高分子化学与物理基础名词解释
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单体:能通过相互反应生成高分子的化合物。
高分子或聚合物:由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。
相对分子质量低于1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
相对分子质量大于1 000 000的称为超高相对分子质量聚合物。
主链:构成高分子骨架结构,以化学键结合的原子集合。
侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。
支链可以较小,称为侧基;也可以较大,称为侧链。
聚合反应:由低分子单体合成聚合物的反应称做~.
重复单元:聚合物中组成和结构相同的最小单位称为~,又称为链节。
结构单元:构成高分子链并决定高分子性质的最小结构单位(或原子组合)称为~
单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。
连锁聚合(Chain Polymerization ):活性中心引发单体,迅速连锁增长的聚合。
烯类单体的加聚反应大部分属于连锁聚合。
连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。
逐步聚合(Step Polymerization ):无活性中心,单体官能团之间相互反应而逐步增长。
绝大多数缩聚反应都属于逐步聚合。
加聚反应(Addition Polymerization ):即加成聚合反应, 烯类单体经加成而聚合起来的反应。
加聚反应无副产物。
缩聚反应(Condensation Polymerization ):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。
该反应常伴随着小分子的生成。
线型聚合物:指许多重复单元在一个连续长度上连接而成的高分子.
热塑性塑料(Thermoplastics Plastics):是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。
聚苯乙烯(PS )、聚氯乙烯(PVC )、聚乙烯(PE )等均属于此类。
热固性塑料(Thermosetting Plastics):在加工过程中形成交联结构,再加热也不软化和熔融。
酚醛树脂、环氧树脂、脲醛树脂等均属于此类。
应力松弛:在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐减弱的现象
蠕变:在一定温度和较小的恒定应力下,聚合物形变随时间而逐渐增大的现象。
蠕变反映了材料的尺寸稳定性和长期负载能力
时温等效原理:从分子运动的松驰性质可以知道,同一个力学松驰现象,既可在较高的温度下,较短的时间内观察到,也可以在较低的温度下,较长的时间内观察到。
因此,升高温度与延长时间对分子运动和粘弹性都是等效的。
WLF 方程:12()log ()
S T S C T T a C T T --=+- 脆性断裂:在材料屈服之前发生的断裂称为~
韧性断裂:在材料屈服之前发生的断裂称为~
溶解度参数:内聚能密度的平方根,即1/21/2()()E CED V
δ∆== 相似相溶原理:分子结构相似的物质可以相互溶解,极性分子易溶于极性分子,非极性分
子易溶于非极性溶剂中。
1、结构单元:单体通过聚合反应,在大分子链中形成的单元。
2、单位单元:聚合物的结构单元与单体的元素组成相同,只是电子结构有所改变,因此可称为结构单元。
3、聚合度:聚合度是衡量聚合物分子大小的指标。
以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以DP 表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n X 表示。
4、热塑性:加热时塑化,冷却时固化成型,可反复进行。
5、热固性:加热时发生交联固化,继续加热不塑化。
