2020-2021全国各地中考模拟试卷数学分类:相似综合题汇编及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021全国各地中考模拟试卷数学分类:相似综合题汇编及答案解析一、相似
1.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线
y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).
(1)直接写出点C坐标及OC、BC长;
(2)连接PQ,若△OPQ与△OBC相似,求t的值;
(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.
【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,
∴A(0,),
令y=0,则x=10,
∴B(10,0),
由,解得,
∴C(,).
∴OC= =8,
BC= =10
(2)解:①当时,△OPQ∽△OCB,
∴,
∴t= .
②当时,△OPQ∽△OBC,
∴,
∴t=1,
综上所述,t的值为或1s时,△OPQ与△OBC相似(3)解:如图作PH⊥OC于H.
∵OC=8,BC=6,OB=10,
∴OC2+BC2=OB2,
∴∠OCB=90°,
∴当∠PCH=∠CBQ时,PC⊥BQ.
∵∠PHO=∠BCO=90°,
∴PH∥BC,
∴,
∴,
∴PH=3t,OH=4t,
∴tan∠PCH=tan∠CBQ,
∴,
∴t= 或0(舍弃),
∴t= s时,PC⊥BQ.
【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B点的坐标,解联立直线AB,与直线OC的解析式组成的方程组,求出C点的坐标,根据两点间的距离公式即可直接算出OC,OB的长;
(2)根据速度乘以时间表示出OP=5t,CQ=4t,OQ=8-4t,①当OP∶OC=OQ∶OB时,△OPQ∽△OCB,根据比例式列出方程,求解得出t的值;②当OP∶OB=OQ∶OC时,△OPQ∽△OBC,根据比例式列出方程,求解得出t的值,综上所述即可得出t的值;(3)如图作PH⊥OC于H.根据勾股定理的逆定理判断出∠OCB=90°,从而得出当∠PCH=∠CBQ时,PC⊥BQ.根据同位角相等二直线平行得出PH∥BC,根据平行线分线段成比例定理得出OP∶OB=PH∶BC=OH∶OC,根据比例式得出PH=3t,OH=4t,根据等角的同名三角函数值相等及正切函数的定义,由tan∠PCH=tan∠CBQ,列出方程,求解得出t的值,经检验即可得出答案。
2.已知线段a,b,c满足,且a+2b+c=26.
(1)判断a,2b,c,b2是否成比例;
(2)若实数x为a,b的比例中项,求x的值.
【答案】(1)解:设,
则a=3k,b=2k,c=6k,
又∵a+2b+c=26,
∴3k+2×2k+6k=26,解得k=2,
∴a=6,b=4,c=12;
∴2b=8,b2=16
∵a=6,2b=8,c=12,b2=16
∴2bc=96,ab2=6×16=96
∴2bc=ab2
a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,
∴x2=6ab,
∴x2=6×4×6,
∴x=12.
【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
3.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.
(1)如图1,当点M在线段ED上时,求证:MN= EM;
(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.
【答案】(1)证明::∵ °, ° ,
∴ °
∵ ,
∴
∵∥ ,
∴
∴ °,
∴
过点作于点 ,则 .
在中,
∴
∴
(2)解:在中,,
∴
∵
a.当点在线段上时,过点作于点 ,
在中,
由(1)可知:
,
∴
∴
∴
b.当点在线段延长线上时,过点作于点在中, ,
在中, ,
∴ ,
∴
(3)解:连接 ,交于点 .
∵为的中点
∴ ,
∴ .
∵ ,
∴ ,
∴ ,
∴ ,
∴ .
∵∥
∴ ,
∴ ,
,
∵ ,
∴ ,
又∵ ,
∴∽ ,
∴,即 ,
∴
【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;
(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;
②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可
求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性
质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G
根据所得的比例式即可求解.
,
4.如图,在一间黑屋子里用一盏白炽灯照一个球.
(1)球在地面上的影子是什么形状?
(2)当把白炽灯向上平移时,影子的大小会怎样变化?
(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?
【答案】(1)解:球在地面上的影子的形状是圆.
(2)解:当把白炽灯向上平移时,影子会变小.
(3)解:由已知可作轴截面,如图所示:
依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,
在Rt△OAE中,
∴OA= = = (m),
∵∠AOH=∠EOA,∠AHO=∠EAO=90°,
∴△OAH∽△OEA,
∴,
∴OH= == (m),
又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,
∴△OAE∽△AHE,
∴ = ,
∴AH= ==2625 (m).
依题可得:△AHO∽△CFO,
∴ AHCF=OHOF ,
∴CF= AH⋅OFOH = 2625×32425=64 (m),
∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).
