 为正整数,则“p +q =2m ”是“a p +a q =2a m ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 在等差数列中,对于正整数m ,p ,q ,若p +q =2m ,则a p +a q =2a m ;但对于公差为0的等差数列,由a p +a q =2a m ,不一定能推出p +q =2m ,所以“p +q =2m ”是“a p +a q =2a m ”的充分不必要条件,故选A .10.(2018·湖南衡阳联考二)下列说法错误的是( )A .“若x ≠2,则x 2-5x +6≠0”的逆否命题是“若x 2-5x +6=0,则x =2”B .“x >3”是“x 2-5x +6>0”的充分不必要条件C .“∀x ∈R ,x 2-5x +6≠0”的否定是“∃x 0∈R ,x -5x 0+6=0”20D .命题“在锐角△ABC 中,sin A <cos B ”为真命题答案 D解析 由逆否命题的定义知A 正确;由x 2-5x +6>0得x >3或x <2,所以“x >3”是“x 2-5x +6>0”的充分不必要条件,故B 正确;因为全称命题的否定是特称命题,所以C 正确;锐角△ABC 中,由A +B >,得sin A >sin -B =cos B ,所以D 错误,故选D .π2π211.(2018·山西太原期末)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的( )A .充分不必要条件 B .必要不充分条件C .充要条件 D .既不充分也不必要条件答案 D解析 充分性:若2a >2b ,则2a -b >1,∴a -b >0,∴a >b .当a =-1,b =-2时,满足2a >2b ,但a 2<b 2,故由2a >2b 不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.故选D .12.(2018·广东汕头一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x -a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)答案 C解析 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2;∀x >0,2x -a >0等价于a <2x 在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q 是假命题,∴Error!得1<a <2,所以实数a 的取值范围是(1,2),故选C .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A ={1,2,3},B ∩A ={3},B ∪A ={1,2,3,4,5},则集合B =________.答案 {3,4,5}解析 由题意知,3∈B ,1∉B ,2∉B ,4∈B ,5∈B ,故B ={3,4,5}.14.(2018·衡水金卷A 信息卷五)命题p :若x >0,则x >a ;命题q :若m ≤a -2,则m <sin x (x ∈R )恒成立.若p 的逆命题,q 的逆否命题都是真命题,则实数a 的取值范围是________.答案 [0,1)解析 命题p 的逆命题是若x >a ,则x >0,故a ≥0.因为命题q 的逆否命题为真命题,所以命题q 为真命题,则a -2<-1,解得a <1.则实数a 的取值范围是[0,1).15.设函数f (x )=a x +b x -c x ,其中c >a >0,c >b >0.记集合M ={(a ,b ,c )|a ,b ,c 不能构成一个三角形的三条边长,且a =b },则(a ,b ,c )∈M 所对应的f (x )的零点的取值集合为________.答案 {x |0<x ≤1}解析 由题设知f (x )=0,a =b ,则2a x =c x ,即x =.又a +b ≤c ,a =b ,∴≤,a c 12a c 12从而x ≤x ,x >0,∴≤x ,解得0<x ≤1.故所求取值集合为{x |0<x ≤1}.a c 12121216.某校高三(1)班50个学生选择选修模块课程,他们在A ,B ,C 三个模块中进行选择,且至少需要选择1个模块,具体模块选择的情况如下表:模块模块选择的学生人数模块模块选择的学生人数A 28A 与B 11B 26A 与C 12C26B 与C13则三个模块都选择的学生人数是________.答案 6解析 设三个模块都选择的学生人数为x ,则各部分的人数如图所示,则有(1+x )+(5+x )+(2+x )+(12-x )+(13-x )+(11-x )+x =50,解得x =6.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|2-a≤x≤2+a},B={x|x2-5x+4≥0}.(1)当a=3时,求A∩B,A∪(∁U B);(2)若A∩B=∅,求实数a的取值范围.解 (1)当a=3时,A={x|-1≤x≤5},B={x|x2-5x+4≥0}={x|x≤1或x≥4},∁U B={x|1<x<4},∴A∩B={x|-1≤x≤1或4≤x≤5},A∪(∁U B)={x|-1≤x≤5}.(2)当a<0时,A=∅,显然A∩B=∅.当a≥0时,A≠∅,A={x|2-a≤x≤2+a},B={x|x2-5x+4≥0}={x|x≤1或x≥4}.由A∩B=∅,得解得0≤a<1.故实数a的取值范围是(-∞,1).18.(2018·广东茂名五大联盟9月联考)(本小题满分12分)已知非空集合A={x|2a-3<x<3a+1},集合B={x|-5<x<4}.(1)若“x∈A”是“x∈B”的充分条件,求实数a的取值范围;(2)是否存在实数a,使“x∈A”是“x∈B”的充要条件?若存在,求出a的值;若不存在,说明理由.解 (1)因为“x∈A”是“x∈B”的充分条件,所以A⊆B,又A≠∅,则解得-1≤a≤1.所以a∈[-1,1].(2)若存在实数a,使“x∈A”是“x∈B”的充要条件,即A=B,则必有即则方程组无解.故不存在实数a,使“x∈A”是“x∈B”的充要条件.19.(本小题满分12分)已知全集U={1,3,4,8,9},集合A={x|x2+2mx+9=0},求∁U A.解 由题意,当A=∅时,方程x2+2mx+9=0无实数根,此时Δ=(2m)2-36<0,-3<m<3,此时∁U A=∁U∅=U={1,3,4,8,9}.当A≠∅时,方程x2+2mx+9=0的实数根x1,x2必须在U内,由于x1x2=9,所以只可能是以下几种情形:(1)当x1=x2=3时,2m=-6,m=-3,此时A={3},∁U A={1,4,8,9};(2)当x1=1,x2=9或x1=9,x2=1时,2m=-10,m=-5,此时A={1,9},∁U A={3,4,8}.综上所述,当-3<m<3时,∁U A={1,3,4,8,9};当m=-3时,∁U A={1,4,8,9};当m=-5时,∁U A={3,4,8}.|1-x-13|20.(本小题满分12分)已知命题p:≤2,q:x2-2x+1-m2≤0(m>0),且綈p 是綈q的必要而不充分条件,求实数m的取值范围.|1-x-13|解 解法一:由≤2,得-2≤x≤10,∴綈p:A={x|x>10或x<-2}.由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0),∴綈q:B={x|x>1+m或x<1-m,m>0}.∵綈p是綈q的必要而不充分条件,∴B A⇔解得m≥9.解法二:∵綈p是綈q的必要而不充分条件,∴q是p的必要而不充分条件,∴p是q的充分而不必要条件.由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0).∴q:Q={x|1-m≤x≤1+m,m>0}.|1-x-13|又由≤2,得-2≤x≤10,∴p:P={x|-2≤x≤10}.∴P Q ⇔解得m ≥9.21.(本小题满分12分)已知m ∈R ,设p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0;q :∃x 0∈[1,2],log (x -mx 0+1)<-1.如果“p ∨q ”为真,“p ∧q ”为假,求实数m 的取值范围.1220解 若p 为真,则∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立.设f (x )=x 2-2x -2=(x -1)2-3,则f (x )在[-1,1]上的最小值为-3,所以4m 2-8m ≤-3,解得≤m ≤,1232所以p 为真时,≤m ≤.1232若q 为真,则∃x 0∈[1,2],x -mx 0+1>2,20所以m <.x 20-1x0设g (x )==x -,x 2-1x 1x易知g (x )在[1,2]上是增函数,所以g (x )的最大值为g (2)=,所以m <,3232所以q 为真时,m <.32因为“p ∨q ”为真,“p ∧q ”为假,所以p 与q 一真一假.当p 真q 假时,所以m =;32当p 假q 真时,所以m <.12综上所述,实数m 的取值范围是mm <或m =.123222.(本小题满分12分)已知集合M 是满足下列性质的函数f (x )的全体:在定义域D 内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.(1)函数f (x )=是否属于集合M ?说明理由;1x(2)若函数f (x )=kx +b 属于集合M ,求实数k 和b 的取值范围;(3)设函数f (x )=lg属于集合M ,求实数a 的取值范围.ax 2+1解 (1)假设f (x )=属于集合M .1x若f (x )=,根据题意得D =(-∞,0)∪(0,+∞),1x则存在非零实数x 0,使得=+1,1x 0+11x 0即x +x 0+1=0,因为Δ<0,20此方程无实数解,所以函数f (x )=∉M .1x(2)D =R ,存在实数x 0,使得k (x 0+1)+b =kx 0+b +k +b ,解得b =0,所以实数k 和b 的取值范围是k ∈R ,b =0.(3)由题意,a >0,D =R .存在实数x 0,使得lg=lg+lg ,所以=,a(x 0+1)2+1ax 20+1a 2a (x 0+1)2+1a 22(x 20+1)化简得(a -2)x +2ax 0+2a -2=0.20当a =2时,x 0=-,符合题意.12当a >0且a ≠2时,由Δ≥0得4a 2-8(a -2)(a -1)≥0,化简得a 2-6a +4≤0,解得a ∈[3-,2)∪(2,3+].55综上,实数a 的取值范围是[3-,3+].55。
