北师版九年级下册第一章直角三角形的边角关系知识点及习题

合集下载

北师大版九年级数学下 第一章 直角三角形的边角关系 单元复习试题 含答案

北师大版九年级数学下 第一章 直角三角形的边角关系  单元复习试题  含答案

第一章直角三角形的边角关系一.选择题(共10小题)1.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.若Rt△ABC是“好玩三角形”,且∠C=90°,BC≥AC,则tan B=()A.B.C.D.2.以下说法正确的是()①当∠A从0°逐渐增大到90°时,tan A的值逐渐增大,cot A的值逐渐减小;②tan12°•tan78°=1;③在△ABC中,已知∠C=90°,如果tan(90°﹣A)=2,那么cot(90°﹣A)=2;④若∠A为锐角,则0<tan A<1.A.①②B.③④⑤C.①②③D.③④3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.在△ABC中,已知∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°5.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT6.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB 上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为()A.B.C.D.7.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m8.如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为3:1,休闲平台DE的长是()米.A.20 B.15 C.D.9.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米10.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里二.填空题(共6小题)11.如图,在Rt△ABD中,∠A=90°,点C在AD上,∠ACB=45°,tan∠D=,则=.12.已知α是锐角,且tanα=1,则sinα+cosα=.13.在Rt△ABC中,若∠C=90°,sin A=,则sin B=.14.△ABC中,∠A、∠B均为锐角,且,则△ABC的形状是.15.若一个正多边形的一个外角等于36°,则这个正多边形有条对角线;用科学计算器计算:135×sin13°≈.(精确到0.1)16.用不等号“>”或“<”连接:sin50°cos50°.三.解答题(共6小题)17.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M 与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是;(2)试用含m和α的代数式表示线段CM的长:;α的取值范围是.18.完成下列表格,并回答下列问题,(1)当锐角α逐渐增大时,sinα的值逐渐,cosα的值逐渐,tanα的值逐渐.(2)sin30°=cos ,sin =cos60°;(3)sin230°+cos230°=;(4);(5)若sinα=cosα,则锐角α=.19.计算:sin45°+sin2α+cos2α+20.计算:2cos230°+﹣sin60°.21.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.22.如图,在△ABC中,∠B为锐角,AB=3,AC=5,sin C=,求BC的长.参考答案与试题解析一.选择题(共10小题)1.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.若Rt△ABC是“好玩三角形”,且∠C=90°,BC≥AC,则tan B=()A.B.C.D.【分析】如图,因为BC≥AC,只有BC边上的中线,满足条件,AD=BC,设CD=BD=a.只要证明∠DAC=30°即可解决问题;【解答】解:如图,∵BC≥AC,∴只有BC边上的中线,满足条件,AD=BC,设CD=BD=a.则AD=2a,CD=a,AD=2CD,∵∠C=90°,∴∠DAC=30°,∴AC=a,∴tan B==.故选:B.2.以下说法正确的是()①当∠A从0°逐渐增大到90°时,tan A的值逐渐增大,cot A的值逐渐减小;②tan12°•tan78°=1;③在△ABC中,已知∠C=90°,如果tan(90°﹣A)=2,那么cot(90°﹣A)=2;④若∠A为锐角,则0<tan A<1.A.①②B.③④⑤C.①②③D.③④【分析】当∠A从0°逐渐增大到90°时,tan A的值逐渐增大,cot A的值逐渐减小;一个角的正切值等于它的余角的余切值.【解答】解:①根据锐角三角函数的增减性,可知正确;②∵tan78°=cot12°,∴tan12°•tan78°=1.正确;③根据同角的正切和余切互为倒数.错误;④如tan60°=>1.错误.故选:A.3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0【分析】将两式分别两边平方,利用sin2α+cos2α=1,求出sinαcosα的值,解答即可.【解答】解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.4.在△ABC中,已知∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°【分析】直接利用绝对值的性质以及偶次方的性质得出sin A=,tan B=1,进而得出∠A=30°,∠B=45°,即可得出答案.【解答】解:∵|sin A﹣|+(1﹣tan B)2=0,∴|sin A﹣|=0,(1﹣tan B)2=0,∴sin A=,tan B=1,∴∠A=30°,∠B=45°,∴∠C的度数为:180°﹣30°﹣45°=105°.故选:C.5.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT【分析】本题要求熟练应用计算器.【解答】解:“SHIET”表示使用该键上方的对应的功能.故选:D.6.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB 上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为()A.B.C.D.【分析】连结AD,如图,先利用勾股定理计算出BC=10,再根据直角三角形斜边上的中线性质得DA=DC=5,则∠1=∠C,接着根据圆周角定理得到点A、D在以MN为直径的圆上,所以∠1=∠DMN,则∠C=∠DMN,然后在Rt△ABC中利用正弦定义求∠C的正弦值即可得到sin∠DMN.【解答】解:连结AD,如图,∵∠A=90°,AB=6,AC=8,∴BC=10,∵点D为边BC的中点,∴DA=DC=5,∴∠1=∠C,∵∠MDN=90°,∠A=90°,∴点A、D在以MN为直径的圆上,∴∠1=∠DMN,∴∠C=∠DMN,在Rt△ABC中,sin C===,∴sin∠DMN=,故选:A.7.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:=m,故选:C.8.如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为3:1,休闲平台DE的长是()米.A.20 B.15 C.D.