高三数学寒假作业冲刺培训班之历年真题汇编复习实战45341

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓
名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改
动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题
目要求的.
1.已知集合M={0,1,2,3,4},N={1,3,5},P=M N ,则P 的子集共有
A .2个
B .4个
C .6个
D .8个
2.复数512i
i =-
A .2i -
B .12i -
C . 2i -+
D .12i -+
3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是
A .3
y x =
B .||1y x =+
C .21y x =-+
D .||
2
x y -=
4.椭圆
22
1168
x y +=的离心率为
A .
13
B .
12
C .3
D .
2 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 A .120 B . 720 C . 1440 D . 5040
6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,
每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .
13
B .
12 C .23
D .34
7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=
A . 45
-
B .35
-
C .
35
D .
45
8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧
视图可以为
9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,
P 为C 的准线上一点,则ABP ∆的面积为 A .18 B .24 C . 36
D . 48
10.在下列区间中,函数()43x
f x e x =+-的零点所在的区间为
A .1
(,0)4
-
B .1(0,)4
C .11(,)42
D .13(,)24
11.设函数()sin(2)cos(2)44
f x x x π
π
=+++,则 A .()y f x =在(0,)2
π单调递增,其图象关于直线4
x π=对称 B .()y f x =在(0,)2
π单调递增,其图象关于直线2
x π=对称 C .()y f x =在(0,)2
π单调递减,其图象关于直线4
x π=对称
D .()y f x =在(0,
)2
π单调递减,其图象关于直线2
x π=
对称
12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2
()f x x =,那么函数()y f x =的图象与函
数|lg |y x =的图象的交点共有
A .10个
B .9个
C .8个
D .1个
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题第21题为必考题,每个试题考生都必须做答.第22题第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.
13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量kab 垂直,则
k=_____________.
14.若变量x ,y 满足约束条件329
69
x y x y ≤+≤⎧⎨
≤-≤⎩,则2z x y =+的最小值是_________.
15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.
16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面
积是这个球面面积的
3
16
,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.
三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知等比数列{}n a 中,113a =,公比13
q =. (I )n S 为{}n a 的前n 项和,证明:12
n
n a S -=
(II )设31323log log log n n b a a a =++
+,求数列{}n b 的通项公式.
18.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD . (I )证明:PA BD ⊥; (II )设PD=AD=1,求棱锥DPBC 的高.
19.(本小题满分12分) 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:
指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]
频数
8 20 42 22 8 指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]
频数 4 12 42 32 10
(I )分别估计用A 配方,B 配方生产的产品的优质品率;
(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为
2,942,941024,102t y t t -<⎧⎪
=≤<⎨⎪≥⎩
估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.
20.(本小题满分12分) 在平面直角坐标系xOy 中,曲线2
61y x x =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;
(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.
21.(本小题满分12分) 已知函数ln ()
1a x b
f x x x
=
++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (I )求a ,b 的值;
(II )证明:当x>0,且1x ≠时,ln ()1
x
f x x >
-. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修41:几何证明选讲
如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2
140x x mn -+=的两个根. (I )证明:C ,B ,D ,E 四点共圆;
(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径.
23.(本小题满分10分)选修44:坐标系与参数方程
在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y α
αα
=⎧⎨
=+⎩为参数),M 为1C 上的动
点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (I )求2C 的方程;
(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3
πθ=
与1C 的异于极点的交
点为A ,与2C 的异于极点的交点为B ,求|AB|.
24.(本小题满分10分)选修45:不等式选讲 设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.
(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.
普通高等学校招生全国统一考试 文科数学试卷参考答案
一、选择题
(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题
(13)1 (14)6 (15)4315 (16)3
1
三、解答题 (17)解:
(Ⅰ)因为.3
1
)31(311n n n a =⨯=
- ,23113
11)311(3
1n
n n S -=--= 所以,2
1n
n a S --
(Ⅱ)n n a a a b 32313log log log +++=
)21(n +++-=
2
)
1(+-
=n n
所以}{n b 的通项公式为.2
)
1(+-
=n n b n (18)解:
(Ⅰ)因为60,2DAB AB AD ∠=︒=,
由余弦定理得BD = 从而BD2+AD2= AB2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD
(Ⅱ)如图,作DE ⊥PB ,垂足为E 。