6、均缩聚:由一种单体聚合而成的聚合物。
7、混缩聚:一种或几种含有二个以上官能团的单体化合成为聚合物,同时析出低分子副产物的过程。
8、共缩聚:由两种以上单体共聚而成的聚合物。
9、官能度:单体参加聚合反应能形成新的化学键的数目。
一般而言,官能度=单体官能团数目。
10、平均官能度:在两种或两种以上单体参加的混缩聚或共缩聚反应中,在达到凝胶点以前的线性缩聚阶段,反应体系中实际能够参加反应的官能团总数与单体总物质量之比,f 。
11、引发效率:引发剂分解后,往往只有一部分用来引发单体聚合,这部分引发剂占引发剂分解或消耗总量的分数称作引发剂效率(f )。
12、笼蔽效应:溶液聚合中,浓度较低的引发剂分子分解出的初级自由基,处于大量溶剂分子的高粘度聚合物溶液的“笼子”包围之中,部分初级自由基无法与单体分子接触,初级自由基双基终止,向引发剂链转移,向溶剂分子链转移,导致引发剂效率降低。
13、诱导分解:诱导分解实际上是自由基向引发剂的转移反应,转移结果,原来的自由基终止成稳定大分子,另产生了1个新自由基。
转移前后自由基数并无增减,徒然消耗了1分子引发剂,从而使引发剂效率降低。
14、动力学链长:在聚合动力学研究中,长将一个活性种从引发开始到链终止所消耗的单体分子数定义为动力学链长v,无链转移时,相当于每一链自由基所连接的单体单元数,可由链增长速率和链引发速率之比求得。
(稳态时,链引发速率等于链终止速率)
15、活性聚合物:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性的聚合物叫活性聚合物。
16、遥爪聚合物:一种分子两端带有反应性官能团的液体聚合物,可用作液体橡胶、涂料、粘合剂、密封剂等,最后通过活性端基的相互作用,扩链或交联成高分子量的聚合物。
17、化学计量聚合物:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。
18、Ziegler-Natta引发剂:元素周期表中Ⅳ-Ⅷ族过渡金属化合物与Ⅰ-Ⅲ主族的金属烷基化合物组成的二元体系,体系具有引发α-烯烃进行配位聚合的活性,将该二元体系称之为Ziegler-Natta引发剂。
19、竞聚率:将均聚和共聚链增长速率常数之比定义为竞聚率r,以表征两单体的相对活性。
20、悬浮聚合:非水溶性单体在有分散剂的水中借助于搅拌作用分散成细小的液滴而进行的聚合反应。
21、乳液聚合:非水溶性或低水溶性的单体在水中由乳化剂(借助于搅拌作用)分散成乳液状态的聚合反应。
22、本体聚合:不加溶剂和介质,仅加单体和少量引发剂(或热、光辐射等引发)进行的聚
M调节剂。
类似于熔融聚合,区别在于反应温度。
合和反应可加少量色料、增塑剂和少量
x
23、溶液聚合:将单体和引发剂溶于适应注剂(包括水溶液聚合)中的聚合。
24、反应程度:通常指已经参加了反应的官能团与起始官能团的物质的量之比,p。
25、配位聚合:金属有机化合物与过渡金属化合物的络合引发体系,单体在聚合过程中通过向活性中心进行配位之后,再插入活性中心离子与反离子之间而完成聚合过程。
26、定向聚合:单体形成立体规整性聚合物的聚合过程。
27、临界胶束浓度CMC:能够形成胶束的最低乳化剂浓度。
CMC越小,越易形成胶束,乳化能力越强。
28、增溶胶束:包含有单体的胶束。
由于乳化剂的存在而增大难溶单体在水中的溶解度,产生胶束增溶现象。
29、三相平衡点:乳化剂在水中能以分子分散、胶束、凝胶(未完成溶解的乳化剂分子)三
种状态稳定存在的最低温度。
1.高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。
2.近程结构:构成大分子链的结构单元的化学组成和物理结构。
3.远程结构:由数目众多结构单元构成的分子链的长短及其空间形态和结构。
4.凝聚态结构:从物理学角度界定聚合物的微观结构类型。
5.化学结构:除非通过化学键断裂并同时生成新键才能产生改变的分子结构。
6.物理结构:而将分子链内,链间或基团与大分子之间的形态学表述均界定为物理结构。
7.构型:大分子链内相邻原子或原子团之间所处空间相对位置的表征。
