调兵山市第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

调兵山市第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. “1<m <3”是“方程+
=1表示椭圆”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
2. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为
( )
A .
B .
C .
D .
3. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )
A .(1,1)
B .(0,3)
C .(,2)
D .(,0)
4. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .
725
B .725- C. 725± D .2425
5. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )
A .
B .
C .
D .
6. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )
A .
B .
C .
D .
7. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )
A .(0,1)
B .(2,1)
C .(2,0)
D .(0,2)
8. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )
A .
B .
C .﹣
D .﹣
9. 已知数列{a n }是等比数列前n 项和是S n ,若a 2=2,a 3=﹣4,则S 5等于( ) A .8
B .﹣8
C .11
D .﹣11
10.如果执行如图所示的程序框图,那么输出的a=( )
A .2
B .
C .﹣1
D .以上都不正确
11.已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :0
44222
22=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).
A .),3[]1,2(+∞--
B .),3()1,35
(+∞-- C .),3[]1,3
5[+∞-- D .),3()1,2(+∞--
12.如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )
A .﹣2
B .﹣1
C .1
D .2
二、填空题
13.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,
3=AC ,32===BD CD BC ,则球O 的表面积为 .
14.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一
个红球的概率为.
15.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为.
16
.设函数,若用表示不超过实数m
的最大整数,则函数
的值域为.
17.已知椭圆中心在原点,一个焦点为F(﹣
2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.
18.幂函数1
2
22
)3
3
)
(+
-
+
-
=m
m
x
m
m
x
f(在区间()
+∞
,0上是增函数,则=
m.
三、解答题
19.(本小题满分12分)
在等比数列{}n a中,33
39
,
22
a S
==.
(1)求数列{}n a的通项公式;
(2)设
2
21
6
log
n
n
b
a
+
=,且{}n b为递增数列,若
1
1
n
n n
c
b b
+
=,求证:
123
1
4
n
c c c c
++++<.20.【南师附中2017届高三模拟二】已知函数()()
32
3
131,0
2
f x x a x ax a
=+--+>.
(1)试讨论()()0
f x x≥的单调性;
(2)证明:对于正数a,存在正数p,使得当[]
0,
x p
∈时,有()
11
f x
-≤≤;
(3)设(1)中的p的最大值为()
g a,求()
g a得最大值.
21.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
22.设函数,若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.
23.已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.
(Ⅰ)求实数m的值;
(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.
24.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:
(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185cm之间的概率;
(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.
调兵山市第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】B
【解析】解:若方程+=1表示椭圆,
则满足,即,
即1<m<3且m≠2,此时1<m<3成立,即必要性成立,
当m=2时,满足1<m<3,但此时方程+=1等价为为圆,不是椭圆,不满足条件.即充分性不成立
故“1<m<3”是“方程+=1表示椭圆”的必要不充分条件,
故选:B
【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键.
2.【答案】C
【解析】解:如图所示,△BCD是圆内接等边三角形,
过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,
显然当弦为CD时就是△BCD的边长,
要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,
记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},
由几何概型概率公式得P(A)=,
即弦长超过圆内接等边三角形边长的概率是.
故选C.
【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.
3.【答案】D
【解析】解:由题意作出其平面区域,
将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,
故由图象可知,
使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,
故(1,1),(0,3),(,2)成立,
而点(,0)在直线y=3﹣2x上但不在阴影区域内,
故不成立;
故选D.
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.4.【答案】A

点:正弦定理及二倍角公式.
【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222
sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定

R C
c
B b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 5. 【答案】B
【解析】解:根据选项可知a ≤0
a 变动时,函数y=2|x|的定义域为[a ,b],值域为[1,16],
∴2|b|
=16,b=4
故选B .
【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.
6. 【答案】C
【解析】解:∵函数f (x )=ka x ﹣a ﹣x
,(a >0,a ≠1)在(﹣∞,+∞)上是奇函数 则f (﹣x )+f (x )=0
即(k ﹣1)(a x ﹣a ﹣x
)=0
又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数
则a>1
则g(x)=log a(x+k)=log a(x+1)
函数图象必过原点,且为增函数
故选C
【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.
7.【答案】D
【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.
∴函数f(x)=a x+1的图象必过定点(0,2).
故选:D.
【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.
8.【答案】C
【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,
∴==,
∴λ=﹣.
故选:C.
【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.
9.【答案】D
【解析】解:设{a n}是等比数列的公比为q,
因为a2=2,a3=﹣4,
所以q===﹣2,
所以a1=﹣1,
根据S5==﹣11.
故选:D .
【点评】本题主要考查学生运用等比数列的前n 项的求和公式的能力,本题较易,属于基础题.
10.【答案】 B
【解析】解:模拟执行程序,可得 a=2,n=1
执行循环体,a=,n=3
满足条件n ≤2016,执行循环体,a=﹣1,n=5 满足条件n ≤2016,执行循环体,a=2,n=7
满足条件n ≤2016,执行循环体,a=,n=9 …
由于2015=3×671+2,可得:
n=2015,满足条件n ≤2016,执行循环体,a=,n=2017
不满足条件n ≤2016,退出循环,输出a 的值为. 故选:B .
11.【答案】C
【解析】由已知,圆1O 的标准方程为222
(1)()(4)x y a a ++-=+,圆2O 的标准方程为 222
()()(2)x a y a a ++-=+,∵
2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或1
35
-≤≤-a ,故答案选C
12.【答案】A
【解析】解:结合向量数量积的几何意义及点O 在线段AB ,AC 上的射影为相应线段的中点,
可得,
,则

