蓄电池修复新知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蓄电池修复新知识
电池修复后容量小的原因
现在针对蓄电池的所有修复手段,对于旧蓄电池的修复,都存在着一个缺陷:在修复过程中无法改变正极板原始数据。
而电动车用电池正是正极板问题中最多的一种。
我们可以排除所有的意外损坏:断路、硬短路、物理损伤等等,可是我们无法区别硫化和正极板容量失效。
因为对于电池来讲,负极板的硫化与正极板的容量下降究竟哪个是主因可以凭经验判断,但两个因素各占多大比例就很难判断。
举个例子:电池的容量主要取决于正极板容量与负极板容量当中较低的那一个(这是理想化了的情况,其实电解液密度,硫酸铅的分布、大小等等均对容量有影响)。
如果一块12V10AH的电池,在使用后期,其负极板能放出5AH的电量,而正极板能放出7AH的电量。
则在大部分情况下,消除硫化的措施,可以让此电池放出7AH的电量。
但随之而来的问题就出现了:放出7AH的电量,正极板的软化速度会加快,从而正极板的容量下降速度会加快。
从而电池的容量下降也会加快。
我们会发现,修复后的电池有许多没有效果。
这是另一种情况:正极板最多能放出5AH的电量,而负极板能放出7AH的电量。
这种情况下,修复后的电池,还是只能放出5AH的电量。
从而因极板的原始质量问题,使电池的修复无效。
现在的电池设计方案当中,电解液通常是过量的。
原因是它最便宜。
而负极板的容量一般大于正极板,原因是:一:天气的影
响对负极活性物质大。
为在天冷时保证足够的容量,负极的容量要设计的大一些。
第二:负极活物质本身其利用率高且体积小,故而负极板的厚度小,但正负极板的厚度比例不能偏差太大,所以负极活物质相对多一些。
第三:负极化成容易,为保证正极板能化成足,负极的活性物质也不能太少。
否则不利电池的流水化成(即会影响化成工序安排)。
从现在来看,要想达到电池的长寿命,最好使用低一些密度的硫酸,可是这受两个因素影响:一:低密度硫酸的冰点高,不能在严寒天气下使用。
二:需要更大的体积来容纳更多的硫酸,而这与追求的高体积比容量背道而驰。
所以采用的硫酸密度不能降低。
如果想尽量避免正极板出问题,现在可行的方法就是提高正极板容量,但前面负极板容量大的理由就会受到影响。
有人提出过利用硫酸来控制容量,从理论上来讲,这样可以使正极板容量下降的速度降到最低,而且相对于目前的电池来讲,等于是使电池总是处于较浅的放电深度运行。
但问题出现在设计出来的产品,其体积比现行产品大,成本也高。
这不仅增大了产品的体积和重量,而且增加了厂家的成本。
简直是与虎谋皮。
较理想的情况就是想其它的办法来提高正极板的寿命。
人们通过许多的方法来试验,结果到目前为止,除了添加细纤维增加正极活物质的联结力外,没有其它任何一种方法被大家公认对正极板寿命有益。
这就是修不好电池的原因(所以,当我们在市场上作电池修理业务时,应尽量选择一些原是质量较好的电池来修,以便提高电池的修复率,降低不必要的材料浪费。
)。
怎样消除蓄电池硫化
首先让我们来了解一下什么叫电池硫化,产生硫化的原因是什么以及它的危害与特点。
1、什么是电池硫化?
在极板上生成白色坚硬的硫酸铅结晶,充电时又非常难于转化为活性物质的硫酸铅,这就是硫酸铅盐化,简称为“硫化”。
生成这种硫酸铅晶体的主要原因是过放电或放电后长期放置时,硫酸铅微粒在电解液中溶解,呈饱和状态,这些硫酸铅在温度低时重新结晶,而在结晶
时硫酸铅析出。
这样在一度析出的粒子一次又一次地因温度变动而生长、发展,使结晶粒增大。
这种硫酸铅的导电性不良、电阻大,溶解度和溶解速度又很小,充电时恢复困难。
因而成为容量降低和寿命缩短的原因。
2、产生硫化的原因是什么?