2020高考数学刷题首秧第一章集合与常用逻辑用语考点测试3简单的逻辑联结词文含解析
考点测试3简单的逻辑联结词、全称量词与存在量词高考概览本考点是高考的常考知识点,题型为选择题,分值5分,低难度考纲研读1.了解逻辑联结词“或”“且”“非”的含义2.理解全称量词与存在量词的意义3.能正确地对含有一个量词的命题进行否定一、基础小题1.命题“所有实数的平方都是正数”的否定为()A.所有实数的平方都不是正数B.有的实数的平方是正数C.至少有一个实数的平方是正数D.至少有一个实数的平方不是正数答案 D解析根据全称命题的否定为特称命题知,把“所有”改为“至少有一个”,“是”的否定为“不是”,故命题“所有实数的平方都是正数”的否定为“至少有一个实数的平方不是正数”,故选D.2.若命题(綈p)∧q为真命题,则命题p,q的真假情况是()A.p真,q真B.p假,q真C.p真,q假D.p假,q假答案 B解析因为命题(綈p)∧q为真命题,所以綈p真且q真,所以p假,q真.3.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则() A.綈p:∀x∈A,2x∉B B.綈p:∀x∉A,2x∉BC.綈p:∃x∉A,2x∈B D.綈p:∃x∈A,2x∉B答案 D解析因全称命题的否定是特称命题,故命题p的否定为綈p:∃x∈A,2x∉B.故选D.x4.命题“∀x>0,>0”的否定是()x-1xA.∃x<0,≤0B.∃x>0,0≤x≤1x-1xC.∀x>0,≤0D.∀x<0,0≤x≤1x-1答案 Bx x解析命题“∀x>0,>0”的否定是“∃x>0,≤0或x=1”,即“∃x>0,x-1 x-10≤x≤1”,故选B.5.已知集合A={x|x>2},集合B={x|x>3},以下命题正确的个数是()①∃x0∈A,x0∉B;②∃x0∈B,x0∉A;③∀x∈A,都有x∈B;④∀x∈B,都有x∈A.A.4 B.3 C.2 D.1答案 C解析因为A={x|x>2},B={x|x>3},所以B A,即B是A的真子集,所以①④正确,②③错误,故选C.6.以下四个命题既是特称命题又是真命题的是()A.锐角三角形有一个内角是钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数1D.存在一个负数x,使>2x答案 B解析选项A中,锐角三角形的所有内角都是锐角,所以A是假命题;选项B中,当x =0时,x2=0,所以B既是特称命题又是真命题;选项C中,因为2+(-2)=0不是无1 1理数,所以C是假命题;选项D中,对于任意一个负数x,都有<0,不满足>2,所以D是x x假命题.故选B.7.已知命题p:若x>y,则-x<-y;命题q:若x<y,则x2>y2.给出下列命题:①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q.其中的真命题是()A.①③B.①④C.②③D.②④答案 C解析由题意可知,命题p为真命题,命题q为假命题.故p∧q为假,p∨q为真,p∧(綈q)为真,(綈p)∨q为假,故真命题为②③.故选C.8.下列命题中的假命题为()A.∀x∈R,e x>0 B.∀x∈N,x2>0πx0C.∃x0∈R,ln x0<1 D.∃x0∈N*,sin =12答案 B解析由函数y=e x的图象可知,∀x∈R,e x>0,故选项A为真命题;当x=0时,x2=1 1 π 0,故选项B为假命题;当x0=时,ln =-1<1,故选项C为真命题;当x0=1时,sine e 2 =1,故选项D为真命题.综上选B.9.已知命题p:∀a∈R,方程ax+4=0有解;命题q:∃m>0,直线x+my-1=0与直线2x+y+3=0平行.给出下列结论,其中正确的有()①命题“p∧q”是真命题;②命题“p∧(綈q)”是真命题;③命题“(綈p)∨q”是真命题;④命题“(綈p)∨(綈q)”是真命题.A.1个B.2个C.3个D.4个答案 B解析因为当a=0时,方程ax+4=0无解,所以命题p是假命题;当1-2m=0,即m 1=时两条直线平行,所以命题q是真命题.所以綈p是真命题,綈q是假命题,所以①②2错误,③④正确.故选B.10.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为() A.(綈p)∨(綈q) B.p∨(綈q)C.(綈p)∧(綈q) D.p∨q答案 A解析綈p表示甲没有降落在指定范围,綈q表示乙没有降落在指定范围,命题“至少有一位学员没有降落在指定范围”,也就是“甲没有降落在指定范围或乙没有降落在指定范围”.故选A.11.已知p:∃x∈R,x2+2x+a≤0,若p是假命题,则实数a的取值范围是________.(用区间表示)答案(1,+∞)解析由题意知∀x∈R,x2+2x+a>0恒成立,∴关于x的方程x2+2x+a=0的根的判别式Δ=4-4a<0,∴a>1.∴实数a的取值范围是(1,+∞).12.已知全集U=R,A⊆U,B⊆U,如果命题p:x∈(A∩B),那么“綈p”是________.答案x∉A或x∉B解析x∈(A∩B)即x∈A且x∈B,所以其否定为:x∉A或x∉B.二、高考小题13.(2015·全国卷Ⅰ)设命题p:∃n∈N,n2>2n,则綈p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n答案 C解析根据特称命题的否定为全称命题,所以綈p:∀n∈N,n2≤2n,故选C.14.(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2答案 D解析先将条件中的全称量词变为存在量词,存在量词变为全称量词,再否定结论.故选D.15.(2015·湖北高考)命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是()A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1答案 A解析特称命题的否定为全称命题,所以∃x0∈(0,+∞),ln x0=x0-1的否定是∀x∈(0,+∞),ln x≠x-1,故选A.16.(2015·浙江高考)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是() A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0答案 D解析“f(n)∈N*且f(n)≤n”的否定为“f(n)∉N*或f(n)>n”,全称命题的否定为特称命题,故选D.17.(2017·山东高考)已知命题p:∀x>0,ln (x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)答案B解析∵∀x>0,x+1>1,∴ln (x+1)>0,∴命题p为真命题;当b<a<0时,a2<b2,故命题q为假命题.由真值表可知B正确,故选B.π18.(2015·山东高考]若“∀x∈[0,4],tan x≤m”是真命题,则实数m的最小值为________.答案 1ππ解析∵0≤x≤,∴0≤tan x≤1.∵“∀x∈,tan x≤m”是真命题,∴m≥1,∴4 [0,4]实数m的最小值为1.三、模拟小题π19.(2018·河南适应性考试)已知f(x)=sin x-tan x,命题p:∃x0∈0,,f(x0)<0,2则()πA.p是假命题,綈p:∀x∈0,,f(x)≥02πB.p是假命题,綈p:∃x0∈0,,f(x0)≥02πC.p是真命题,綈p:∀x∈0,,f(x)≥02πD.p是真命题,綈p:∃x0∈0,,f(x0)≥02答案 Cπ解析x∈0,时,sin x<tan x恒成立,所以命题p是真命题,排除A,B;綈p:∀x∈2π0,,f(x)≥0,故选C.220.(2019·豫西五校联考)若定义域为R的函数f(x)不是偶函数,则下列命题中一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)=-f(x)C.∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)=-f(x0)答案 C解析由题意知∀x∈R,f(-x)=f(x)是假命题,则其否定为真命题,即∃x0∈R,f(-x0)≠f(x0)是真命题,故选C.21.(2018·湖南雅礼月考八)下列命题中的假命题是()A.∀x∈R,x2+x+1>0B.存在四边相等的四边形不是正方形C.“存在实数x,使x>1”的否定是“不存在实数x,使x≤1”D.若x,y∈R且x+y>2,则x,y中至少有一个大于1答案 C1 3 3解析x2+x+1=x+2+≥,A是真命题;菱形的四边相等,但不是正方形,B是真2 4 4命题;“存在实数x,使x>1”的否定是“对于任意实数x,有x≤1”,C是假命题;“若x,y∈R且x+y>2,则x,y中至少有一个大于1”的逆否命题是“若x,y均不大于1,则x+y≤2”是真命题,D是真命题,故选C.1 22.(2018·湖南湘东五校4月联考)已知命题“∃x∈R,4x2+(a-2)x+≤0”是假命4题,则实数a的取值范围为()A.(-∞,0) B.[0,4]C.[4,+∞)D.(0,4)答案 D1解析因为命题“∃x∈R,4x2+(a-2)x+≤0”是假命题,所以其否定命题“∀x∈R,41 14x2+(a-2)x+>0”是真命题,则Δ=(a-2)2-4×4×=a2-4a<0,解得0<a<4,故选4 4D.23.(2019·太原五中阶段测试)已知命题p:∃x0∈(0,+∞),x0>x20;命题q:∀x∈1,+∞,2x+21-x>2 2.则下列命题中是真命题的为()2A.綈q B.p∧(綈q)C.p∧q D.(綈p)∨(綈q)答案 C1 1 1解析取x0=,可知> 2,故命题p为真;因为2x+21-x≥2=2 ,当2x·21-x 22 2 21且仅当x=时等号成立,故命题q为真;故p∧q为真,即选项C正确,故选C.224.(2018·湖北八市3月联考)已知平面α,β,直线a,b.命题p:若α∥β,a∥α,则a∥β;命题q:若a∥α,a∥β,α∩β=b,则a∥b,下列为真命题的是() A.p∧q B.p∨(綈q) C.p∧(綈q) D.(綈p)∧q答案 D解析命题p中,直线a与平面β可能平行,也可能在平面β内,所以命题p为假命题,綈p为真命题;由线面平行的性质定理知命题q为真命题,綈q为假命题,所以(綈p)∧q为真命题,故选D.1 1 125.