正反比例的定义和判断方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正反比例的定义和判断方法
一、正比例和反比例的定义和判断方法
1、比例
表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项,两端的两项叫做外项,中间的两项叫做内项。

2、比例的意义
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。

3、比例的基本性质
两个外项的积等于两个内项的积。

4、解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例的另外一个未知项。

求比例中的未知项,叫做解比例。

5、正比例和反比例
(1)正比例
正比例是指两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例关系可以用下面式子表示:$\frac{y}{x}=k$(一定)。

(2)反比例
反比例是指两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

反比例关系可以用下面式子表示:$xy=k$(一定)。

6、判断正、反比例的方法
可总结为“一找、二看、三判断”,即
找变量:分析数量关系,确定哪两种量是相关联的量。

看定量:分析这两种相关联的量,它们之间的关系是商一定还是积一定。

判断:如果商一定,就成正比例;如果积一定,就成反比例;如果商和积都不是定量,就不成比例。

相关文档
最新文档