根号的加减运算公式大全

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根号加减法的运算大全公式
根号内的数可以化成相同或相同则可以相加减,不同不能相加减。

如果根号里面的数相同就可以相加减,如果根号里面的数不相同就不可以相加减,能够化简到根号里面的数相同就可以相加减了。

举例如下:
(1)2√2 +3√2=5√2(根号里面的数都是2,可以相加)
(2)2√3 +3√2(根号里面的数一个是3,一个是2,不同不能相加)(3)√5+√20=√5+2√5=3√5(根号内的数虽然不同,但是可以化成相同,可以相加)
(4)3√2-2√2=√2
(5)√20-√5=2√5-√5=√5
扩展资料:
一个数有多少个方根,这个问题既与数的所在范围有关,也与方根的次数有关。

在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的3次方根为-2。

正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2;负实数不存在偶数次方根;零的任何次方根都是零。

在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。

当根式满足以下三个条件时,称为最简根式。

①被开方数的指数与根指数互质;
②被开方数不含分母,即被开方数中因数是整数,因式是整式;
③被开方数中不含开得尽方的因数或因式。

“有理化分母”,是指通过适当的变形划去代数式分母中根号的运算。

一般情况下,在进行根式运算及把一个根式化成最简根式时,都要将分母有理化,两个含有根式的代数式相乘,如果它们的积不含根号,我们就说这两个代数式互为有理化因式。

相关文档
最新文档