(2018·江西赣州摸底)已知命题m:“∀x0∈0,,x0<log x0”,n:“∃x0∈(0,+3 2 31 1∞),x0=log x0>x0”,则在命题p1:m∨n,p2:m∧n,p3:(綈m)∨n和p4:m∧(綈n)中,2 3真命题是()A.p1,p2,p3 B.p2,p3,p4C.p1,p3 D.p2,p4答案 A1 1解析如图,由指数函数y=x与对数函数y=log x的图象可以判断命题m是真命题,2 3命题n也是真命题,根据复合命题的性质可知p1,p2,p3均为真命题,故选A.26.(2018·广东华南师大附中测试三)设有两个命题:p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg (ax2-x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是________.1 答案0<a≤或a≥12解析当命题p是真命题时,0<a<1.当命题q是真命题时,ax2-x+a>0,x∈R恒成立,则Error!1解得a> .由p∨q为真命题,p∧q为假命题可得命题p,q中一真一假,若p真q假,21则Error!若p假q真,则Error!则0<a≤或a≥1.2一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2018·河南郑州月考)已知p:方程x2+mx+1=0有两个不相等的实数根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求实数m的取值范围.解p或q为真,p且q为假,由这句话可知p,q命题为一真一假.(1)当p真q假时,Error!Earlybird解得m<-2或m≥3.(2)当p假q真时,Error!解得1<m≤2.综上所述,m的取值范围是{m|m<-2或1<m≤2或m≥3}.2.(2018·山西联考)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(-∞,-4),f(x)g(x)<0,求m的取值范围.解由题意知m≠0,∴f(x)=m(x-2m)(x+m+3)为二次函数,若∀x∈R,f(x)<0或g(x)<0,必须抛物线开口向下,即m<0.f(x)=0的两根x1=2m,x2=-m-3,则x1-x2=3m+3.1(1)当x1>x2,即m>-1时,必须大根x1=2m<1,即m< .2(2)当x1<x2,即m<-1时,大根x2=-m-3<1,即m>-4.(3)当x1=x2,即m=-1时,x1=x2=-2<1也满足条件.∴满足条件①的m的取值范围为-4<m<0.若∃x∈(-∞,-4),f(x)g(x)<0,则满足方程f(x)=0的小根小于-4.(1)当m>-1时,小根x2=-m-3<-4且m<0,无解.(2)当m<-1时,小根x1=2m<-4且m<0,解得m<-2.(3)当m=-1时,f(x)=-(x+2)2≤0恒成立,∴不满足②,∴满足①②的m的取值范围是{m|-4<m<-2}.。
(常考题)人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试题(有答案解析)(1)
一、选择题1.已知命题2:2,:2320p x q x x <--<,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.“21x >”是“2x >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.已知:250p x ->,2:20q x x -->,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.设a R ∈,则“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.函数3()1f x ax x =++有极值的充分但不必要条件是( ) A .1a <- B .1a < C .0a < D .0a > 6.已知集合A ={x |x 2-4|x |≤0},B ={x |x >0},则A ∩B =( )A .(]0,4B .[]0,4C .[]0,2D .(]0,27.已知点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,则“m =是“点P 到直线l ”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件8.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m >B .12m ≥C .1mD .m 1≥第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.不等式220x x --<成立的一个充分不必要条件是21a x a <<+,则a 的取值范围为( ) A .–11a ≤≤ B .–11a ≤<C .–11a <<D .11a -<≤11.以下四个命题中错误..的是( ) A .若样本1x 、2x 、、5x 的平均数是2,方差是2,则数据12x 、22x 、、52x 的平均数是4,方差是4B .ln 0x <是1x <的充分不必要条件C .样本频率分布直方图中的小矩形的面积就是对应组的频率D .抛掷一颗质地均匀的骰子,事件“向上点数不大于3”和事件“向上点数不小于4”是对立事件12.已知全集{1,2,3,4,5}U =,集合{1,2,4}A =,{1,3,5}B ,则()U C A B ( )A .{1}B .{3,5}C .{1,3,5}D .{2,3,4,5}二、填空题13.已知:条件p :120x-≥和q :()()22110x a x a a -+++<,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是______.14.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 15.方程2210ax x 至少有一个正实数根的充要条件是________;16.已知集合{}ln(21)A x y x ==-,{}2230B x x x =--≤,则AB __________.17.已知函数1,()1,M x Mf x x M ∈⎧=⎨-∉⎩(M 为非空数集),对于两个集合,A B ,定义{}()?()1A B A B x f x f x ∆==-,已知{0,1,2,3}A =,{2,3,4,5}B =,则A B ∆=__________.18.已知命题,则为_______.19.若命题“[]01,1x ∃∈-,033x a ≤”为真命题,则实数a 的取值范围为______. 20.已知命题“[1,3],x ∀∈不等式240x ax -+≥”为真命题,则a 的取值范围为_______.三、解答题21.已知命题p :01x ≤≤;q :()120a x a a -≤≤>. (1)若1a =,写出命题“若p 则q ”的逆否命题,并判断真假;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知命题:p 关于x 的不等式()()21120k x k x ---+>的解集为R ,:2q x ∃>,2272x k x -<-,试判断“p 为真命题”与“q ⌝为真命题”的充分必要关系. 23.已知集合{|22}A x a x a =-+,2{|540}B x x x =-+(1)当3a =时,求A B ,()R A B ⋃;(2)若AB =∅,求实数a 的取值范围.24.设命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得不等式210x x m --+≤成立. (1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围. 25.已知集合13279x A x ⎧⎫=≤≤⎨⎬⎩⎭,函数()lg 1x f x -=B .(1)求AB ,()R B A ;(2)已知集合{}433C x m x m =-≤≤+,若A C ⋂=∅,求实数m 的取值范围. 26.已知集合A ={x |y =ln (﹣x 2﹣x +12)},B ={x |m ﹣1<x <2m +1,m ∈R }. (1)若m =2,求(∁R A )∩B ;(2)若A ∩B =B ,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出q 成立的x 的范围,然后根据集合包含关系判断. 【详解】2:2320q x x --<,(21)(2)0x x +-<,122x -<<,由于1,22⎛⎫- ⎪⎝⎭是(,2)-∞的真子集,因此应是必要不充分条件. 故选:C .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.2.B解析:B【分析】设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性. 【详解】设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A ,所以“21x >”是“2x >”的必要不充分条件. 故选:B . 【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.3.A解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.4.A解析:A 【分析】计算直线平行等价于1a =或2a =-,根据范围大小关系得到答案. 【详解】直线1:20l ax y +=与直线()2140+++=:l x a y 平行,则()12a a +=,1a =或2a =-,验证均不重合,满足.故“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的充分不必要条件. 故选:A. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.5.A解析:A 【分析】求导2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,可求得a 的范围,再由充分必要条件可得选项. 【详解】因为2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,解得0a <,又由1a <-可推得0a <,而由0a <不能推得1a <-,所以函数3()1f x ax x =++有极值的充分但不必要条件是1a <-, 故选:A . 【点睛】本题考查函数有极值的条件,以及命题的充分必要条件的判断,属于中档题.6.A解析:A 【分析】先求出集合A ,然后进行交集的运算即可. 