已知PD ⊥底面ABCD ,则PD ⊥BC 。

由(Ⅰ)知BD ⊥AD ,又BC//AD ,所以BC ⊥BD 。

故BC ⊥平面PBD ,BC ⊥DE 。

则DE ⊥平面PBC 。

由题设知,PD=1,则BD=3,PB=2,
根据BE·PB=PD·BD ,得DE=
2
3
, 即棱锥D —PBC 的高为.2
3 (19)解
(Ⅰ)由试验结果知,用A 配方生产的产品中优质的频率为228
=0.3100
+,所以用A 配方生产的产品的优质品率的估计值为0.3。

由试验结果知,用B 配方生产的产品中优质品的频率为3210
0.42100
+=,所以用B 配方生产的产品的优质品率的估计值为0.42
(Ⅱ)由条件知用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.
用B 配方生产的产品平均一件的利润为
68.2)442254)2(4(100
1
=⨯+⨯+-⨯⨯(元) (20)解:
(Ⅰ)曲线162
+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为
().0,223(),0,223-+
故可设C 的圆心为(3,t ),则有,)22()1(32
222t t +=-+解得t=1.
则圆C 的半径为.3)1(32
2=-+t 所以圆C 的方程为.9)1()3(2
2
=-+-y x
(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:
⎪⎩⎪⎨⎧=-+-=+-.
9)1()3(,
02
2y x a y x
消去y ,得到方程
.012)82(222=+-+-+a a x a x
由已知可得,判别式.0416562>--=∆a a
因此,,4
41656)28(2
2,1a a a x --±-=
从而
2
1
20,422121+-=
-=+a a x x a x x

由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以
.0)(222121=+++a x x a x x

由①,②得1-=a ,满足,0>∆故.1-=a
(21)解:
(Ⅰ)22
1
(
ln )
'()(1)x x b x f x x x α+-=
-+
由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,
1'(1),2
f f =⎧⎪
⎨=-⎪⎩即
1,
1,22
b a b =⎧⎪⎨-=-⎪⎩
解得1a =,1b =。

(Ⅱ)由(Ⅰ)知ln 1
f ()1x x x x
=
++,所以 )1ln 2(11
1ln )(22
x
x x x x x x f -+-=-= 考虑函数()2ln h x x =+
x
x 12-(0)x >,则
2
2
22
2)1()1(22)(x
x x x x x x h --=---='
所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11
,0)(2
>->x h x
x h 可得
当),1(+∞∈x 时,;0)(11
,0)(2
>-<x h x
x h 可得
从而当.1
ln )(,01ln )(,1,0->>--≠>x x
x f x x x f x x 即且 (22)解:
(I )连接DE ,根据题意在△ADE 和△ACB 中, AD×AB=mn=AE×AC ,

AB
AE
AC AD =
.又∠DAE=∠CAB ,从而△ADE ∽△ACB 因此∠ADE=∠ACB 所以C ,B ,D ,E 四点共圆。

(Ⅱ)m=4, n=6时,方程x214x+mn=0的两根为x1=2,x2=12. 故 AD=2,AB=12.
取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH.因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH.
由于∠A=900,故GH ∥AB , HF ∥AC. HF=AG=5,DF=2
1
(122)=5. 故C ,B ,D ,E 四点所在圆的半径为52 (23)解:
(I )设P(x ,y),则由条件知M(
2
,2Y
X ).由于M 点在C1上,所以 ⎪⎪⎭
⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+==ααsin 222,cos 22y x 即 ⎭⎬⎫⎩⎨⎧+==ααsin 44cos 4y x
从而2C 的参数方程为
4cos 44sin x y α
α
=⎧⎨
=+⎩(α为参数)
(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=。

