九年级数学上册期末试卷(提升篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册期末试卷(提升篇)(Word 版 含解析)
一、选择题
1.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值
90
95
90
88
90
92
85
这组数据的中位数和众数分别是 A .88,90
B .90,90
C .88,95
D .90,95
2.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )
A .BM >DN
B .BM <DN
C .BM=DN
D .无法确定
3.如图,已知正五边形ABCDE 内接于
O ,连结,BD CE 相交于点F ,则BFC ∠的度
数是( )
A .60︒
B .70︒
C .72︒
D .90︒
4.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐
C .乙队身高更整齐
D .无法确定甲、乙两队身高谁更整齐
5.将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A .23(2)3y x =++
B .23(2)3y x =-+
C .23(2)3y x =+-
D .23(2)3y x =-- 6.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交
B .相切
C .相离
D .无法确定
7.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1
B .m≤1
C .m >1
D .m <1
8.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月
D .1月,2月,3
月,12月
9.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )
A .2
225
y x = B .2
425
y x = C .225
y x = D .245
y x =
10.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )
A .73
B .234+
C .
14
33
D .
22
33
11.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( ) A .a <2
B .a >2
C .a <﹣2
D .a >﹣2
12.如图,AB 为
O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长
BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )
A .54
B .36
C .32
D .27
二、填空题
13.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.
14.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则
sin DEC
∠=______.
15.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
16.如图,在□ABCD中,AB=5,AD=6,AD、AB、BC分别与⊙O相切于E、F、G三点,过点C作⊙O的切线交AD于点N,切点为M.当CN⊥AD时,⊙O的半径为____.
17.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.
18.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=4
5

连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;
19.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm2.(结果保留π)
20.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.
21.如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.
22.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.
x…﹣1012…
y … 0 3 4 3 …
23.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.
24.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.
三、解答题
25.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;
(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为; (3)在所给坐标系中画出该二次函数的图象; (4)根据图象,当-3<x <2时,y 的取值范围是.
26.某校举行秋季运动会,甲、乙两人报名参加100 m 比赛,预赛分A 、B 、C 三组进行,运动员通过抽签决定分组. (1)甲分到A 组的概率为 ; (2)求甲、乙恰好分到同一组的概率.
27.如图1,在平面直角坐标系中,已知抛物线2
5y ax bx =++与x 轴交于()10
A -,,()
B 5,0两点,与y 轴交于点
C .
(1)求抛物线的函数表达式;
(2)若点P 是位于直线BC 上方抛物线上的一个动点,求△BPC 面积的最大值; (3)若点D 是y 轴上的一点,且以B,C,D 为顶点的三角形与ABC 相似,求点D 的坐标;
(4)若点E 为抛物线的顶点,点F (3,a )是该抛物线上的一点,在x 轴、y 轴上分别找点M 、N ,使四边形EFMN 的周长最小,求出点M 、N 的坐标. 28.解方程:(1)2620x x ++= (2)2(3)3(3)x x x -=-
29.A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:
(1)两张卡片上的数字恰好相同的概率.
(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率. 30.如图,在平面直角坐标系中,一次函数y =
1
2
x +2的图象与y 轴交于A 点,与x 轴交于B 点,⊙P 的半径为5,其圆心P 在x 轴上运动.
(1)如图1,当圆心P 的坐标为(1,0)时,求证:⊙P 与直线AB 相切;
(2)在(1)的条件下,点C 为⊙P 上在第一象限内的一点,过点C 作⊙P 的切线交直线AB 于点D ,且∠ADC =120°,求D 点的坐标;
(3)如图2,若⊙P 向左运动,圆心P 与点B 重合,且⊙P 与线段AB 交于E 点,与线段
BO相交于F点,G点为弧EF上一点,直接写出1
2
AG+OG的最小值.
31.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.
(1)请写出y与x之间的函数表达式;
(2)当x为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?
32.如图,抛物线y=﹣1
3
x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点
C,连接AC,BC.
(1)求此抛物线的表达式;
(2)求过B、C两点的直线的函数表达式;
(3)点P是第一象限内抛物线上的一个动点.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点P的坐标,若不存在,请说明理由;
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.
众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.
故选B.
2.C
解析:C
分析:连接BD ,根据平行四边形的性质得出BP=DP ,根据圆的性质得出PM=PN ,结合对顶角的性质得出∠DPN=∠BPM ,从而得出三角形全等,得出答案.
详解:连接BD ,因为P 为平行四边形ABCD 的对称中心,则P 是平行四边形两对角线的交点,即BD 必过点P ,且BP=DP , ∵以P 为圆心作圆, ∴P 又是圆的对称中心, ∵过P 的任意直线与圆相交于点M 、N , ∴PN=PM , ∵∠DPN=∠BPM , ∴△PDN ≌△PBM (SAS ), ∴BM=DN .
点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.
3.C
解析:C 【解析】 【分析】
连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】
解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725