【详解】 A={x|-4≤x≤4}; ∴A∩B=(0,4]. 故选A . 【点睛】本题主要考查了集合描述法、区间的定义,一元二次不等式的解法,以及交集的运算,属于中档题.7.B解析:B 【分析】“点P 到直线l ”解得:m =±. 【详解】点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,考虑“点P 到直线l ” 设()[)2cos ,sin ,0,2P θθθπ∈,点P 到直线l 的距离d ϕϕ===点P 到直线l ()m θϕ++的最小值()m θϕ++符号恒正或恒负, ()m m m θϕ⎡++∈⎣当0m <时,m =-,当0m >时,m =综上所述:m =±所以“m =是“点P 到直线l ”的充分不必要条件. 故选:B 【点睛】此题考查充分条件与必要条件的辨析,关键在于根据题意准确求出参数的取值范围.8.D解析:D 【分析】求出命题q 不等式的解为23x <<,p 是q 的必要不充分条件,得q 是p 的子集,建立不等式求解. 【详解】 解:命题2:21,:560p x m q x x -<++<,即: 23x <<,p 是q 的必要不充分条件,(2,3)(,21,)m ∴⊆-∞+,213m ∴+≥,解得m 1≥.实数m 的取值范围为m 1≥.故选:D . 【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥,故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.D解析:D 【分析】求解一元二次不等式可得220x x --<的解集,再由题意得关于a 的不等式组求解即可. 【详解】由不等式220x x --<,得12x -<<,∵不等式220x x --<成立的一个充分不必要条件是21a x a <<+,∴()2,1a a +⫋()12-,, 则221112a a a a ⎧<+⎪≥-⎨⎪+≤⎩且1a ≥-与212a +≤的等号不同时成立,解得11a -<≤, ∴a 的取值范围为11a -<≤, 故选:D . 【点睛】本题主要考查充分必要条件的判定及其应用,考查数学转化思想方法,属于中档题.11.A解析:A 【分析】利用平均数和方差公式可判断A 选项的正误;解不等式ln 0x <,利用集合的包含关系可判断B 选项的正误;根据频率直方图的概念可判断C 选项的正误;根据对立事件的概念可判断D 选项的正误.综合可得出结论. 【详解】对于A 选项,样本1x 、2x 、、5x 的平均数为1234525x x x x x x ++++==,方差为()()()()()222221234522222225x x x x x s ⎡⎤-+-+-+-+-⎣⎦==, 数据12x 、22x 、、52x 的平均数是1234522222245x x x x x x x ++++'===,方差为()()()()()2222212345224242424245x x x x x s ⎡⎤-+-+-+-+-⎣⎦'=()()()()()2222212345242222244285x x x x x s ⎡⎤-+-+-+-+-⎣⎦===⨯=,A 选项错误;对于B 选项,解不等式ln 0x <,得01x <<,{}01x x << {}1x x <,所以,ln 0x <是1x <的充分不必要条件,B 选项正确;对于C 选项,由频率分布直方图的概念可知,样本频率分布直方图中的小矩形的面积就是对应组的频率,C 选项正确;对于D 选项,抛掷一颗质地均匀的骰子,事件“向上点数不大于3”即为:向上的点数为1或2或3,事件“向上点数不小于4”即为:向上的点数为4或5或6, 这两个事件互为对立事件,D 选项正确. 故选:A. 【点睛】本题考查命题正误的判断,涉及平均数、方差的计算、充分不必要条件的判断、频率直方图和对立事件概念的理解,考查推理能力,属于中等题.12.B解析:B 【分析】根据补集的运算,求得{3,5}U C A =,再根据集合交集的运算,即可求得()U C A B ⋂. 【详解】由题意,全集{1,2,3,4,5}U =,集合{1,2,4}A =,可得{3,5}U C A =, 所以()U C A B {3,5}.故选:B . 【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合运算的概念和计算方法是解答的关键,着重考查了计算能力,属于基础题.二、填空题13.【分析】根据是的必要不充分条件得到计算得到答案【详解】即;即是的必要不充分条件故得到解得故答案为:【点睛】本题考查了根据必要不充分条件求参数意在考查学生的推断能力 解析:102-<≤a【分析】根据p ⌝是q ⌝的必要不充分条件,得到{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,计算得到答案. 【详解】120x-≥,即102x <≤;()()22110x a x a a -+++<,即1a x a <<+.p ⌝是q ⌝的必要不充分条件,故{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,得到0112a a ≤⎧⎪⎨+>⎪⎩,解得102-<≤a .故答案为:102-<≤a .【点睛】本题考查了根据必要不充分条件求参数,意在考查学生的推断能力.14.【分析】对分类讨论计算可得【详解】解:因为命题使得不等式是真命题当时恒成立满足条件;当时则解得综上可得即故答案为:【点睛】本题考查全称命题为真求参数的取值范围属于中档题 解析:[]0,4【分析】对m 分类讨论,计算可得. 【详解】解:因为命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题 当0m =时,10≥恒成立,满足条件;当0m ≠时,则2040m m m >⎧⎨-≤⎩解得04m <≤综上可得04m ≤≤即[]0,4m ∈ 故答案为:[]0,4 【点睛】本题考查全称命题为真求参数的取值范围,属于中档题.15.【分析】讨论和三种情况计算得到答案【详解】当时方程为满足条件当时方程恒有两个解且两根一正一负满足条件当时即此时两根均为正数满足条件综上所述:故答案为:【点睛】本题考查了充要条件分类讨论是一个常用的方 解析:[)1,a ∈-+∞【分析】讨论0a =,0a >和0a <三种情况,计算得到答案. 【详解】当0a =时,方程为1210,2x x -==满足条件. 当0a >时,2210,440axx a 方程恒有两个解,且1210x x a=-<,两根一正一负,满足条件 当0a <时,2210,4401axx a a ,即01a ,此时,1210x x a=->, 1220x x a+=->,两根均为正数,满足条件 综上所述:1a ≥- 故答案为:[)1,a ∈-+∞ 【点睛】本题考查了充要条件,分类讨论是一个常用的方法,需要同学们熟练掌握.16.(或用区间表示为【解析】分析:先根据真数大于零得集合A 再解一元二次不等式得集合B 最后根据交集定义求结果详解:因为所以因为所以因此点睛:求集合的交并补时一般先化简集合再由交并补的定义求解在进行集合的运解析:13|22x x ⎧⎫<≤⎨⎬⎩⎭(或用区间表示为13(,]22. 【解析】分析:先根据真数大于零得集合A,再解一元二次不等式得集合B ,最后根据交集定义求结果.详解:因为210x ->,所以12x >因为2230x x --≤,所以312x -≤≤ 因此13(,]22A B ⋂=.点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.17.【解析】∵函数(为非空数集)对于两个集合定义∴故答案为 解析:{0,1,4,5}【解析】∵函数()1,1,M x Mf x x M∈⎧=⎨-∉⎩(M 为非空数集).对于两个集合,A B ,定义()(){}•1A B A B x f x f x ∆==-,{}0,1,2,3A =,{}2,3,4,5B =,∴{}0145A B ,,,=,故答案为{}0,1,4,5.18.【解析】试题分析:根据全称命题的定义得为故答案为考点:全称命题的否定解析:00,sin 1x R x ∃∈>【解析】试题分析:根据全称命题的定义得为00,sin 1x R x ∃∈>,故答案为00,sin 1x R x ∃∈>.考点:全称命题的否定.19.【分析】由题意结合指数函数的单调性可得的最大值可得的范围【详解】命题为真命题可得的最大值由可得故答案为:【点睛】本题考查不等式能成立问题考查转化与化归思想属于中等题型 解析:(],1-∞【分析】由题意结合指数函数的单调性,可得0a x ≤的最大值,可得a 的范围. 【详解】命题“[]01,1x ∃∈-,033x a ≤”为真命题, 可得0a x ≤的最大值, 由[]01,1x ∈-,可得1a ≤, 故答案为:(],1-∞ 【点睛】本题考查不等式能成立问题,考查转化与化归思想,属于中等题型20.【分析】令则对称轴为分对称轴在区间之间区间左边和区间右边三种情况讨论可得【详解】解:令则对称轴为要使不等式恒成立即当时解得;当时解得;当时解得;综上可得:故答案为:【点睛】本题考查的知识点是命题的真 解析:(,4]-∞【分析】令()24f x x ax =-+,则对称轴为2ax =,分对称轴在区间之间,区间左边和区间右边三种情况讨论可得. 【详解】解:令()24f x x ax =-+,则对称轴为2a x =, 要使[1,3],x ∀∈不等式240x ax -+≥恒成立,即[1,3]x ∀∈,()240f x x ax =-+≥当12a x =≤时()21140f a =-+≥解得2a ≤; 当132ax <=<时240222a a a f a ⎛⎫⎛⎫=-⨯+≥ ⎪ ⎪⎝⎭⎝⎭解得24a <≤;当32ax =≥时()233340f a =-+≥解得a ∈∅; 综上可得:(,4]a ∈-∞故答案为:(,4]-∞ 【点睛】本题考查的知识点是命题的真假判断与应用,属于基础题.三、解答题21.(1)逆否命题为“若0x <或2x >,则0x <或1x >”,真命题;(2)112a ≤≤. 【分析】(1)直接写出命题“若p 则q ”逆否命题并判断真假即可; (2)由题意得{}|01x x ≤≤(){}|120x a x a a -≤≤>,即1021a a -≤⎧⎨≥⎩解不等式组可得答案. 【详解】(1)若1a =,则q :02x ≤≤,命题“若p 则q ”为“若01x ≤≤,则02x ≤≤”, 命题“若p 则q ”的逆否命题为“若0x <或2x >,则0x <或1x >”,是真命题; (2)若p 是q 的充分不必要条件,{}|01x x ≤≤(){}|120x a x a a -≤≤>则1021a a -≤⎧⎨≥⎩,解得112a ≤≤,实数a 的取值范围为112a ≤≤. 