8.构象:指大分子链内非化学键连接的邻近原子或原子团之间空间相对位置的具体表征或状态描述。
9.链段:链段指分子链内可自由取向并在一定范围独立运动的最小单元。
10.链段长:既可用其实际长度l表示,也可用其所含结构单元数N表示。
11.均方末端距:众多分子链矢量末端距的均平方值,系表征线型聚合物分子链柔性的重要参数。
12.均方半径:由组成分子链的所有链段的质心至整个分子链质心矢量距离的均方值。
13.热力学链段长与动力学链段长:按照统计势力学方法测定并计算的链段长度称为“热力学链段长度”。
按照动力学方法测定并计算的链段长度则称为“动力学链段长度”,其表征外界条件改变时分子链从一种平衡态构象转变为另一种平衡态构象的难易和快慢。
14.自由结合链:内旋转不受任何限制。
15.Huhn等效链:以链段为内旋转单元的高斯链。
16.无扰尺寸A:选择适当溶剂分子对聚合物分子链构象和结构参数的影响降到最低甚至可忽略的理想条件下测定的分子链尺寸。
17.熔点:晶体完全熔化时的温度。
18.熔限:没有一个确定的熔点,而是一个相对较宽的温度范围。
19.凝聚态:根据微观结构有序程度差异而将聚合物归类于非晶态,晶态,取向态,液晶态和多组分5种凝聚态。
20.力学态:根据宏观力学特性将聚合物归类于玻璃态,橡胶态和黏流态3种力学态。
21.内聚能:将组成1 mol固态或液态物质的所有分子远移到彼此不再有相互作用的距离所消耗的能量,或者众多分子从无限远处凝聚成为1mol固态或液态时所释放的能量。
22.内聚能密度:单位体积物质的内聚能,等于该物质的内聚能与摩尔体积之比。
23.溶度参数:物质内聚能密度的平方根即溶度参数,同样是表征物质分子间作用力强弱的指标。
24.结晶速率:单位时间内非晶态聚合物转化为晶态聚合物的质量百分率。
25.结晶度:将聚合物假定为由完全结晶和完全未结晶的部分组成,完全结晶部分与聚合物总量之百分比。
26.主期结晶和次期结晶:聚合物结晶过程大部分时间内结晶速率符合Avrami方程,此阶段称为主期结晶阶段。
结晶最后阶段却发生偏离,这个阶段称为次期结晶阶段。
当晶体体积增长到彼此开始接触和碰撞时,必将阻止晶体尺寸的继续增加,表明主期结晶的结束。
接着进行的则是残留在晶片内无定形分子链继续进行有序化过程,以减少晶体内部结构缺陷,这就是次期结晶过程。
27.取向:在外力作用下分子链,链段和微晶均可沿外力方向有序排列。
28.取向度:表征取向态聚合物结构与性能关系的一个重要参数。
29.取向态:介于晶态与非晶态之间的一类特殊凝聚态结构的聚合物类型,其力学性能呈各向异性。
30.液晶态聚合物:兼具液体和晶体的部分特性,处于过渡状态的特殊聚合物类型。
31.化学交联:聚合物分子链间通过化学键而将线型分子转变为三维网状结构的过程。
32.物理交联:仅通过分子链间彼此缠绕,互贯或扭结等形式而形成类似纺织物的网状结构。
33.松弛过程与松弛时间和松弛特性:聚合物在外界条件改变或受外力作用,需要较长时间才能从一种平衡状态过渡到另一平衡状态,此过程即松弛过程。
完成该过程所需时间即松弛时间。
聚合物所特有,对时间具有强烈依赖的特性称为松弛特性。
34.物理老化:指一般聚合物制品的许多性能随时间推移而发生变化的现象,其本质原因则是非链段的分子内运动的持续缓慢进行,从非平衡态逐渐向平衡态过渡的结果。
35.化学老化:指因化学因素造成聚合物化学组成和结构改变并最终导致其性能逐渐劣化的过程,其本质原因则是聚合物化学组成和物理结构的逐渐改变。
36.牛顿流体:流动过程中其切应力与流速梯度成正比的流体。
37.非牛顿流体:聚合物熔体和浓溶液的流动却不服从牛顿定律,其切黏度并非确定值而是随切变速率变化而改变。
38.松弛时间谱:松弛过程所对应的一系列松弛时间视为在一定范围内连续分布。
39.次级转变:运动主体较小,运动级别较低,运动方式各异的热运动过程同样可以在一定温度范围内发生或被冻结,这是一类相对于玻璃化转变过程更低级别的松弛过程。
40.法向应力效应:具有弹性形变能力的聚合物熔体在高速旋转运动时,往往会受到旋转轴向应力作用而沿着轴向上爬,呈现中间高,边沿低的现象。