射线3
πθ=与1C 的交点A 的极径为14sin 3
π
ρ=, 射线3
πθ=
与2C 的交点B 的极径为28sin
3
π
ρ=。

所以21||||AB ρρ-==
(24)解:
(Ⅰ)当1a =时,()32f x x ≥+可化为
|1|2x -≥。

由此可得 3x ≥或1x ≤-。

故不等式()32f x x ≥+的解集为
{|3x x ≥或1}x ≤-。

(Ⅱ) 由()0f x ≤ 得
30x a x -+≤
此不等式化为不等式组
30x a x a x ≥⎧⎨-+≤⎩ 或30
x a
a x x ≤⎧⎨
-+≤⎩
即 4x a a x ≥⎧⎪⎨≤⎪⎩ 或2
x a
a a ≤⎧⎪⎨≤-⎪⎩ 因为0a >,所以不等式组的解集为{}|2
a
x x ≤-
由题设可得2
a
-
= 1-,故2a =
一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)
1.5分)下列函数中,在区间(0,+∞)上为增函数的是()
A.y=
B.y=(x﹣1)2
C.y=2﹣x
D.y=log0.5(x+1)
2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()
A.{0}
B.{0,1}
C.{0,2}
D.{0,1,2}
3.(5分)曲线(θ为参数)的对称中心()
A.在直线y=2x上
B.在直线y=﹣2x上
C.在直线y=x﹣1上
D.在直线y=x+1上
4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()
A.7
B.42
C.210
D.840
5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()
A.2
B.﹣2
C.
D.﹣
7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,
0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()
A.S1=S2=S3
B.S2=S1且S2≠S3
C.S3=S1且S3≠S2
D.S3=S2且S3≠S1
8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()
A.2人
B.3人
C.4人
D.5人
二、填空题(共6小题,每小题5分,共30分)
9.(5分)复数()2=.
10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.
11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.
12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.
13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.
14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.
三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)
15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.
(1)求sin∠BAD;
(2)求BD,AC的长.
16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);
场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).
17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.
(1)求证:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.
18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,]
(1)求证:f(x)≤0;
(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.
19.(14分)已知椭圆C:x2+2y2=4,
(1)求椭圆C的离心率
(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.
20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,
(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;
(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).
高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)
参考答案与试题解析
(5分)下列函数中,在区间(0,+∞)上为增函数的是()
A.y=
B.y=(x﹣1)2
C.y=2﹣x
D.y=log0.5(x+1)
【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,
由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,
由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,
由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,
故选:A.
【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.
一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)
1.
2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()
A.{0}
B.{0,1}
C.{0,2}
D.{0,1,2}
【分析】解出集合A,再由交的定义求出两集合的交集.
【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},
∴A∩B={0,2}
故选:C.
【点评】本题考查交的运算,理解好交的定义是解答的关键.
3.(5分)曲线(θ为参数)的对称中心()
A.在直线y=2x上
B.在直线y=﹣2x上
C.在直线y=x﹣1上
D.在直线y=x+1上
【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.
【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,
故选:B.
【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.
4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()
A.7
B.42
C.210
D.840
【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.
【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,
当m=7,n=3时,m﹣n+1=7﹣3+1=5,
∴跳出循环的k值为4,
∴输出S=7×6×5=210.
故选:C.
【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.
5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.
若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,
故“q>1”是“{an}为递增数列”的既不充分也不必要条件,
故选:D.
【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.
6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()
A.2
B.﹣2
C.
D.﹣
【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,
故由约束条件作出可行域如图,
当y=0,由kx﹣y+2=0,得x=,
∴B(﹣).
由z=y﹣x得y=x+z.
由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.
此时,解得:k=﹣.
故选:D.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()
A.S1=S2=S3
B.S2=S1且S2≠S3
C.S3=S1且S3≠S2
D.S3=S2且S3≠S1
【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.
【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',
在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.
在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.
在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,
则S3=S2且S3≠S1,
故选:D.
【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.
8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()
A.2人
B.3人
C.4人
D.5人
【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.
【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,
语文成绩得B得也最多只有一个,
得C最多只有一个,
因此学生最多只有3人,
显然(AC)(BB)(CA)满足条件,
故学生最多有3个.
故选:B.
【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.
二、填空题(共6小题,每小题5分,共30分)
9.(5分)复数()2= ﹣1 .
【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.
故答案为:﹣1.
【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.
10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.
【解答】解:设=(x,y).
∵向量,满足||=1,=(2,1),且+=(λ∈R),
∴=λ(x,y)+(2,1)=(λx+2,λy+1),
∴,化为λ2=5.
解得.
故答案为:.
【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.
11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为
;渐近线方程为 y=±2x .
【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.
【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),
∴m=,
即双曲线方程为﹣x2=﹣3,即,