【点睛】结论点睛:充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.充分不必要 【分析】分10k -=和10k ->⎧⎨∆<⎩可求出当命题p 为真命题时对应的实数k 的取值范围,利用基本不等式求出2272x x --在2x >时的最大值,可求出当命题q ⌝为真命题时对应的实数k 的取值范围,再利用集合的包含关系可得出结论. 【详解】若p 为真命题:当1k =时,对于任意x ∈R ,则有20>恒成立;当1k ≠时,根据题意,有()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩,解得19k <<. 所以19k ≤<;若q ⌝为真命题:2x ∀>,2272x k x -≥-.()()()22228212712288222x x x x x x x -+-+-==-++≥---,当且仅当22x =+时,等号成立,所以8k ≤+ {}19k k ≤< {8k k ≤+,所以,“p 为真命题”是“q ⌝为真命题”的充分不必要条件. 【点睛】本题考查充分不必要条件的判断,同时也涉及了利用命题的真假求参数,考查运算求解能力与推理能力,属于中等题.23.(1){|11A B x x =-或45}x ;(){}|15RA B x x =-;(2) (,1)-∞.【分析】(1)3a =时求出集合A ,B ,再根据集合的运算性质计算A B 和()R A B ⋃;(2)根据A B =∅,讨论A =∅和A ≠∅时a 的取值范围,从而得出实数a 的取值范围. 【详解】解:(1)当3a =时,{|22}{|15}A x a x a x x =-+=-,2{|540}{|1B x x x x x =-+=或4}x , {|11A B x x =-或45}x ;又{|14}R B x x =<<, (){}|15RAB x x =-;(2)A B =∅,当22a a ->+,即0a <时,A =∅,满足题意;当0a 时,应满足2124a a ->⎧⎨+<⎩,此时得01a <;综上,实数a 的取值范围是(,1)-∞.【点睛】本题考查了集合的基本运算以及不等式解法问题,注意等价变形的应用,属于中档题. 24.(1)12m ≤≤(2)1m <或524m <≤ 【分析】(1)命题p 为真,只需[]()2min 21,20,3x m m x -≥-∈,根据一次函数的单调性,转化为求关于m 的一元二次不等式;(2)命题q 为真,只需[]()2min 1,1,10x x m x -+-∈-≤,根据二次函数的性质,求出m 的范围,依题意求出p 真q 假,和p 假q 真时,实数m 的取值范围. 【详解】(1)对于命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立, 而[]0,1x ∈,有()min 222x -=-,223m m ∴-≥-,12m ∴≤≤, 所以p 为真时,实数m 的取值范围是12m ≤≤;(2)命题q :存在[]1,1x ∈-,使得不等式210x x m -+-≤成立, 只需()2min10x x m -+-≤,而22151()24x x m x m -+-=-+-,2min 5(1)4x x m m ∴-+-=-+,504m ∴-+≤,54m ≤,即命题q 为真时,实数m 的取值范围是54m ≤, 依题意命题,p q 一真一假,若p 为假命题, q 为真命题,则1254m m m ⎧⎪⎨≤⎪⎩或,得1m <; 若q 为假命题, p 为真命题,则1254m m ≤≤⎧⎪⎨>⎪⎩,得524m <≤,综上,1m <或524m <≤. 【点睛】本题考查不等式恒(或存在)成立与函数最值关系,以及命题真假关系求参数范围,考查等价转化思想,计算求解能力,属于中档题. 25.(1)[)2,4A B =-,()[]2,1R B A =-;(2)()5,7,3⎛⎫-∞-+∞ ⎪⎝⎭.【分析】(1)求出集合A 、B ,利用补集的定义可得出集合AB ,利用补集和交集的定义可得出集合()RB A ;(2)分C =∅和C ≠∅两种情况讨论,根据题意得出关于实数m 的不等式(组),解出即可. 【详解】 (1)解不等式13279x ≤≤,即23333x -≤≤,解得23x -≤≤,得[]2,3A =-. 对于函数()lg 1x f x -=1040x x ->⎧⎨->⎩,解得14x <<,则()1,4B =.[)2,4A B ∴=-,(][),14,R B =-∞+∞,则()[]2,1R B A =-;(2)当C =∅时,433m m ->+,得到72m <-,符合题意; 当C ≠∅时,433332m m m -≤+⎧⎨+<-⎩或43343m m m -≤+⎧⎨->⎩,解得7523m -≤<-或7m >.综上所述,实数m 的取值范围是()5,7,3⎛⎫-∞-+∞ ⎪⎝⎭.【点睛】本题考查交集、补集与并集的计算,同时也考查了利用交集的结果求参数,解题的关键就是对集合C 是否为空集进行分类讨论,考查运算求解能力,属于中等题. 26.(1){x |3≤x <5};(2)(﹣∞,1] 【分析】(1)先化简集合A ,再求得∁R A ,由m =2,得B ={x |1<x <5},然后求(∁R A )∩B. (2)由A ∩B =B ,得到B ⊆A ,再分B =∅时,由m ﹣1≥2m +1求解,当B ≠∅时,有12114213m m m m -+⎧⎪-≥-⎨⎪+≤⎩<求解,最后取并集. 【详解】(1)集合A ={x |y =ln (﹣x 2﹣x +12)}={x |﹣x 2﹣x +12>0}={x |﹣4<x <3}, 所以∁R A ={x |x ≤﹣4或x ≥3},当m =2时,B ={x |m ﹣1<x <2m +1,m ∈R }={x |1<x <5}, 所以(∁R A )∩B ={x |3≤x <5}. (2)因为A ∩B =B ,所以B ⊆A , 当B =∅时,m ﹣1≥2m +1,解得m ≤﹣2;当B ≠∅时,有12114213m m m m -+⎧⎪-≥-⎨⎪+≤⎩<,解得﹣2<m ≤1,综上:实数m 的取值范围是(﹣∞,1]. 【点睛】本题主要考查了集合的关系及基本运算,还考查了运算求解的能力,属于中档题.。
(常考题)人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试(包含答案解析)(1)
一、选择题1.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数2.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}3.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20210S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( )A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)5.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,26.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞7.已知集合{}1,2,3,4,5A =,且A B A =,则集合B 可以是( )A .{}|21xx >B .{}21x xC .{}2log 1x xD .{}1,2,38.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为假命题D .对于命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥9.判断下列命题①命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为真命题;②命题“若21x =,则1x =.”的否命题为“若21x =,则1x ≠.”;③若命题“p q ∧”为假命题,则命题“p q ∨”是假命题;④命题“x R ∀∈,22x x ≥."的否定是“0x R ∃∈,0202x x <.” 中正确的序号是( )A .①③B .②③C .①④D .②④10.设{}n a 是等差数列,则“123a a a <<”是“数列{}n a 是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件11.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}12.设a 、b 是实数,则“0a >,0b >”是“2b aa b+≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件二、填空题13.若“0,63x ππ⎡⎤∃∈⎢⎥⎣⎦使得0tan x m ≥”是假命题,则实数m 的取值范围为________. 14.下列命题为真命题的序号是__________. ①“若1sin ,2α≠则6πα≠”是真命题.②“若22,am bm <则a b <”的逆命题是真命题.③,a b ∈R ,“221a b +≥”是“1a b +≥”的充分不必要条件. ④“1a =”是“直线0x ay -=与直线+0x ay =互相垂直”的充要条件. 15.已知“21[2]102x ,,x mx ∃∈-+≤”是假命题,则实数m 的取值范围为________. 16.设全集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B =,则下图中阴影部分表示的集合是_____.17.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =______. 18.已知集合{}{}22160,430,A x x B x x x =-<=-+>则AUB =____________. 19.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.20.已知集合{}12A =,,{}12B =-,,则A B =______.三、解答题21.已知命题p :01x ≤≤;q :()120a x a a -≤≤>. (1)若1a =,写出命题“若p 则q ”的逆否命题,并判断真假; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知集合{}37A x x =≤<,{}210B x x =<<,{}5C x a x a =-<<. (1)求AB ,()R A B ⋂;(2)若()C A B ⊆⋃,求a 的取值范围. 