答:球在地面上影子的面积是0.375π m2.
【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.
(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.
(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.
5.如图1,过等边三角形ABC边AB上一点D作交边AC于点E,分别取BC,DE 的中点M,N,连接MN.
(1)发现:在图1中, ________;
(2)应用:如图2,将绕点A旋转,请求出的值;
(3)拓展:如图3,和是等腰三角形,且,M,N分别
是底边BC,DE的中点,若,请直接写出的值.
【答案】(1)
(2)解:如图2中,连接AM、AN,
,都是等边三角形,,,
,,
,,
,
,
,
∽,
(3)解:如图3中,连接AM、AN,延长AD交CE于H,交AC于O,
,,,,
,,
,
,
,
,
,,
,
,
∽,
,
,
,
,,
≌,
,
,
,
,
,
,
,
,
,
【解析】【解答】解:(1)如图1中,作于H,连接AM,
,,
,
时等边三角形,
,
,
,
,
平分线段DE,
,
、N、M共线,
,
四边形MNDH时矩形,
,
,
故答案为:;
【分析】(1)作DH ⊥BC 于H,连接AM.证四边形MNDH时矩形,所以MN=DH,则MN:BD=DH:BD=sin60°,即可求解;
(2)利用△ABC ,△ADE 都是等边三角形可得AM:AB=AN:AD,易得∠BAD = ∠MAN ,从而得△ BAD ∽△ MAN,则NM:BD=AM:AB=sin60°,从而求解;
(3)连接AM、AN,延长AD交CE于H,交AC于O.先证明△BAD ∽△MAN可得NM:BD=AM:AB=sin∠ABC;再证明△ BAD ≌△ CAE,则∠ ABD = ∠ ACE ,进而可得∠ ABC = 45°,可求出答案.
6.
(1)【探索发现】如图1,是一张直角三角形纸片,,小明想从中剪出一个以为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为________.
(2)【拓展应用】如图2,在中,,BC边上的高,矩形PQMN 的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求出矩形PQMN面积的最大值用含a、h的代数式表示;
(3)【灵活应用】如图3,有一块“缺角矩形”ABCDE,,,,,小明从中剪出了一个面积最大的矩形为所剪出矩形的内角,直接写出该矩形的面积.
【答案】(1)
(2)解:,
∽,
,可得,
设,由,
当时,最大值为 .
(3)解:如图,过DE上的点P作于点G,延长GP交AE延长线于点I,过点P 作于点H,
则四边形AHPI和四边形BGPH均为矩形,
设,则,
,,,,
,,
由∽知,
即,得,
,
则矩形BGPH的面积,
当时,矩形BGPH的面积取得最大值,最大值为567.
【解析】【解答】(1)解:、ED为中位线,
,,,,
又,
四边形FEDB是矩形,
则,
故答案为:;
【分析】(1)由中位线知EF= BC、ED= AB、由可得;(2)由
△APN∽△ABC知,可得PN=a- ,设PQ=x,由S矩形PQMN=PQ•PN=
,据此可得;(3)结合图形过DE上的点P作PG⊥BC于点G,延长GP交AE延长线于点I,过点P作PH⊥AB,设PG=x,知PI=28-x,由△EIP∽△EKD知
,据此求得EI= ,PH= ,再根据矩形BGPH的面积S=
可得答案.
7.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE·CA.
(1)求证:BC=CD;
(2)分别延长AB,DC交于点P,若PB=OB,CD=,求⊙O的半径.
【答案】(1)证明:∵DC2=CE·CA,
∴,
∵∠DCE=∠ACD,
∴△CDE~△CAD,
∴∠CDE=∠CAD,
又∵∠CBD=∠CAD,
∴∠CDE=∠CBD,
∴CD=CB.
(2)解:连结OC(如图),设⊙O的半径为r,
由(1)知CD=CB,
∴弧CD=弧CB,
∴∠CDB=∠CBD=∠CAB=∠CAD=∠BAD,∠BOC=2∠CAB,
∴∠BOC=∠BAD,
∴OC∥AD,
∴,
∵PB=OB,
∴PB=OB=OA=r,PO=2r,
∴=2,
∵CD=2,
∴PC=4,PD=PC+CD=6,
又∵∠PCB=∠CDB+∠CBD,∠PAD=∠PACB+∠CAD,
∴∠PCB=∠PAD,
∵∠CPB=∠APD,
∴△PCB~△PAD,
∴,
即,
解得:r=4.
即⊙O的半径为4.