=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=
∠=︒,1
722
BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.
【点睛】
本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.
4.B
解析:B 【解析】
根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】
∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】
此题考查方差,掌握波动越小,数据越稳定是解题关键
5.A
解析:A 【解析】 【分析】
直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】
将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为2
3(2)3y x =++,故答案选A .
6.B
解析:B 【解析】 【分析】
根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】
∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】
本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.
7.D
解析:D 【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.
详解:∵方程2x 2x m 0-+=有两个不相同的实数根,
∴()2
240m =-->, 解得:m <1. 故选D .
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
8.D
解析:D 【解析】 【分析】 【详解】
当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产. 故选D
9.C
解析:C 【解析】 【分析】
四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积. 【详解】
作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,
∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE ∴∠BAC=∠DAE
又∵AB=AD ,∠ACB=∠E=90° ∴△ABC ≌△ADE (AAS ) ∴BC=DE ,AC=AE ,
设BC=a ,则DE=a ,DF=AE=AC=4BC=4a , CF=AC-AF=AC-DE=3a ,
在Rt △CDF 中,由勾股定理得, CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2,
解得:a=
5
x , ∴y=S 四边形ABCD =S 梯形ACDE =
1
2
×(DE+AC )×DF =1
2×(a+4a )×4a =10a 2
=
25
x 2. 故选C . 【点睛】
本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.
10.C
解析:C 【解析】 【分析】
由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】
解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,
∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,
∴在Rt △AEB 中,BE =
∴PC +PE 的最小值为
∴点H 的纵坐标a = ∵BC ∥AD , ∴
AD PD
BE PB
= =2,
∵BD =
∴PD =
23⨯=
∴点H 的横坐标b ,
∴a +b ==; 故选C .
【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
11.B
解析:B
【解析】
【分析】
根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.
【详解】
∵1a =,2b =-,1c a =-,
由题意可知:
()()2
2424110b ac a =-=--⨯⨯-<⊿,
∴a >2,
故选:B .
【点睛】
本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 12.D
解析:D
【解析】
【分析】
由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠
【详解】
切线性质得到90BAO ∠=
903654AOB ∴∠=-=
OD OA =
OAD ODA ∠=∠∴
AOB OAD ODA ∠=∠+∠
27ADC ADO ∴∠=∠=
故选D
本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键
二、填空题
13.9
【解析】
【分析】
根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.
【详解】
解:∵a 是方程的一个根,
∴2a2=a+3,
∴2a2-a=3,
∴.
故答案为:9
解析:9
【解析】
【分析】
根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.
【详解】
解:∵a 是方程223x x =+的一个根,
∴2a 2=a+3,
∴2a 2-a=3,
∴()
2263=32339a a a a --=⨯=.
故答案为:9.
【点睛】
本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 14.【解析】
【分析】
根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,的值即为等腰△CDE 底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.
【详解】
【分析】
根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC
∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.
【详解】
如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,
在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,
∵D为AB的中点,
∴CD=1
5 2
AB= ,
由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,
∴CE=1
5 2
MN,
∵DM⊥BC,DC=DB,
∴CM=BM=1
3 2
BC=,
∴EM=CE-CM=5-3=2,
∵DM=1
4 2
AC,
∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,
∴DN=EN=5 ,
∴由勾股定理得,CN=25,
∴sin∠DEC=
25
5 CN
CE
.
25
.
【点睛】
本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.
15.y=-5(x+2)2-3
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再
解析:y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,
∴新抛物线顶点坐标为(-2,-3),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.
故答案为:y=-5(x+2)2-3.
【点睛】
本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16.2或1.5
【解析】
【分析】
根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.
【详解】
解:设半径为r,
∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=
解析:2或1.5
【解析】
【分析】
根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】
解:设半径为r,
∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6
∴GC=r,BG=BF=6-r,
∴AF=5-(6-r)=r-1=AE
∴ND=6-(r-1)-r=7-2r,
在Rt△NDC中,NC2+ND2=CD2,
(7-r)2+(2r)2=52,
解得r=2或1.5.
故答案为:2或1.5.
【点睛】
本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.
17.【解析】
【分析】
直接利用根与系数的关系求解.
【详解】
解:根据题意得x1+x2═
故答案为.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1
解析:
1 2 -
【解析】
【分析】
直接利用根与系数的关系求解.【详解】
解:根据题意得x1+x2═
1
2 b
a
-=-
故答案为
1
2 -.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则
x1+x2=
b
a
-,x1•x2=
c
a