=
=16﹣18=
﹣2; 故选A .
【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题
二、填空题
13.【答案】
16π
【解析】如图所示,∵222AB AC BC +=,∴CAB ∠为直角,即过△ABC 的小圆面的圆心为BC 的中点O ',ABC △和DBC △所在的平面互相垂直,则球心O 在过DBC △的圆面上,即DBC △的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为2R =,球的表面积为24π16πS R ==
14.【答案】9
8

解析

【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有
时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 15.【答案】
4+ .
【解析】解:作出正四棱柱的对角面如图, ∵底面边长为6,∴
BC=,
球O 的半径为3,球O 1 的半径为1,
则,
在Rt △OMO 1中,OO 1=4



=

∴正四棱柱容器的高的最小值为
4+

故答案为:4+.
【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.16.【答案】{0,1}.
【解析】解:
=[﹣]+[+]
=[﹣]+[+],
∵0<<1,
∴﹣<﹣<,<+<,
①当0<<时,
0<﹣<,<+<1,
故y=0;
②当=时,
﹣=0,+=1,
故y=1;
③<<1时,
﹣<﹣<0,1<+<,
故y=﹣1+1=0;
故函数的值域为{0,1}.
故答案为:{0,1}.
【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.
17.【答案】

【解析】
解:已知

∴为所求;
故答案为: 【点评】本题主要考查椭圆的标准方程.属基础题.
18.【答案】 【解析】
【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数()y x
R α
α=∈是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断;(2)若幂函
数()y x R α
α=∈在()0,+∞上单调递增,则α0>,若在()0,+∞上单调递减,则0α<;(3)在比较幂值
的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1
三、解答题
19.【答案】(1)1
31622n n n a a -⎛⎫
==- ⎪
⎝⎭
或;(2)证明见解析.
【解析】
试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得1
31622n n n a a -⎛⎫
==- ⎪
⎝⎭
或;(2)
由于{}n b 为递增数列,所以取1
162n n a -⎛⎫
=⋅- ⎪
⎝⎭
,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫
=
==- ⎪++⎝⎭

其前项和为()111
4414
n -
<+.
考点:数列与裂项求和法.1 20.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]
0,x p ∈时,有()11f x -≤≤;
(3)()g a 【解析】【试题分析】(1)先对函数()()3
23
131,02
f x x a x ax a =+
--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值
()01,f =()3213122f a a a =--+=
()()2
11212
a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]
0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[
)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。

证明:(1)由于()()2
3313f x x a x a =+--'()()31x x a =+-,且0a >,
故()f x 在[]0,a 上单调递减,在[
),a +∞上单调递增.
(3)由(2)知()f x 在[
)0,+∞上的最小值为()f a .
当01a <≤时,()1f a ≥-,则()g a 是方程()1f p =满足p a >的实根,
即()2
23160p a p a +--=满足p a >的实根,
所以()()314
a g a -=

又()g a 在(]
0,1上单调递增,故()()max 1g a g == 当1a >时,()1f a <-,由于()()()9
01,11112
f f a ==--<-, 故][0,0,1p ⎡⎤⊂⎣⎦.此时,()1
g a ≤.
综上所述,()g a 21.【答案】
【解析】解:(1)…
=

定义域是(0,7]…
(2)∵,…
当且仅当
即x=6时取=…
∴y ≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
22.【答案】
【解析】解:∵,
∴f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),
∴当x∈[﹣1,﹣),(1,2]时,f′(x)>0;
当x∈(﹣,1)时,f′(x)<0;
∴f(x)在[﹣1,﹣),(1,2]上单调递增,在(﹣,1)上单调递减;
且f(﹣)=﹣﹣×+2×+5=5+,f(2)=8﹣×4﹣2×2+5=7;
故f max(x)=f(2)=7;
故对于任意x∈[﹣1,2]都有f(x)<m成立可化为7<m;
故实数m的取值范围为(7,+∞).
【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题.
23.【答案】
【解析】解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2| ∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,
∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.
(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(﹣2)2+12]≥(a﹣2b+c)2,
∵a﹣2b+c=m=1,∴,
当,即时取等号,∴a2+b2+c2的最小值为.
【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.24.【答案】
【解析】解:(Ⅰ)样本中男生人数为2+5+13+14+2+4=40,
由分层抽样比例为10%估计全校男生人数为=400;
(Ⅱ)∵样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,
样本容量为70,
∴样本中学生身高在170~185cm之间的频率,
故可估计该校学生身高在170~180cm之间的概率p=0.5;
(Ⅲ)样本中身高在180~185cm之间的男生有4人,设其编号为①,②,③,④,
样本中身高在185~190cm之间的男生有2人,设其编号为⑤,⑥,
从上述6人中任取2人的树状图为:
∴从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15,
求至少有1人身高在185~190cm之间的可能结果数为9,
∴所求概率p2=.
【点评】抽样过程中每个个体被抽到的可能性相同,这是解决一部分抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以知二求一.这是一个统计综合题,可以作为一个解答题出在文科的试卷中.。

相关文档
最新文档