【解析】【分析】(1)根据相似三角形的判定:两边对应成比例及夹角相等可得△CDE~△CAD,再由相似三角形的性质:对应角相等,等量代换可得
∠CDE=∠CBD,根据等腰三角形的性质即可得证.
(2)连结OC,设⊙O的半径为r,根据圆周角定理可得∠BOC=∠BAD,由平行线的判定得OC∥AD,根据平行线所截线段成比例可得=2,从而求得PC、PD长,再根据相似三角形的判定可得△PCB~△PAD,由相似三角形的性质可得,从而求得半径.
8.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图①,当∠ABC=45°时,求证:AD=DE;理由;
(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;
(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)【答案】(1)解:如图1,过点D作DF⊥BC,交AB于点F,
则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠FBD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∵∠EBD=∠AFD,BD=DF,∠BDF=∠ADF,∴△BDE≌△FDA(ASA),∴AD=DE
(2)解:DE= AD,理由:
如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,
∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴,在Rt△BDG中,
=tan30°= ,∴DE= AD
(3)解:AD=DE•tanα;理由:
如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,
∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴,在
Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.
【解析】【分析】(1)如图1,过点D作DF⊥BC,交AB于点F,根据同角的余角相等得出∠BDE=∠ADF,根据等腰直角三角形的性质得出∠C=45°,∠BFD=45°,BD=DF,进而根据平行线的性质邻补角的定义得出∠EBD=180°﹣∠C=135°,∠AFD=135°,从而利用ASA判断出△BDE≌△FDA,根据全等三角形的对应边相等得出AD=DE;
(2)DE= AD,理由:如图2,过点D作DG⊥BC,交AB于点G,根据等角的余角相等得出∠BDE=∠ADG,根据三角形的内角和得出∠C=60°,∠BGD=60°,根据二直线平行同旁内角互补得出∠EBD=120°,根据邻补角的定义得出∠AGD=120°,故∠EBD=∠AGD,根据两个角对应相等的两个三角形相似得出△BDE∽△GDA,利用相似三角形对应边成比例得出
AD∶DE=DG∶BD,根据正切函数的定义及特殊锐角三角函数值得出DG∶BD=tan30°= ,从而得出答案;
(3)AD=DE•tanα;理由:如图2过点D作DG⊥BC,交AB于点G,根据等角的余角相等得出∠BDE=∠ADG,根据三角形的内角和得出根据二直线平行同旁内角互补得出∠EBD=90°+α,三角形的外角定理得出∠AGD=90°+α,故∠EBD=∠AGD,根据两个角对应相等的两个三角形相似得出△BDE∽△GDA,利用相似三角形对应边成比例得出AD∶DE=DG∶BD,根据正切函数的定义DG∶BD=tanα从而得出答案。
9.如图1,图形ABCD是由两个二次函数与的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接写出这两个二次函数的表达式;
(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C
与点E是对应顶点)的点E的坐标.
【答案】(1)解:
(2)解:存在,
理由:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y轴时,设M(x,-x2+1)为第一象限内的图形ABCD上一点,M'(x,3x2-3)为第四象限内的图形上一点,∴MM'=(1-x2)-3(3x2-3)=4-4x2,由抛物线的对称性知,若有内接正方形,则2x=4-
4x2,即2x2+x-2=0,x= 或(舍),
∵0< ,∴存在内接正方形,此时其边长为
(3)解:解:在Rt△AOD中,OA=1,OD=3,∴AD= ,同理CD= .在Rt△BOC中,OB=OC=1,∴BC= .
①如图(1)
当△DBC~△DAE时,因∠CDB=∠ADO,∴在y轴上存在一点E,由得
,得DE= ,因D(0,-3),∴E();
由对称性知在直线DA右侧还存在一点E'使得△DBC~△DAE',连接EE'交DA于F点,作E'M⊥OD,垂足为M,连接E'D,
∵E、E'关于DA对称,∴DF垂直平分EE',∴△DEF~△DAO,
∴,有,∴, .
因,∴,
又,在Rt△DE'M中,DM= ,
∴OM=1,得
∴,使得△DBC~△DAE的点E的坐标为(0, ,)或;
如图(2)
当△DBC~△ADE时,有∠BDC=∠DAE,,
即,得AE= .
当E在直线DA左侧时,设AE交y轴于P点,作EQ⊥AC,垂足为Q.
由∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=x,则PO=3-x,PA=x,
在Rt△AOP中,由得,解得,则有PA= ,PO= ,
因AE= ,∴PE= ,
在△AEQ中,OP∥EQ,
∴,得,又,
∴QE=2,∴E(),
当E'在直线DA右侧时,
因∠DAE'=∠BDC,又∠BDC=∠BDA,∴∠BDA=∠DAE',
则AE'∥OD,∴E'(1,),
则使得△DBC~△ADE的点E的坐标为或 .