23.集合(){}21|,A x y y xmx ==-+-,(){},3,03|B x y y x x ==-≤≤.(Ⅰ)当4m =时,求A B ;(Ⅱ)若A B ⋂≠∅,求实数m 的取值范围.24.已知集合{}121A x a x a =-<<+,{}01B x x =<<.(1)若12a =,求A B ; (2)若A B =∅,求实数a 的取值范围.25.已知集合13279x A x ⎧⎫=≤≤⎨⎬⎩⎭,函数()lg 1x f x -=B . (1)求AB ,()R B A ;(2)已知集合{}433C x m x m =-≤≤+,若A C ⋂=∅,求实数m 的取值范围. 26.设全集是实数集R ,集合{}13A x x =-<<,{}22B x m x m =-<<+. (1)若AB =∅,求实数m 的取值范围;(2)若2B ∈,求A B .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈- ⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭, sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.2.C解析:C根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.3.C解析:C 【分析】结合等比数列的前n 项和公式,以及充分、必要条件的判断方法,判断出正确选项. 【详解】由于数列{}n a 是等比数列,所以2021111n q S a q -=⋅-,由于101nq q ->-,所以 2021111001nq S a a q-=⋅>⇔>-,所以“10a >”是“20210S >”的充要条件. 故选:C 【点睛】本小题主要考查等比数列前n 项和公式,考查充分、必要条件的判断,属于中档题.4.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.5.A解析:A由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .6.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤, p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.7.A解析:A 【分析】 由A B A =可知,A B ⊆,据此逐一考查所给的集合是否满足题意即可. 【详解】由AB A =可知,A B ⊆,对于A :0{|212}x x >=={|0}x x A ⊇>,符合题意.对于B :{}21x x ={|11}x x x <->或,没有元素1,所以不包含A ; 对于C :22{|log 1log 2}x x >=={|2}x x >,不合题意; D 显然不合题意, 本题选择A 选项. 【点睛】本题主要考查集合的表示方法,集合之间的关系等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C 【分析】根据逆否命题的概念,可判定A 是正确的;由方程2320x x -+=,解得1x =或2x =,可判定B 是正确的;根据正弦定理,可判定C 不正确;根据存在性命题与全称命题的关系,可判定D 是正确的. 【详解】A 中,根据逆否命题的概念,可得命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”,所以A 是正确的;B 中,由方程2320x x -+=,解得1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件,所以B 是正确的;C 中,在ABC 中,由sin sin A B >,根据正弦定理可得a b >,所以A B >,所以命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为真命题,所以C 不正确;D 中,根据存在性命题与全称命题的关系,可得命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥,所以D 是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定,四种命题的关系,充分条件与必要条件的判定,以及全称命题与存在性命题的关系等知识点的应用,属于基础题.9.C解析:C 【分析】①写出原命题的逆命题,并判断真假性. ②根据否命题的知识判断真假性.③根据含有逻辑联结词命题真假性来判断命题的真假性. ④根据全称命题的否定的知识判断真假性. 【详解】①原命题的逆命题为:若方程20x x m +-=有实根,则14m ≥-.当方程20x x m +-=有实根则11404m m ∆=+≥⇒≥-.所以逆命题为真命题.所以①正确. ②原命题的否命题为:若21x ≠,则1x ≠.所以②错误.③由于p q ∧为假命题,所以,p q 中至少有一个是假命题,可能是一真一假,所以p q ∨可能为真命题.所以③错误. ④原命题的否定是0x R ∃∈,0202x x <.所以④正确.综上所述,正确的序号为①④.故选:C 【点睛】本小题主要考查四种命题,考查含有逻辑连接词命题,考查全称命题的否定,属于中档题.10.C解析:C 【分析】结合等差数列的单调性,根据充分条件、必要条件的判定方法,即可求解. 【详解】在{}n a 是等差数列,若123a a a <<,可得21320d a a a a =-=->, 所以数列{}n a 是递增数列,即充分性成立;若数列{}n a 是递增数列,则必有123a a a <<,即必要性成立, 所以“123a a a <<”是“数列{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及等差数列的单调性判定及应用,其中解答中熟记等差数列的性质是解答的关键,着重考查推理与论证能力.11.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.12.A解析:A 【分析】由2b aa b +≥可推导出0ab >,再利用充分条件、必要条件的定义判断可得出结论. 【详解】由2b a a b +≥可得()22222022a b b a a b ab a b ab ab-+-+-==≥,()20a b -≥,则0ab >,则“0a >,0b >”⇒“0ab >”,但“0ab >”⇒“0a >,0b >”. 所以,“0a >,0b >”是“2b aa b+≥”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,考查推理能力,属于中等题.二、填空题13.【分析】根据题意写出原命题的否定则其是一个真命题再据此求范围即可【详解】因为使得是假命题所以其否定:是真命题又时所以故答案为:【点睛】本题考查命题的真假关系考查三角函数求最值属于简单题在解决命题真假解析:【分析】根据题意,写出原命题的否定,则其是一个真命题,再据此求范围即可. 【详解】 因为“0,63x ππ⎡⎤∃∈⎢⎥⎣⎦使得0tan x m ≥”是假命题, 所以其否定:“,63x ππ⎡⎤∀∈⎢⎥⎣⎦,tan x m <”是真命题,又,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan 3x ∈,所以m >故答案为:)+∞.【点睛】本题考查命题的真假关系,考查三角函数求最值,属于简单题.在解决命题真假性相关问题时,若原命题不好求解,可以考虑与之相关的其他命题,比如命题的否定,逆否命题等.14.①③【分析】对于①判断其逆否命题的真假;对于②写出其逆命题再判断真假;对于③利用单位圆判定;对于④根据充要条件的定义以及两直线垂直的条件可判断;【详解】对于①若则的逆否命题为若则显然为真即原命题为真解析:①③ 【分析】对于①判断其逆否命题的真假;对于②写出其逆命题再判断真假;对于③利用单位圆判定;对于④根据充要条件的定义以及两直线垂直的条件可判断; 【详解】对于①,若1sin ,2α≠则6πα≠的逆否命题为若6πα=,则1sin 2α=,显然为真,即原命题为真,故①正确;对于②,若22,am bm <则a b <的逆命题为若a b <,则22am bm <,当0m =时显然为假,即②错误;对于③,如图在单位圆221x y +=上或圆外任取一点(),P a b ,满足“221a b +≥”,根据三角形两边之和大于第三边,一定有“1a b +≥”,在单位圆内任取一点(),M a b ,满足“1a b +≥”,但不满足,“221a b +≥”,即“221a b +≥”是“1a b +≥”的充分不必要条件,故③正确;对于④“直线0x ay -=与直线+0x ay =互相垂直”210a ⇔-=,即1a =±, 故“实数1a =”是“直线0x ay -=与直线+0x ay =互相垂直”的充分不必要条件, 故④为假命题; 故答案为:①③. 【点睛】本题以命题的真假判断与应用为载体,考查了四种命题,充要条件,不等式的性质和两条直线的位置关系等,属于中档题.15.【分析】求出命题的否定由原命题为假命题得命题的否定为真命题参变分离得到构造函数求在所给区间上的最小值【详解】解:由题意可知是真命题对恒成立令令则;令则;即在上单调递减上单调递增;故答案为:【点睛】本 解析:(,2)-∞【分析】求出命题的否定,由原命题为假命题,得命题的否定为真命题,参变分离得到1m x x <+,构造函数()1g x x x=+求()g x 在所给区间上的最小值.【详解】解:由题意可知,21[2]102x ,,x mx ∀∈-+>是真命题 1m x x ∴<+对1[2]2x ,∀∈恒成立, 令()1g x x x =+()211g x x '∴=-令()0g x '>则12x <≤;令()0g x '<则112x ≤<; 即()1g x x x =+在1,12⎛⎫⎪⎝⎭上单调递减,()1,2上单调递增; ()()min 11121g x g ∴==+=2m <∴故答案为:(,2)-∞ 【点睛】本题考查根据命题的真假求参数的取值范围,关键是将问题进行转化,属于中档题.16.【分析】先判断阴影部分表示的集合为再计算得到答案【详解】集阴影部分表示的集合为:故答案为【点睛】本题考查了韦恩图的识别将图像转化为集合的运算是解题的关键 解析:{}2,4【分析】先判断阴影部分表示的集合为U B C A ⋂,再计算得到答案. 