正常的铅蓄电池在放电时形成硫酸铅结晶,充电时比较容易地还原为铅。
如果电池的使用和维护不善,例如经常充电不足或过放电,负极上就会逐渐形成一种粗大坚硬的硫酸铅。
这种硫酸铅用常规的方法充电很难还原,要求充电电压很高,由于充电时充电接受能力很差,大量析出气体。
这种现象通常发生在负极,被称为不可逆硫酸盐化。
它引起蓄电池容量下降,甚至成为蓄电池寿命终止的原因。
一般认为,这种不可逆硫酸盐化的原因是硫酸铅的重结晶,粗大结晶形成之后溶解度减少。
硫酸铅的重结晶使晶体变大,是由于多晶体系倾向与减少其表面自由能的结果。
从结晶过程的规律可知,小结晶尺寸的溶解度大于大结晶尺寸的溶解度。
因此,当长期充放或过放电时,大量的硫酸铅存在,再加上硫酸浓度和温度的波动,个别的硫酸铅晶体就可以依附小晶体的溶解而长大。
3、电池硫化的危害是什么?
轻微的电池硫化,会降低电池的容量,电池内阻增加,严重时则电极失效,充不进电。
轻微的电池硫化,尚可用一些方法使它恢复,严重时采用一般的充电方法是不能够恢复容量的。
4、电池硫化的特点是什么?
硫化的电池最明显的外特征是电池容量下降,内阻增加。
当然,如果电池失水和正极板软化也具有这个外特性。
鉴别电池是否硫化的方法,往往是采用脉冲修复仪对电池进行脉冲修复,如果容量上升,就是硫化,如果没有一点点容量上升,电池容量下降可能是其它原因产生
5、消除电池硫化的方法有以下几种,具体是:
1)大电流充电修复
若认为吸附是造成硫酸盐化的原因,则可以用高电流密度充电(达100 m A /c㎡)。
在这样的电流密度下,负极可以达到很负的电势值,这时远离零电荷点,使φ-φ(0)<0,改变了电极表面带电的符号,表面活性物质会发生脱附,特别是对阴离子型的表面活性物质,这种有害的表面活性物质从电极表面上脱附以后,就可以使充电顺利进行。
目前国内几乎没有人使用这种方法处理不可逆硫酸盐化,可能出于以下考虑:高电流密度下极化和欧姆压降增加,这部分能量转化为热,使蓄电池内部温度升高,同时又有大量的气体析出,尤其是正极大量气析出气体,其冲刷作用易使活性物质脱落。
但是这样做的缺点是很容易造成失水,而且也容易使一些本来可以修复的电池在大电流充电的过程中极板被击穿,造成不必要的麻烦。
使修复率和效果大打折扣。
2)脉冲修复
按照原子物理学和固体物理学的原理,硫离子具有5个不同的能级状态,通常处于亚稳定能级状态的离子趋向与迁落到最稳定的共价键能级而存在。
在最低能级(即共价键能级状态),硫以包含8个原子的环形分子形式存在,这8个原子的环形分子模式是一种稳定的组合,难以被打碎,形成电池的不可拟硫酸盐化——硫化。
多次发生这样的情况,就形成了一层类似与绝缘层一样的硫酸铅结晶。
要打碎这些硫酸盐层的束缚,就要提升原子的能级到一定的程度,这时候在外层原子加带的电子被激活到下一个更高的能带,使原子之间解除束缚。
每一个特定的能级都有唯一的谐振频率,必须提供给一些能量,才能够使得被激活得分子迁移到更高得能级状态,太低得能量无法达到跃迁所需要得能量要求,但是,过高的能量会使已经脱离了束缚而跃迁的原子处于不稳定状态,又回落到原来的能级。
这样,必须通过多次
谐振,使得其中一次脱离了束缚,达到最活跃的能级状态而又没有回落到原来的能级。
这样,就转化为溶解于电解液的自由离子,而参与电化学反应。
很高的电压可以实现,就是大电流高电压充电的方法,谐振也可以实现,就是脉冲谐波谐振的方法。
从固体物理上来讲,任何绝缘层在足够高的电压下都可以击穿。
一旦绝缘层被击穿,粗大的硫酸铅就会呈现导电状态。
如果对高电阻率的绝缘施加瞬间的高电压,也可以击穿大的硫酸铅结晶。
如果这个高电压足够短,并且进行限流,在打穿绝缘层的条件下,充电电流不大,也不至于形成大量析气。
电池析气量强正相关于充电电流和充电时间,如果脉冲宽度足够,就可以在保证击穿粗大硫酸铅结晶的条件下,同时发生的微充电来不及形成析气。
这样,实现了脉冲消除硫化。
这样做的缺点是修复之后达到的效果也不理想,修复的时间就会很长。