综上,使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标有4个,
即(0, ,)或或或
【解析】【解答】(1)∵二次函数经过点A(1,0),B(0,1)代入得
解得∴二次函数;
∵二次函数经过点A(1,0),D(0,-3)代入得
解得∴二次函数 .
【分析】(1)由A(1,0),B(0,1)代入二次函数解出k,m的值可得二次函数y1的表达式;由A(1,0),D(0,-3)代入二次函数解出k,m的值可得二次函数y1的表达式;(2)判断是否存在,可以列举出一种特殊情况:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y 轴时,则可设点M(x,-x2+1)在y1图象上,则该正方形存在另一点M'(x,3x2-3)在y2图象上,由邻边相等构造方程解答即可;(3)对于△BDC与△ADE相似,且C于D对应,那么就存在两种情况:①当点B对应点A,即△DBC~△DAE,此时点E的位置有两处,一处在y轴上,另一处在线段AD的右侧;②当点B对应点DA时,即△DBC~△ADE,些时点E 有两处,分别处于线段AD的左右两侧;结果两种情况所有的条件解出答案即可.
10.
(1)如图1所示,
在中,,,点在斜边上,点在直角边上,若,求证: .
(2)如图2所示,
在矩形中,,,点在上,连接,过点作交 (或的延长线)于点 .
①若,求的长;
②若点恰好与点重合,请在备用图上画出图形,并求的长.
【答案】(1)证明:∵在中,,,
∴,
∴,
∵,
∴,
∴,
∴ .
(2)解:①∵四边形是矩形,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴,,
∴,;
②如图所示,设,由①得,
∴,即,
整理,得:,
解得:,,
所以的长为或 .
【解析】【分析】(1)利用平角的定义和三角形的内角和证明即可证得结论;(2)①仿(1)题证明,再利用相似三角形的性质即可求得结果;②由①得,设,根据相似三角形的性质可得关于x的方程,解方程即可求得结果.
11.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒1cm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)求t=9时,△PEF的面积;
(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;
(3)当t为何值时,△EOP与△BOA相似.
【答案】(1)解:∵EF∥OA,
∴∠BEF=∠BOA
又∵∠B=∠B,
∴△BEF∽△BOA,
∴ = ,
当t=9时,OE=9,OA=20,OB=15,
∴EF= =8,
∴S△PEF= EF•OE= ×8×9=36(cm2)
(2)解:∵△BEF∽△BOA,
∴EF= = = (15-t),
∴ × (15-t)×t=40,
整理,得t2-15t+60=0,
∵△=152-4×1×60<0,
∴方程没有实数根.
∴不存在使得△PEF的面积等于40cm2的t值
(3)解:当∠EPO=∠BAO时,△EOP∽△BOA,
∴ = ,即 = ,
解得t=6;
当∠EPO=∠ABO时,△EOP∽△AOB,
∴ = ,即 = ,
解得t= .
∴当t=6或t= 时,△EOP与△BOA相似
【解析】【分析】(1)由于EF∥x轴,则S△PEF= •EF•OE.t=9时,OE=9,关键是求
EF.易证△BEF∽△BOA,则 = ,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.
12.如图①所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.
(1)【问题引入】
若点O是AC的中点,,求的值;
温馨提示:过点A作MN的平行线交BN的延长线于点G.
(2)【探索研究】
若点O是AC上任意一点(不与A,C重合),求证:;
(3)【拓展应用】
如图②所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F.若,,求的值.
【答案】(1)解:过点A作MN的平行线交BN的延长线于点G.∵ON∥AG,∴ .∵O是AC的中点,∴AO=CO,∴NG=CN.∵MN∥AG,∴,∴
.
(2)解:证明:由(1)可知,,∴ =1
(3)解:在△ABD中,点P是AD上一点,过点P的直线与AB,BD的延长线分别相交于
点F,C.由(2)可得 .在△ACD中,过点P的直线与AC,CD的延长线分别相交于点E,B.由(2)可得
【解析】【分析】(1)作AG∥MN交BN延长线于点G,证△ABG∽△MBN得 ,
即 ,同理可证△ACG∽△OCN得 ,结合AO=CO,得NG=CN,从而由进行求解,
(2)由 , 可知: ,
(3)由(2)可知,在△ABD中有 , 在△ACD中有 ,
从而 ,因此可得: .。