18.3或9 或或
【解析】
【分析】
先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.
【详解】
∵AB是半圆O的直径,
∴∠ACB=90,
∵sin∠C
解析:3或9 或23或
343
【解析】
【分析】 先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.
【详解】 ∵AB 是半圆O 的直径,
∴∠ACB=90︒,
∵sin ∠CAB=
45
, ∴45BC AB =, ∵AB=10,
∴BC=8,
∴22221086AC AB BC =
-=-=,
∵点D 为BC 的中点,
∴CD=4.
∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图
∴1AC BC CE CD =,即1684
CE =, ∴CE 1=3,
∵点E 1在射线AC 上,
∴AE 1=6+3=9,
同理:AE 2=6-3=3.
②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图
∴3AC BC CD CE =,即3
684CE =, ∴CE 3=163

∴AE3=6+16
3
=
34
3
,
同理:AE4=6-16
3
=
2
3
.
故答案为:3或9 或2
3

34
3
.
【点睛】
此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.
19.60π
【解析】
试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.
由题意得圆锥的母线长
∴圆锥的侧面积.
考点:勾股定理,圆锥的侧面积
点评:解题的关键是熟练掌握圆锥的侧
解析:60π
【解析】
试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.
由题意得圆锥的母线长
∴圆锥的侧面积.
考点:勾股定理,圆锥的侧面积
点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 20.3000(1+ x)2=4320
【解析】
【分析】
设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.
【详解】
解析:3000(1+ x)2=4320
【解析】
【分析】
设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000
(1+x)(1+x)m2,然后可得方程.
【详解】
解:设增长率为x,由题意得:
3000(1+x)2=4320,
故答案为:3000(1+x)2=4320.
【点睛】
本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.
21.【解析】
【分析】
通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求
解析:25
【解析】
【分析】
通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.
【详解】
过点C作CF⊥AE,垂足为F,
在Rt△ACD中,CD=22
1310
+=,
由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,
∴CF=AC•sin45°=
2
2