41.挤出膨胀效应:聚合物熔体发生挤出膨胀的本质原因,是熔体在模孔内受力产生的可逆弹性形变在离开模口以后进行的松弛过程,最终导致熔体力图恢复受力前的体积而产生膨胀。
42.应变:无惯性移动的材料受外力作角而产生形状和尺寸的相对改变。
43.应力:单位截面积材料所承受与外力方向相反,源于分子内结构改变而产生的内作用力。
44.普弹性:一般聚合物在玻璃化温度之下表现弹性模量较大,仅产生1%~5%的可回复形迹的性能。
45.高弹性:一般具有柔性分子链的非晶态聚合物在玻璃化温度与黏流温度之间表现弹性模量很小,却可产生100%~2000%的可回复形变的特性。
46.熵弹性:橡胶在拉伸力作用下熵值减小,外力解除后熵值增加的自发过程使其恢复原来状态。
47.蠕变:恒温条件下,恒定应力作用于材料产生的应变随时间延长而增大的现象。
48.应力松弛:发生弹性应变的材料维持其应变恒定所需应力随时间延长而逐渐减小的现象。
49.时温等效原理:同一黏弹过程既可在较高温度和较短时间(或较高频率)外力作用下完成,也可在较低温度和较长时间(或较低频率)外力作用下完成。
50.弹性滞后:聚合物在交变应力作用下应变落后于应力的现象称为弹性滞后现象,在发生弹性形变的同时由于内摩擦引起的能量耗散过程,使得施加应力过程和解除应力过程得到的应变-应力曲线往往不会重合。
51.力学损耗:又称阻尼或内耗,是聚合物特有,由于内摩擦引起的能量耗散过程,聚合物在交变应力作用下,聚合物的黏性表现为力学损耗,其大小可用损耗模量和损耗正切角等表示。
52.推迟时间:在恒定应力条件下,聚合物产生的蠕变是按照指数形式发展的,τ具有时间量纲,是该模型的牲时间常数。
53.黏弹性:推迟时间是材料的黏度与弹性模量之比值,说明材料的蠕变是黏性和弹性综合作用的结果,具体表现为动力学过程的推迟弹性行为,而弹性被推迟的程度则决定于材料黏度η和模量E的相对大小。
54.泊松比:拉伸试验中将材料横向单位宽度减小值与纵向单位长度增加值之比。
55.屈服:材料发生普弹性形变后,应力如果继续增加并超过材料之弹性极限,则可能出现脆性断裂或延性屈服,分别为脆性和韧性材料的力学表现。
所谓“屈服”系指材料在受到拉伸剪切应力分量的作用下而表现出的整体变形。
56.屈服点:将达到材料屈服时的应力定义为屈服点。
57.银纹化现象:聚合物在拉伸应力作用下产生裂而不断,内表面积达100M2/cm2的微细丝状空穴,光线经空穴内表面多次反射和折射以后使材料变得不透明,致使透明聚合物内部显现银白色,由此而得名。
银纹化丝状体内的聚合物已发生很大的应变,银纹化过程往往伴随着聚合物体积的膨胀。
58.第2维利系数与Huggins参数:第2维利系数A与Huggins参数χ意义类似,均指聚合物分子链段之间以及链段与溶剂分子之间的相互作用,溶液中链段间的排斥作用与链段-溶剂分子间作用竞争结果的量度。
A的数值大小决定于相互作用参数χ、溶剂的偏摩尔体积和聚合物的相对密度等因素,这与聚合物-溶剂体系的类型、溶剂化作用强弱、大分子在溶液中的存在形态以及试验温度等因素相关。
χ=(Z-2)ΔE12/κT
59.相对黏度:将溶液黏度与纯溶剂黏度之比,即两者流过毛细管黏度计耗费的时间之比。
60.增比黏度:将溶液相对于纯溶剂黏度增加的幅度定义为增比黏度。
数值上等于相对黏度减1。
61.比浓黏度:将增比黏度与试液浓度之比定义为比浓黏度。
62.特性黏度:无限稀释溶液至浓度趋近于0时的比浓黏度或比浓对数黏度。
63.Θ温度:指溶剂-聚合物混合超额偏摩尔混合热与超额混合熵之比值,即该过程能够自动进行的下限温度。
或溶液超额化学位等于零的温度。
或将聚合物分子链处于“无扰状态”而具有“无扰尺寸”的温度。
64.Θ溶剂:指满足溶液超额化学位等于零的溶剂。
65.构象熵:溶解过程的混合熵。
66.溶剂化熵:溶剂化作用促使大分子链的柔性改变而产生的熵增量ΔS。
67.外增塑:在聚合物中加入增塑剂而产生的增塑作用。
68.内增塑:大分子主链上带有适当长度支链的聚合物或者由两种单体合成的共聚物往往表现出具有增塑作用的特性,将这种由化学途径实现的增塑作用称为内增塑。
69.退火:将材料升温到接近溶点并维持一定时间的过程。
70.淬火:将温度升高到接近熔点的材料急速冷却到室温的过程。