【分析】延长DE交BC于H.解直角三角形求出BC=AC=30,再证明BH=CH=DH=30,EH=10,即可解决问题;【解答】解:延长DE交BC于H.由题意BH:EH=3:1,在Rt△ABC中,AB=60,∠BAC=45°,∵BC=AC=60,∵AD=DB,DH∥AC,∴BH=CH=30,∴DH=AC=30,∴EH=10,DE=30﹣10=20,故选:A.9.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米【分析】过点E作EM⊥AB与点M,根据斜坡CD的坡度(或坡比)i=1:2.4可设CD=x,则CG=2.4x,利用勾股定理求出x的值,进而可得出CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐角三角函数的定义求出AM的长,进而可得出结论.【解答】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.10.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.二.填空题(共6小题)11.如图,在Rt△ABD中,∠A=90°,点C在AD上,∠ACB=45°,tan∠D=,则=.【分析】由tan∠D==可设AB=2x、AD=3x,根据∠ACB=45°知AC=AB=2x,得出CD=x,继而可得答案.【解答】解:在Rt△ABD中,∵tan∠D==,∴设AB=2x,AD=3x,∵∠ACB=45°,∴AC=AB=2x,则CD=AD﹣AC=3x﹣2x=x,∴==,故答案为:.12.已知α是锐角,且tanα=1,则sinα+cosα=.【分析】根据α是锐角,且tanα=1,推出α=45°即可解决问题.【解答】解:∵α是锐角,且tanα=1,∴α=45°,∴sinα+cosα=+=故答案为:13.在Rt△ABC中,若∠C=90°,sin A=,则sin B=.【分析】根据勾股定理及三角函数的定义进行解答即可.【解答】解:Rt△ABC中,∠C=90°,sin A=,即=,设CB=2x,则AB=3x,根据勾股定理可得:AC=x.∴sin B===.故答案为:.14.△ABC中,∠A、∠B均为锐角,且,则△ABC的形状是等边三角形.【分析】先根据非负数的性质及特殊教的三角函数值求出∠A,∠B的度数,再根据三角形的内角和定理求出∠C的度数,最后根据三个内角关系判断出其形状.【解答】解:∵,∴tan B﹣=0,2sin A﹣=0.∴tan B=,∠B=60°;sin A=,∠A=60°.∴∠C=60°∴△ABC的形状是等边三角形.15.若一个正多边形的一个外角等于36°,则这个正多边形有35 条对角线;用科学计算器计算:135×sin13°≈83503.8 .(精确到0.1)【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形,∴这个正多边形有=35条对角线,135×sin13°≈83503.8,故答案为:35,83503.8.16.用不等号“>”或“<”连接:sin50°>cos50°.【分析】先由互余两角的三角函数的关系得出cos50°=sin40°,再根据当角度在0°~90°间变化时,正弦值随着角度的增大而增大得出sin50°>sin40°,从而得出结果.【解答】解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.三.解答题(共6小题)17.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M 与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是垂直;(2)试用含m和α的代数式表示线段CM的长:CM=m•tan;α的取值范围是0°<α<90°.【分析】(1)连接CD,OM.根据旋转的性质得出MC=MD,OC=OD,再证明△COM≌△DOM,得出∠COM=∠DOM,然后根据等腰三角形三线合一的性质得出CD⊥OM;(2)首先用含α的代数式表示∠COM,然后在Rt△COM中,根据正切函数的定义即可得出CM的长度;由OD与OM不能重合,且只能在OC右边,得出α的取值范围.【解答】解:(1)连接CD,OM.根据旋转的性质可得,MC=MD,OC=OD,又OM是公共边,∴△COM≌△DOM,∴∠COM=∠DOM,又∵OC=OD,∴CD⊥OM;(2)由(1)知∠COM=∠DOM,∴∠COM=,在Rt△COM中,CM=OC•tan∠COM=m•tan;因为OD与OM不能重合,且只能在OC右边,故可得α的取值范围是0°<α<90°.18.完成下列表格,并回答下列问题,(1)当锐角α逐渐增大时,sinα的值逐渐增大,cosα的值逐渐减少,tanα的值逐渐增大.(2)sin30°=cos 60゜,sin 30゜=cos60°;(3)sin230°+cos230°= 1 ;(4)30°;(5)若sinα=cosα,则锐角α=45°.【分析】根据特殊角的三角函数值填写即可;(1)根据锐角三角函数的增减性,同角三角函数的关系填写;(2)根据同角三角函数的关系解答;(3)根据同角三角函数的关系解答;(4)45°角的正弦和余弦相等.【解答】解:填表如下:(1)当锐角α逐渐增大时,sinα的值逐渐增大,cosα的值逐渐减少,tanα的值逐渐增大.(2)sin30°=cos 60゜,sin 30゜=cos60°;(3)sin230°+cos230°=1;(4) 30°;(5)若sinα=cosα,则锐角α=45°.故答案为:增大,减少,增大.60゜,30゜;1;30°;45°.19.计算:sin45°+sin2α+cos2α+【分析】利用平方关系得到sin2α+cos2α=1,再将特殊角的三角函数值代入,即可求出式子的值.【解答】解:原式=×+1+﹣,=1+1+1﹣1,=2.20.计算:2cos230°+﹣sin60°.【分析】首先代入特殊角的三角函数值,然后再计算乘方,后算乘法,最后计算加减即可.【解答】解:原式=2×()2+﹣,=+﹣,=3﹣.21.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.【分析】(1)分别计算出各数,进而可得出结论;(2)根据(1)中的关系可得出结论;(3)任选一个角验证(3)的结论即可;(4)用α表示一个锐角,写出这个关系式即可.【解答】解:(1)∵2sin30°•cos30°=2××=,sin60°=.2sin22.5°•cos22.5≈2×0.38×0.92≈0.7,sin45°=≈0.7,∴2sin30°•cos30°=sin60°,2sin22.5°•cos22.5=sin45°;(2)由(1)可知,一个角正弦与余弦积的2倍,等于该角2倍的正弦值;(3)2sin15°•cos15°≈2×0.26×0.97≈,sin30°=;故结论成立;(4)2sinα•cosα=sin2α.22.如图,在△ABC中,∠B为锐角,AB=3,AC=5,sin C=,求BC的长.【分析】作AD⊥BC,在△ACD中求得AD=AC sin C=3、,再在△ABD 中根据AB=3、AD=3求得BD=3,继而根据BC=BD+CD可得答案.【解答】解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵AC=5,,∴AD=AC•sin C=3.∴在Rt△ACD中,.∵AB=,∴在Rt△ABD中,.∴BC=BD+CD=7.。