对应的渐近线方程为y=±2x,
故答案为:,y=±2x.
【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.
12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.
【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.
【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,
∴a8>0,又a7+a10=a8+a9<0,∴a9<0,
∴等差数列{an}的前8项为正数,从第9项开始为负数,
∴等差数列{an}的前8项和最大,
故答案为:8.
【点评】本题考查等差数列的性质和单调性,属中档题.
13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相
邻,则不同的摆法有 36 种.
【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.
【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,
又当A、B相邻又满足A、C相邻,有2=12种摆法,
故满足条件的摆法有48﹣12=36种.
故答案为:36.
【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.
14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .
【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()
可得函数的半周期,则周期可求.
【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,
则x=离最近对称轴距离为.
又f()=﹣f(),则f(x)有对称中心(,0),
由于f(x)在区间[,]上具有单调性,
则≤T⇒T≥,从而=⇒T=π.
故答案为:π.
【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问
题的能力,是中档题.
三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)
15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.
(1)求sin∠BAD;
(2)求BD,AC的长.
【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.
【解答】解:(1)在△ABC中,∵cos∠ADC=,
∴sin∠ADC====,
则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.
(2)在△ABD中,由正弦定理得BD==,
在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,
即AC=7.
【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.
16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);
场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8
主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).
【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,
(2)根据互斥事件的概率公式,计算即可.
(3)求出平均数和EX,比较即可.
【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场
所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,
(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,
故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;
(3)=(12+8+12+12+8+7+8+15+20+12)=11.4
EX=
【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.
17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.
(1)求证:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.
【分析】(1)运用线面平行的判定定理和性质定理即可证得;
(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.
【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,
∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,
∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,
∴AB∥FG;
(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,
如图建立空间直角坐标系Axyz,则A(0,0,0),
B(1,0,0),C(2,1,0),P(0,0,2),
E(0,2,0),F(0,1,1),,
设平面ABF的法向量为=(x,y,z),则
即,
令z=1,则y=﹣1,∴=(0,﹣1,1),
设直线BC与平面ABF所成的角为α,则
sinα=|cos<,>|=||=,
∴直线BC与平面ABF所成的角为,
设H(u,v,w),∵H在棱PC上,∴可设,
即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,
∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.
【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.
18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,]
(1)求证:f(x)≤0;
(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.
【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.
(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.
【解答】解:(1)由f(x)=xcosx﹣sinx得
f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,
此在区间∈(0,)上f′(x)=﹣xsinx<0,
所以f(x)在区间∈[0,]上单调递减,
从而f(x)≤f(0)=0.
(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”
令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,
当c≤0时,g(x)>0对x∈(0,)上恒成立,
当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,
所以g(x)在区间[0,]上单调递减,
从而,g(x)<g(0)=0对任意x∈(0,)恒成立,
当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,
g(x)与g′(x)在区间(0,)上的情况如下:
x (0,x0) x0 (x0,)
g′(x)+ ﹣
g(x)↑↓
因为g(x)在区间(0,x0)上是增函数,
所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,
当且仅当
综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,
当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,
所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.
20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,
(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;
(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).
【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;
(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;
(Ⅲ)根据新定义,可得结论.
【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.
当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,
∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);
当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,
∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);
∴无论m=a和m=d,T2(P)≤T2(P′);
(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.
【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.
19.(14分)已知椭圆C:x2+2y2=4,
(1)求椭圆C的离心率
(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.
【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;
(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.
【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.
∴a2=4,b2=2,从而c2=a2﹣b2=2.
因此a=2,c=.
故椭圆C的离心率e=;
(2)直线AB与圆x2+y2=2相切.
证明如下:
设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.
∵OA⊥OB,
∴,即tx0+2y0=0,解得.
当x0=t时,,代入椭圆C的方程,得.
故直线AB的方程为x=,圆心O到直线AB的距离d=.
此时直线AB与圆x2+y2=2相切.
当x0≠t时,直线AB的方程为,
即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.
圆心O到直线AB的距离d=.
又,t=.
故=.
此时直线AB与圆x2+y2=2相切.
【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.。

相关文档
最新文档