由AC∥BD可得△ACE∽△BDE,

1
3 CE AC
DE BD
==,
∴CE=1
4
CD=
10

在Rt△ECF中,sin∠AEC=
225
210
CF
CE
=⨯=,
故答案为:25

【点睛】
考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.
22.(3,0).
【解析】
分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.
详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x==1;
点(﹣1,0)
解析:(3,0).
【解析】
分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.
详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x=0+2
2
=1;
点(﹣1,0)关于对称轴对称点为(3,0),
因此它的图象与x轴的另一个交点坐标是(3,0).
故答案为(3,0).
点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.
23.x=﹣1
【解析】
【分析】
根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.
【详解】
解:将x移到等号右边得到:=1﹣x,
两边平方,得
x+5=1﹣2x
解析:x=﹣1
【解析】
【分析】
根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.
【详解】
解:将x1﹣x,
两边平方,得
x+5=1﹣2x+x2,
解得x 1=4,x 2=﹣1,
检验:x =4时,
=5,左边≠右边,∴x =4不是原方程的解,
当x =﹣1时,﹣1+2=1,左边=右边,∴x =﹣1是原方程的解,
∴原方程的解是x =﹣1,
故答案为:x =﹣1.
【点睛】
本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.
24.【解析】
【分析】
根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,
△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23
【解析】
【分析】
根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.
【详解】
解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,
∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,
∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,
∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2
QB BB A B BB , ∴1231=3PB A B ,1221=2
QB A B , ∵2322=A B A B ,
∴PB 1∶QB 1=
13A 2B 3∶12A 2 B 2=2:3. 故答案为:
23
. 【点睛】
本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 三、解答题
25.(1)b =2,c =3;(2)(0,3),(1,4)(3)见解析;(4)-12<y ≤4
【解析】
【分析】
(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;
(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;
(3)根据二次函数的定点、对称轴及所过的点画出图象即可;
(4)直接由图象可得出y 的取值范围.
【详解】
(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得
3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23
b c =⎧⎨=⎩ , 故答案为:b=2,c=3;
(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),
二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).
(3)解:如图所示

(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y ≤4.
【点睛】
本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.
26.(1)
13;(2)13 【解析】
【分析】
(1)直接利用概率公式求出甲分到A 组的概率;
(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.
【详解】
解:(1)13
(2)甲乙两人抽签分组所有可能出现的结果有:(A ,A )、(A ,B )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(C ,A )、(C ,B )、(C ,C )共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A )的结果有3种,所以P (A )=13
. 【点睛】
此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.
27.(1)245y x x =-++;(2)△BPC 面积的最大值为
1258 ;(3)D 的坐标为(0,-1)或(0,-
103);(4)M (1117,0),N (0,115) 【解析】
【分析】
(1)抛物线的表达式为:y=a (x+1)(x-5)=a (x 2-4x-5),即-5a=5,解得:a=-1,即可求解;
(2)利用S △BPC =12×PH×OB=52(-x 2+4x+5+x-5)=12(x-52)2+1258
,即可求解; (3)B 、C 、D 为顶点的三角形与△ABC 相似有两种情况,分别求解即可;
(4)作点E 关于y 轴的对称点E′(-2,9),作点F (2,9)关于x 轴的对称点F′(3,-8),连接E′、F′分别交x 、y 轴于点M 、N ,此时,四边形EFMN 的周长最小,即可求解.
【详解】
解:(1)把()1,0A -,()5,0B 分别代入25y ax bx =++得:
0=502555a b a b -+⎧⎨=++⎩
∴14a b =-⎧⎨=⎩
∴抛物线的表达式为:245y x x =-++.
(2)如图,过点P 作PH ⊥OB 交BC 于点H
令x =0,得y =5
∴C (0,5),而B (5,0)
∴设直线BC 的表达式为:y kx b =+
∴505b k b =⎧⎨
=+⎩ ∴15k b =-⎧⎨=⎩
∴5y x =-+
设245P m,m m -++(),则5H m,m -+() ∴224555PH m m m m m =-+++-=-+
∴21552PBC S
m m =⨯⨯-+() ∴255125228
PBC S m =--+() ∴△BPC 面积的最大值为1258
. (3)如图,∵ C (0,5),B (5,0)
∴OC =OB ,
∴∠OBC =∠OCB =45°
∴AB =6,BC =52要使△BCD 与△ABC 相似
则有AB BC BC CD
=或AB CD BC BC = ①当AB BC BC CD
=时 5252CD
= ∴253CD =
则10 3
OD=
∴D(0,10
3
-)
② 当
AB CD
BC BC
=时,
CD=AB=6,
∴D(0,-1)
即:D的坐标为(0,-1)或(0,-
10
3
)(4)∵245
y x x
=-++
2
29
y x+
=--
()
∵E为抛物线的顶点,
∴E(2,9)
如图,作点E关于y轴的对称点E'(﹣2,9),
∵F(3,a)在抛物线上,
∴F(3,8),
∴作点F关于x轴的对称点F'(3,-8),
则直线E' F'与x轴、y轴的交点即为点M、N 设直线E' F'的解析式为:y mx n
=+