【详解】集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B = 阴影部分表示的集合为:{}2,4U B C A ⋂= 故答案为{}2,4 【点睛】本题考查了韦恩图的识别,将图像转化为集合的运算是解题的关键.17.【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式若 解析:()1,2-【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B 的结果.【详解】因为12x -<,所以13x ,所以()1,3A =-;又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2AB =-.故答案为:()1,2-. 【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.18.R 【解析】分析:根据一元二次不等式的解法先将化简再由并集的运算求详解:因为或故答案为点睛:本题考查并集及其运算一元二次不等式的解法正确化简集合是关键研究集合问题一定要抓住元素看元素应满足的属性研究两解析:R 【解析】分析:根据一元二次不等式的解法先将,A B 化简,再由并集的运算求A B .详解: 因为{}{}2|160|44A x x x x =-<=-<<,{}{2430|1B x x x x x =-+=<或}3x >,A B R ∴⋃=,故答案为R .点睛:本题考查并集及其运算,一元二次不等式的解法,正确化简集合,A B 是关键. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合.19.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的解析:0. 【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0, 又由{}{}22,1,A B a==,则有20a=,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.20.{-112};【解析】=={-112}解析:{-1,1,2}; 【解析】A B ⋃={}{}1212,,⋃-={-1,1,2} 三、解答题21.(1)逆否命题为“若0x <或2x >,则0x <或1x >”,真命题;(2)112a ≤≤. 【分析】(1)直接写出命题“若p 则q ”逆否命题并判断真假即可; (2)由题意得{}|01x x ≤≤(){}|120x a x a a -≤≤>,即1021a a -≤⎧⎨≥⎩解不等式组可得答案. 【详解】(1)若1a =,则q :02x ≤≤,命题“若p 则q ”为“若01x ≤≤,则02x ≤≤”,命题“若p 则q ”的逆否命题为“若0x <或2x >,则0x <或1x >”,是真命题; (2)若p 是q 的充分不必要条件,{}|01x x ≤≤(){}|120x a x a a -≤≤>则1021a a -≤⎧⎨≥⎩,解得112a ≤≤,实数a 的取值范围为112a ≤≤. 【点睛】结论点睛:充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}210x x <<,{|23x x <<或}710x ≤<;(2)(-∞,3].. 【分析】(1)直接利用集合并集、补集、交集的运算法则求解即可;(2)由题意分类讨论C φ=、C φ≠,根据包含关系列不等式,从而可求实数a 的取值范围. 【详解】(1)因为集合{}37A x x =≤<,{}210B x x =<< 所以{}210A B x x ⋃=<<, ∵{3RA x x =<或}7x ≥,∴(){|23RA B x x ⋂=<<或}710x ≤<;(2)由(1)知{}210A B x x ⋃=<<,①当C =∅时,满足()C A B ⊆⊂,此时5a a -≥,得52a ≤; ②当C ≠∅时,要()C A B ⊆⋃,则55210a a a a -<⎧⎪-≥⎨⎪≤⎩,解得532a <≤;由①②得,3a ≤,综上所述,所求实数a 的取值范围为(-∞,3]. 【点睛】本题考查了集合的化简与运算,同时考查利用包含关系求参数,考查了分类讨论思想的应用,属于中档题. 23.(Ⅰ){(1,2)}A B =;(Ⅱ)[3,)m ∈+∞.【分析】(Ⅰ)联立曲线与直线的方程求出交点,结果写成点集的形式;(Ⅱ)A B ⋂≠∅转化为当[0,3]x ∈时方程213x mx x -+-=-有解,当0x =时,方程不成立;当 (0,3]x ∈时,41m x x +=+,由对勾函数的单调性求出函数4()f x x x=+在(0,3]上的值域即可求得m 的取值范围. 【详解】 (Ⅰ)24113203y x x x y x y x ⎧=-+-=⎧⎪=-⇒⎨⎨=⎩⎪≤≤⎩,所以{(1,2)}A B =;(Ⅱ)A B ⋂≠∅等价于当[0,3]x ∈时方程213x mx x -+-=-有解, 即2(1)40x m x -++=在[0,3]x ∈上有解,当0x =时,方程不成立,所以0不是方程的解; 当 (0,3]x ∈时,41m x x+=+①, 因为函数4()f x x x=+在(0,2]上单调递减,(2,3]上单调递增,(2)224f =+=, 所以()[4,)f x ∈+∞,①式有解,则143m m +≥⇒≥. 综上所述:[3,)m ∈+∞. 【点睛】本题考查集合的交集运算,根据集合交集的结果求参数,属于基础题. 24.(1){}01A B x x ⋂=<<;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)求出集合A ,利用交集的定义可求得集合A B ;(2)分A =∅和A ≠∅两种情况讨论,结合条件A B =∅可得出关于a 的不等式组,即可解得实数a 的取值范围. 【详解】 (1)当12a =时,122A x x ⎧⎫=-<<⎨⎬⎩⎭,{}01B x x =<<,因此,{}01A B x x ⋂=<<;(2)A B =∅.①当A =∅时,即121a a -≥+,2∴≤-a ; ②当A ≠∅时,则12111a a a -<+⎧⎨-≥⎩或121210a a a -<+⎧⎨+≤⎩,解得122a -<≤-或2a ≥.综上所述,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查交集的运算,同时也考查了利用交集运算结果求参数,考查运算求解能力,属于中等题. 25.(1)[)2,4A B =-,()[]2,1R B A =-;(2)()5,7,3⎛⎫-∞-+∞ ⎪⎝⎭.【分析】(1)求出集合A 、B ,利用补集的定义可得出集合A B ,利用补集和交集的定义可得出集合()RB A ;(2)分C =∅和C ≠∅两种情况讨论,根据题意得出关于实数m 的不等式(组),解出即可. 【详解】 (1)解不等式13279x ≤≤,即23333x -≤≤,解得23x -≤≤,得[]2,3A =-. 对于函数()lg 1x f x -=1040x x ->⎧⎨->⎩,解得14x <<,则()1,4B =.[)2,4A B ∴=-,(][),14,R B =-∞+∞,则()[]2,1R B A =-;(2)当C =∅时,433m m ->+,得到72m <-,符合题意; 当C ≠∅时,433332m m m -≤+⎧⎨+<-⎩或43343m m m -≤+⎧⎨->⎩,解得7523m -≤<-或7m >.综上所述,实数m 的取值范围是()5,7,3⎛⎫-∞-+∞ ⎪⎝⎭.【点睛】本题考查交集、补集与并集的计算,同时也考查了利用交集的结果求参数,解题的关键就是对集合C 是否为空集进行分类讨论,考查运算求解能力,属于中等题. 26.(1)5m ≥或3m ≤- (2)当01m <≤时,()1,2AB m =-+;当14m <<时,()2,3A B m =-【分析】 (1)若AB =∅,则23m -≥或21m +≤-,解得实数m 的取值范围;(2)若2B ∈则()0,4m ∈,结合交集定义,分类讨论可得A B .【详解】 解:(1)若AB =∅,则23m -≥或21m +≤-,即5m ≥或3m ≤-.所以m 的取值范围为5m ≥或3m ≤-. (2)∵2B ∈,则22m -<且22m +>, ∴04m <<. 当01m <≤时,()1,2AB m =-+;当14m <<时,()2,3A B m =-.【点睛】本题考查集合的交集运算,元素与元素的关系,分类讨论思想,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与常用逻辑用语考点测试1 集合高考概览本考点在高考中是必考知识点,常考题型为选择题,分值5分,低难度考纲研读1.了解集合的含义,体会元素与集合的属于关系2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题3.理解集合之间包含与相等的含义,能识别给定集合的子集4.在具体情境中,了解全集与空集的含义5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集7.能使用韦恩(Venn)图表达集合的关系及运算一、基础小题1.已知集合A={0,1,2},B={y|y=2x,x∈A},则A∩B=( )A.{0,1,2} B.{1,2}C.{1,2,4} D.{1,4}答案 B解析由题意可知B={1,2,4},所以A∩B={1,2},故选B.2.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( ) A.1 B.2 C.3 D.4答案 B解析集合M={a1,a2}或{a1,a2,a4},有2个,故选B.3.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是( )答案 B解析由N={x|x2+x=0},得N={-1,0},则N M.故选B.4.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x-y∈A},则B的子集共有( ) A.2个 B.4个 C.6个 D.8个答案 A解析 由已知B ={(2,1)},所以B 的子集有2个,故选A .5.下列六个关系式:①{a ,b }⊆{b ,a },②{a ,b }={b ,a },③{0}=∅,④0∈{0},⑤∅∈{0},⑥∅⊆{0},其中正确的个数为( )A .6B .5C .4D .3 答案 C解析 ①正确,任何集合是其本身的子集.②考查了元素的无序性和集合相等的定义,正确.