3)添加修复剂与脉冲修复相结合
修复剂添加之后在外加电场的作用下,用它自身的活性物质分解硫酸铅晶体粒子,使晶体表面的活性物质(pb/pbo2)活化再生,硫酸根离子回到电解液中;对未生成的硫酸铅晶体,这些微颗粒在外加电场的作用下,会均匀吸附于电极上,使硫酸铅晶体在电极的界面上永远不会产生。
而且可以避免因平时过充电造成的失水现象。
有效的提高了整个蓄电池的活性物质利用率,并使电池的电极长期处于新电池状态。
从根本上克服了蓄电池因硫酸铅盐化而造成电池容量下降的缺点,延长了铅酸蓄电池的寿命,它可使任何一只没有物理损坏的铅酸蓄电池都能从根本上解决寿命短、容量下降快的致命弱点。
通过以上比较,可以得出的结论就是,不管用单纯的大电流修复也好,还是用脉冲修复也好都不能从根本上抑制硫酸盐化,这样一来所修复的效果和持续的时间达不到理想的效果。
通俗的可以说用仪器修复是属于物理疗法,而加修复剂是属于化学疗法。
只有两者结合起来才能达到更好的效果。
就好比是中西医结合。
UPS PS是英文Uninterrupted Power System的缩写,中文即称不间断电源系统。
UPS是一种含有储能的装置,以逆变器、电池组等为主要组成部分的恒压、恒频的不间断电源。
当市电正常时,UPS将市电稳压或稳压、稳频后供负载使用,同时向机内电池充电;当市电中断时(异常时),UPS立即在4-10毫秒内或“零”中断时间内将蓄电池的电源通过逆变转换的方式向负载继续供应电力,使负载维持正常的工作,以便保存资料并保护负载的软硬件不受损坏。
目前行业内的UPS电池组主要以铅酸蓄电池为主。
1.为什么要用UPS?
简要从以下两方面阐述:一方面,UPS是在市电发生故障时(停电或异常时),为我们的工作和生活提供一定能量的备用电力,从而使我们能正常的工作和生活,并确保了我们的工作质量和人民生命财产不受影响,机器、设备、仪器不受损害。
另一方面,UPS是确保我们在日常工作和生活中能享用高质量电力的前提下,提高了我们的工作效率,同时也延长了机器、设备仪器的使用寿命。
众所周知,在公共电网中存在着电源污染较为严重。
如:电源过压、欠压、电压下陷、电压浪涌、电压瞬变、电压尖峰、频率偏移、谐波失真等,这些现象都会严重影响我们的工作和机器设备的正常运行。
特别是一些重要部门的主要机器、设备和仪器对工作环境要求严格的更显突出。
综上所述,为保证我们能提高工作效率和正常生活不受干扰,以及确保机器设备能安全、正常的运行不受影响。
提高在紧急事件电力中断时应对能力,将损失减少到最低程度,以利于从容地面对电力灾难。
人们对供电电源的时间和质量提出了更高的要求。
因此,UPS在我们工作和生活中的重要性就可想而知了!
2.如何选配UPS?
首先考虑UPS容量的选择。
各种UPS (品牌)电源容量一般都以视在功率标注其标称值,
视在功率的单位为VA,而机房、光节点等设备上的功率一般以有功功率标注,其单位为W,因此需要UPS的输出换算为有功功率,即P=VA×Cosφ,UPS电源所带负载太重会影响到电源本身的使用寿命和可靠性,负载太轻不仅会造成设备投资的浪费,而且会使电池长期小电流放电而造成深度放电,使电池受到不可修复的损害,因此合理的UPS电源负载应是其额定有功功率的25%-80%。
其次按用途确定UPS的类型。
根据负载对UPS的输出容量,输出电压、频率的稳定度,输出波形、切换时间以及保护功能、并机备份功能来确定选配:工频在线机、高频在线机、高频在线式、在线互动式和后备式UPS。
工频在线式和高频在线式它们在应用技术上均采用高频技术的结构,两者区别主要在(1)工频在线式输出功率因素为0.8-1滞后,而高频在线式是0.7,(2)工频在线式带有输出隔离变压器,而高频在线式没带输出隔离变压器。
A. 什么叫后备式UPS:在市电正常时对市电进行稳压,逆变器不工作,处于等待状态。
当市网电压异常时,UPS会迅速切换到逆变状态,将电池电能逆变为交流电并对负载继续供电,因此后备式UPS电源在转为逆变工作时会有一段转换时间,一般小于10MS,这种UP S对电网污染严重,抗干扰能力较差,线路简单,价格便宜,使用于办公室、家庭等要求不高的终端设备。
