南康区一中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南康区一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数
1
2
z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 2. A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )
A .(0,1)
B .(﹣∞,﹣2)
C .(﹣2,0)
D .(﹣∞,﹣2)∪(0,1)
3. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是(

A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④
B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,
h (x )﹣④
C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④
D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④
4. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )
5. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高 杂质低 旧设备 37 121 新设备
22
202
根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
C .设备是否改造决定含杂质的高低
D .以上答案都不对
6. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题.
7. (理)已知tan α=2,则=( )
A .
B .
C .
D .
8. 已知函数()x
F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )
A .(-∞
B .(-∞
C .
D .)+∞ 9. 若函数1,0,
()(2),0,
x x f x f x x +≥⎧=⎨
+<⎩则(3)f -的值为( )
A .5
B .1-
C .7-
D .2 10.已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .k
B .﹣k
C .1﹣k
D .2﹣k
11.P 是双曲线
=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2
的内切圆圆心的横坐标为( )
A .a
B .b
C .c
D .a+b ﹣c
12.函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )
A .f (x )=3﹣x
B .f (x )=x ﹣3
C .f (x )=1﹣x
D .f (x )=x+1
二、填空题
13.给出下列命题:
①存在实数α,使
②函数是偶函数

是函数
的一条对称轴方程
④若α、β是第一象限的角,且α<β,则sin α<sin β
其中正确命题的序号是 .
14.已知函数
,则
__________;的最小值为__________.
15.已知||=1,||=2,与的夹角为,那么|+||﹣|= .
16.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .
17.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 . 18.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .
三、解答题
19.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x ),且有最小值是. (1)求f (x )的解析式;
(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;
(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.
20.(本题满分15分)
设点P 是椭圆14
:2
21=+y x C 上任意一点,
过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.
(1)求证:PB PA =;
(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
21.(本题满分14分)
在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;
(2)若2=+c a ,求b 的取值范围.
【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.
22.函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<)的一段图象如图所示.
(1)求f (x )的解析式;
(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;
(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.
23.已知(
+)n 展开式中的所有二项式系数和为512,
(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.
245
(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.
南康区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
13.②③.
14.
15..
16.=1
17.4.
18.0或1.
三、解答题
19.
20.(1)详见解析;(2)详见解析.
PA ;…………7分
∴点P为线段AB中点,PB
(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,
故122
-=∆t S OAB ,…………9分
若直线AB 斜率存在,由(1)可得
148221+-=+k km x x ,144422221+-=k t m x x ,1
41141222212
+-+=-+=k t k x x k AB ,…………11分 点O 到直线AB 的距离2
22
1141k
k k
m d ++=
+=,…………13分
∴122
1
2-=⋅=
∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 21.(1)3
B π
=;(2)[1,2).
22.
23.
24.。

相关文档
最新文档