92
83
m n
m n
=-+


-=+


17
5
11
5
m
n

=-
⎪⎪

⎪=
⎪⎩
∴直线E' F'的解析式为:171155
y x =-+ ∴1117M (,0),N (0,115
). 【点睛】
本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握.
28.(1)1233x x =-=-;(2)122,33
x x =
= 【解析】
【分析】
(1)根据配方法即可求解;
(2)根据因式分解法即可求解.
【详解】
(1)2620x x ++= 2697x x ++=
2(3)7x +=
3x +=
1233x x =-=-.
(2)2(3)3(3)x x x -=-
2(3)3(3)0x x x ---=
(23x)(x 3)0--=,
2-3x=0或x-3=0 ∴122,33
x x =
= 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知方程的解法.
29.(1)
29;(2)59
. 【解析】
【分析】
(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.
(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可
【详解】
(1)由题意可列表:
∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,
∴两张卡片上的数字恰好相同的概率是2
9

(2)由题意可列表:
∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,
∴两张卡片组成的两位数能被3整除的概率是5
9

考点:列表法与树状图法.
30.(1)见解析;(2)D 233
);(3
37
【解析】
【分析】
(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;
(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=1
2
∠ADC=60°,利用锐角三
角函数求出AD,设D(m,1
2
m+2),根据平面直角坐标系中任意两点之间的距离公式求
出m的值即可;
(3)在BA上取一点J,使得BJ
5,连接BG,OJ,JG,根据相似三角形的判定定理证
出△BJG∽△BGA,列出比例式可得GJ=1
2
AG,从而得出
1
2
AG+OG=GJ+OG,设J点的坐
标为(n,1
2
n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ
的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】
(1)证明:如图1中,连接PA.
∵一次函数y=1
2
x+2的图象与y轴交于A点,与x轴交于B点,
∴A(0,2),B(﹣4,0),
∴OA=2,OB=4,
∵P(1,0),
∴OP=1,
∴OA2=OB•OP,AP=225
+=
OA OP
∴OA
OP

OB
OA
,点A在圆上
∵∠AOB=∠AOP=90°,
∴△AOB∽△POA,
∴∠OAP=∠ABO,
∵∠OAP+∠APO=90°,
∴∠ABO+∠APO=90°,
∴∠BAP=90°,
∴PA⊥AB,
∴AB是⊙P的切线.
(2)如图1﹣1中,连接PA,PD.
∵DA,DC是⊙P的切线,∠ADC=120°,
∴∠ADP=∠PDC=1
2
∠ADC=60°,
∴∠APD=30°,∵∠PAD=90°
∴AD=PA•tan30°=15

设D(m,1
2
m+2),
∵A(0,2),
∴m2+(1
2
m+2﹣2)2=
15
9

解得m=±23

∵点D在第一象限,
∴m=23
3

∴D(23

3
+2).
(3)在BA上取一点J,使得BJ=5,连接BG,OJ,JG.
∵OA=2,OB=4,∠AOB=90°,
∴AB22
OA OB
+22
24
+5
∵BG5BJ5,
∴BG2=BJ•BA,
∴BG
BJ

BA
BG

∵∠JBG=∠ABG,∴△BJG∽△BGA,
∴JG
AG

BG
AB

1
2
,。

相关文档
最新文档