(充电器与逆变器分开)
B. 什么叫在线互动式UPS:即是充电器又是逆变器故称双变换式,在线互动式是指在输入市电正常时,即电源的逆变器处于反向工作状态给电池充电,在市电发生波动时,立即投入到逆变工作,将电池组电源转换为交流电输出,因此在线互动式UPS电源也有一定的转换时间,同后备式相比,在线互动式的保护能力较强,逆变输出电压波形较好,一般为正弦波。
这种UPS电源带有软件功能,可以很方便地进行远程控制和智能化管理,适合于服务器和小型机。
C. 什么叫在线式UPS:逆变器始终工作,在线式UPS电源在开机后始终处于工作状态,当市电正常时,由UPS 的充电器向蓄电池充电并将直流电转换为交流电,而不是由市电直接供给设备;当
市电发生异常时,UPS转换到电池供电时没有时间上的中断即“0”中断。
这种UPS电源具有很强的软件管理能力,适合于工作站网络设备等要求高的部门和地方。
再次按所需电池备用时间确定。
电网异常或停电后,根据负载所需的工作时间而定,UPS 分为长延时机型和标准机型。
长延时机型(长机)其主机是不带备用电池,它是根据负载所需的工作时间来配置外带电池的容量和数量。
标准机型(标机)的主机是带备用电池的,它在电网异常或停电时通过内置电池给负载供电。
备用时间分别为:后备式3-12分钟,在线互动式和在线式7-25分钟。
而后考虑UPS是否具有数字式智能化、网络化、以及远程管理化等功能。
A. 什么叫数字式智能化:UPS电源对不同的事故以数字和文字的表达方式做出不同反映,减少人为操作失误的麻烦,实现人性化管理。
B. 什么叫网络化:一台UPS电源需要同时为多台计算机或其他设备服务,并能通过某种机制达成负载之间的动态配置。
C. 什么叫远程管理化:可以使系统管理员在局域网、广域网、因特网(intemet)及内部网(i ntranet)等层次对UPS电源进行远程和集中控制,这可使企业对UPS电源管理变得简单快捷,提高工作效率,降低成本。
综上所述:最客观的选配原则是在确定UPS容量、机型后,主要应从性能特点的实用性、质量保证的可靠性、服务承诺的真实性以及合理可接受的产品价格(性价比、可靠性和服务保证)等方面评估后来购买。
如:PGEPS普金PH系列、PD系列以及PG系列UPS是您最理想的选择。
电动车电池的日常维护和保养日常维护和保养
1、不要无初速度状态下直接电启动,上坡时,顶风骑行时,适当加上人力骑行,上述情况下,瞬间电流可达到十几安培,长时间大电流放电会加重盐化,会因电池温度过高形成失水、极板变形、活性物质脱落……现象,使电池寿命缩短,骑行中应巧妙利用滑行,尽量减少强行刹车和反复启动,可以节约能源和延长蓄电池的使用寿命。
2、不要追求过高的时速而剪掉控制器限速器的限速线,不要追求更大的扭矩而选用350W 左右的大功率电机,放电电流与…时速‟…阻力矩‟大体上成正比关系,特别是加速阶段,放电电流更会成倍增加,持续的大电流放电,电化学反应激烈,会引起极板变形,活性物质脱落,电解液析氧,析氢逸出造成失水,这些都会缩短电池的使用寿命,甚至造成不可修复的损坏。
电摩用的电池,使用寿命一般在3-6个月;大功率电机用的电池,使用寿命一般在6-10个月。
3、要及时充电
蓄电池放电时就开始了盐化反应(硫化反应),及时充电可以将具有活性的硫酸铅及时转化为活性的海绵状铅和二氧化铅,若放置12小时以上,活性的硫酸铅就会再次结晶成为较大晶体颗粒,成为不可逆盐化(硫化)。
如果每次骑行都需要及时充电,使电池处于浅循环状态,会延长电池的使用寿命。
4、要定期深放电
每月进行1-2次深放电,所谓深放电是指在平坦路面上,正常负荷条件下骑行到第一次欠压保护的完全放电,或者用放电仪进行完全放电,也就是使每个单个电压下降到1.75V,然后再完全充电,会使电池容量略有提升。