③错误,{0}是单元素集合,而∅不包含任何元素.④正确,考查了元素与集合的关系.⑤集合与集合的关系是包含关系,错误.⑥正确,∅是任何集合的子集.故选C .6.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},A ∩(∁U B )={3},则B =( )A .{1,2}B .{2,4}C .{1,2,4}D .∅ 答案 A解析 由∁U (A ∪B )={4},得A ∪B ={1,2,3}.由A ∩(∁U B )={3},得3∈A 且3∉B .现假设1∉B :∵A ∪B ={1,2,3},∴1∈A .又∵1∉A ∩(∁U B )={3},∴1∉∁U B 即1∈B ,矛盾.故1∈B .同理2∈B .7.已知I 为全集,B ∩(∁I A )=B ,则A ∩B =( ) A .A B .B C .∁I B D .∅ 答案 D解析 由B ∩(∁I A )=B 可得B ⊆∁I A .因为A ∩(∁I A )=∅,所以A ∩B =∅.故选D . 8.已知集合A =xy =x +1x -2,B ={x |x >a },则下列选项不可能成立的是( ) A .A ⊆B B .B ⊆A C .A ∩B ≠∅ D .A ⊆∁R B 答案 D解析 由⎩⎪⎨⎪⎧x +1≥0,x -2≠0,得x ≥-1且x ≠2,所以A =[-1,2)∪(2,+∞),又B =(a ,+∞),所以选项A ,B ,C 都有可能成立,对于选项D ,∁R B =(-∞,a ],不可能有A ⊆∁R B .故选D .9.如图,已知全集U =R ,集合A ={x |x <-1或x >4},B ={x |-2≤x ≤3},则图中阴影部分表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤3} 答案 D解析 U =R ,A ={x |x <-1或x >4},所以∁U A ={x |-1≤x ≤4},则阴影部分表示的集合为B ∩(∁U A )={x |-2≤x ≤3}∩{x |-1≤x ≤4}={x |-1≤x ≤3},故选D .10.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -2≤0,B ={x |1<x ≤2},则A ∩B =( ) A .(1,2) B .(1,2] C .[-1,2] D .[-1,2) 答案 A解析 A ={x |-1≤x <2},B ={x |1<x ≤2},∴A ∩B ={x |1<x <2}.故选A .11.已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},若A ∩B =B ,则实数a 的值为( ) A .0或1或2 B .1或2 C .0 D .0或1 答案 A解析 由题意A ={1,2},当B ≠∅时,∵B ⊆A ,∴B ={1}或{2}.当B ={1}时,a ·1-2=0,解得a =2;当B ={2}时,a ·2-2=0,解得a =1.当B =∅时,a =0.故a 的值为0或1或2.故选A .12.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是( )A .(-∞,2]B .(2,4]C .[2,4]D .(-∞,4] 答案 D解析当B =∅时,有m +1≥2m -1,则m ≤2;当B ≠∅时,若B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上有m ≤4,故选D . 二、高考小题13.(2018·全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2} 答案 A解析根据集合交集的概念,可以求得A∩B={0,2}.故选A.14.(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2}答案 C解析因为集合A={x|x≥1},所以A∩B={1,2}.故选C.15.(2018·北京高考)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( ) A.{0,1} B.{-1,0,1}C.{-2,0,1,2} D.{-1,0,1,2}答案 A解析化简A={x|-2<x<2},∴A∩B={0,1},故选A.16.(2018·天津高考)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}答案 C解析由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x ∈R|-1≤x<2}={-1,0,1}.故选C.17.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅答案 A解析由3x<1,得x<0,所以B={x|x<0},故A∩B={x|x<0}.故选A.18.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3} B.{1,0} C.{1,3} D.{1,5}答案 C解析∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.19.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为( )A.3 B.2 C.1 D.0答案 B解析集合A表示以原点O为圆心,以1为半径的圆上的所有点的集合,集合B表示直线y=x上的所有点的集合.由图形可知,直线与圆有两个交点,所以A∩B中元素的个数为2.故选B.20.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8 C.5 D.4答案 A解析∵x2+y2≤3,∴x2≤3,∵x∈Z,∴x=-1,0,1,当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1,所以A中元素共有9个,故选A.三、模拟小题21.(2018·广东华南师大附中测试三)已知集合A={-1,0},B={0,1},则集合∁A∪B(A∩B)=( )A.∅ B.{0}C.{-1,1} D.{-1,0,1}答案 C解析A∪B={-1,0,1},A∩B={0},则∁A∪B(A∩B)={-1,1},故选C.22.(2018·湖北联考二)已知集合A=x∈Z x-2x+2≤0,B={y|y=x2,x∈A},则集合B的子集的个数为( )A.7 B.8 C.15 D.16答案 B解析由题意得集合A={-1,0,1,2},则集合B={0,1,4},所以集合B的子集的个数为23=8,故选B.23.(2018·广东三校联考)设集合M={x|x2=10x},N={x|lg x<1},则M∪N=( ) A.(-∞,10] B.(0,10]C.[0,10) D.[0,10]答案 D解析因为M={x|x2=10x}={0,10},N={x|lg x<1}={x|0<x<10},所以M∪N={x|0≤x≤10},故选D.24.(2018·山西、内蒙六校联考四)设集合A={x|x2-x-6<0},则满足A∩B=B的集合B不可能为( )A.{0,1} B.(0,3)C.(-2,2) D.(-3,1)答案 D解析因为A={x|x2-x-6<0}={x|-2<x<3},又A∩B=B,所以B⊆A,所以集合B不可能为(-3,1),故选D.25.(2018·江西赣州摸底)已知集合A={x|x2-x>0},B={x|log2x<0},则( ) A.A∩B={x|x<0} B.A∪B=RC.A∩B=∅ D.A∪B={x|x>1}答案 C解析由于集合A={x|x2-x>0}={x|x<0或x>1},B={x|log2x<0}={x|0<x<1},则A∩B =∅,故选C.26.(2018·湖北八校3月联考)设集合P={3,log3a},Q={a,b},若P∩Q={0},则P∪Q=( )A.{3,0} B.{3,0,2}C.{3,0,1} D.{3,0,1,2}答案 C解析因为P∩Q={0},所以log3a=0,所以a=1,b=0,所以P∪Q={0,1,3},故选C.27.(2018·长沙雅礼、河南实验联考)设集合A={(x,y)|x2+y2=1},B={(x,y)|y =3x},则A∩B的子集的个数是( )A.4 B.3 C.2 D.1答案 A解析因为指数函数y=3x的图象与圆x2+y2=1有两个交点,则A∩B中含有2个元素,所以A∩B有4个子集,故选A.28.(2018·山东太原二模)设U为全集,集合A,B,C满足A⊆C,B⊆∁U C,则下列结论中不成立的是( )A.A∩B=∅ B.B⊆(∁U A)C.(∁U B)∩A=A D.A∪(∁U B)=U答案 D解析 用Venn 图表示出全集U ,集合A ,B ,C 的关系如图,由图可得选项A ,B ,C 都正确,又A ⊆∁U B ,则A ∪(∁U B )=∁U B ,D 错误,故选D .一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2018·山东聊城月考)已知R 为全集,A ={x |log 12(3-x )≥-2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪5x +2≥1. (1)求A ∩B ;(2)求(∁R A )∩B 与(∁R A )∪B .解 (1)由log 12(3-x )≥-2,即log 12(3-x )≥log 124,得⎩⎪⎨⎪⎧3-x >0,3-x ≤4,解得-1≤x <3,即A ={x |-1≤x <3}.由5x +2≥1,得x -3x +2≤0,解得-2<x ≤3, 即B ={x |-2<x ≤3},∴A ∩B ={x |-1≤x <3}. (2)由(1)得∁R A ={x |x <-1或x ≥3},故(∁R A )∩B ={x |-2<x <-1或x =3},(∁R A )∪B =R .2.(2019·云南师大附中月考)设集合A =x 12≤2x ≤4,B ={x |x 2+(b -a )x -ab ≤0}.(1)若A =B 且a +b <0,求实数a ,b 的值;(2)若B 是A 的子集,且a +b =2,求实数b 的取值范围. 解 (1)A =x 12≤2x≤4={x |-1≤x ≤2},∵a +b <0,∴a <-b ,∴B ={x |(x -a )(x +b )≤0}={x |a ≤x ≤-b }, ∵A =B ,∴a =-1,b =-2.(2)∵a +b =2,∴B ={-b ≤x ≤2-b }, ∵B 是A 的子集,∴-b ≥-1且2-b ≤2,解得0≤b≤1.。