值得注意的两个问题:①深放电和过度放电只是一步之遥,第一次欠压保护时,是深放电的标志,(当然控制器的欠压保护值应当准确定位在每单个电压为1.75V时)欠压保护后,蓄电池会有2-3V的回升电压,切不可用回升电压再驱动行使,对电池来讲这是过渡放电,对电池的损害是致命的。
用放电仪来完全放电应该不存在这样的问题。
②蓄电池厂家生产的蓄电池,很难保证内阻的一致性,特别是内化成的产品,影响内阻的变数更多,内阻的杂散分布更是多见,主要体现在深放电至33V(36V电池组)以下时,有可能出现其中一、二块电池(每块电池内装有6个单格电池)的电压迅速下降到10.5V以下,其余电池可能还维持1 1V以上放电,电池组的总电压可能还未达到放电的下限31.5V,此时应立即停止放电,这样的电池被称为“落后电池”,继续放电时,这个…落后电池‟就会过度放电而损坏,这样现象在初装时,并不明显,所以用户在使用电池一段时间后最好请有关部门用放电仪进行一次深放电,观察每块电池放电的一致性,如能维修更好,至少要记下其中落后电池放电至10. 5V时的总电压值,这是您这组电池的深放电下限。
当然一组电池中出现…落后电池‟,肯定会使电池容量大打折扣,而且充电时,…落后电池‟会最先充满,而随其余电池继续充电时就会过度充电,放电时,…落后电池‟会最先放电到下限,而随其余电池继续放电时就会过度放电,形成恶性循环,很快就出现容量迅速衰减的状况。
5、不要随意更换充电器,按说明书要求正确使用充电器。
整车厂的电动自行车出厂时,充电器是与所配置的蓄电池相匹配的。
其补充电流、充电最高电压和转换电流、浮充电压、浮充电流是规定好的,其它充电器的参数都有一定的范围的差异,很有可能与所配置的蓄电池不匹配,所以不可随意更换充电器。
充电器在强烈震动和颠簸中,会使参数漂移,通风不良环境中使用,充电器的温度可达70℃左右,会使参数热漂移,都会影响充电器的正常工作,会对蓄电池造成过充电、欠充电等损害。
再有,充电器要有浮充的功能,充电器显示充满的指示灯亮时,只表示充入的电量达到总容量的97%-99%,应当继续进行浮充(涓流)充电2小时,使其彻底充满。
这样可以抑制电池的盐化。
充电器如果有正脉冲充电功能,可以有效地防止电池的盐化积累。
充电器若有负脉冲充电功能,则可以有效地消除电池的极化积累。
6、防止自放电
引起自放电的因素很多,如电解液及极板材料有杂质,引起局部电池效应自放电,隔板破裂,活性物质脱落,蓄电池盖上有浸润性灰尘,电解液或水形成回路自放电。
我们能做到的是保持蓄电池盖上的干燥和清洁。
冬天从屋外移到屋内的蓄电池其表现上会有冷凝水,可擦拭或静置屋内待其蒸发后再充电。
7、不可欠电贮存
长期停用的电池,要首先将电池充满电再存放,并且至少每个月要重新完全充电一次。
8、一般的盐化蓄电池可由专业商家用修复仪进行干式修复或补液修复。
充电器的介绍
充电器的分类:用有、无工频(50赫兹)变压器区分,可分为两大类。
货运三轮充电器一般使用带工频变压器的充电机,体积大、重量大,费电,但是可靠,便宜;电动自行车和电摩则使用所谓开关电源式充电器,省电,效率高,但是易坏。
开关电源式充电器的正确操作是:充电时,先插电池,后加市电;充足后,先切断市电,后拔电池插头。
如果在充电时先拔电池插头,特别是充电电流大(红灯)时,非常容易损坏充电器。
常用的开关电源式充电器又分半桥式和单激式两大类,单激类又分为正激式和反激式两类。
半桥式成本高,性能好,常用于带负脉冲的充电器;单激式成本低,市场占有率高。
关于负脉冲充电器
铅酸电池已经有100多年的历史了,开始全球普遍沿引老的观点和操作规程:充、放电率为0.1C(C是电池容量)寿命较长。
美国人麦斯先生为解决快速充电问题,1967年向全世界公布了他的研究成果,用大于1C率脉冲电流充电,充电间歇时对电池放电。
放电有利于消除极化、降低电解液温度、提高极板接受电荷的能力。
我国一些科技工作者在1969年前后,根据麦斯先生的三定律制作
成功了多种品牌的快速充电机。
充电循环过程是:大电流脉冲充电→切断充电通路→对电池短暂放电→停止放电→接通充电通路→大电流脉冲充电……。