最新北师大版九年级下册第一章直角三角形的边角关系知识要点和单元测试题

最新北师大版九年级下册第一章直角三角形的边角关系知识要点和单元测试题

九年级第一章《直角三角形的边角关系》知识要点知识点1 直角三角形的有关性质(边、角)★ 边:⑴两直角边的平方和等于斜边的平方,即222a b c +=(a 、b 是直角边,c 是斜边);⑵直角三角形斜边上的中线等于斜边的一半。

★ 角:⑴直角三角形两个锐角互余; ⑵直角三角形的30°所对直角边等于斜边的一半。

知识点2 三角函数的有关概念★ 定义:如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定,那么(1)∠A 的对边与邻边的比叫做∠A 的正切,即tanA=BCAC; (2)∠A 的对边与斜边的比叫做∠A 的正弦,即sinA=BC AB ; (3)∠A 的邻边与斜边的比叫做余弦,即cosA=ACAB。

锐角A 的正切、正弦、余弦都是∠A 的三角函数。

A★ 注意事项:三角函数只与角的大小有关,与直角三角形的边的长短无关。

知识点3 30°、45°、60°角的三角函数值知识点4 解直角三角形★ 解直角三角形的概念:在直角三角形中已知除直角外的两边或一边一角,求其余边或角的过程。

★ 解直角三角形的常用方法:勾股定理、三角形内角和定理、锐角三角函数知识点5 三角函数的应用:测物高、方位角测距离、坡度(又称坡比,指坡面的铅直高度与水平宽度之比)。

九年级第一章《直角三角形的边角关系》测试题班级 姓名 得分一、选择题(每题3分,共30分)。

1、在RtABC 中,∠C=90°,AB=13,BC=5,则下列各式中正确的是( ). A .512sin =A B .1312cos =A C .512tan =A D .1312tan =A2、在Rt ABC 中,∠C=90°,∠B=2∠A ,则sinB=( ) A.123、如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若AC =4,BC =3,则sin ∠ACD 的值为( ).A .34 B .43 C .54 D .534、如图,为测楼房BC 的高,在距离房30米的A 处测得楼顶的仰角为α,则楼高BC 的高为( ). A .αtan 30米 B .αtan 30米 C .αsin 30米 D .αsin 30米 5、计算:A. B.232+ C.23 D.231+610)1α+=,则锐角α的度数是 ( ) A .20 B .30 C .40 D .50 7、如图,一个小球由地面沿着坡度的坡面向上前进了10 m ,此时小球距离地面的高度为( ) A.B.25 mC.45 mD.310m 8、如图,在菱形中,,3cos 5A =,,则tan ∠的值是( )A .12 B .2 CDC B A (第3题) αC BA (第4题)9、等腰三角形的顶角是120︒,底边上的高为30,则三角形的周长是( ) A.120+.120+.150+ D.150+10、如图2,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500t an55°米D .500tan35°米二、填空题(每题4分,共24分)。

北师大版九年级下册第一章直角三角形的边角关系 讲义和习题

北师大版九年级下册第一章直角三角形的边角关系 讲义和习题

1直角三角形的边角关系(讲义)➢ 课前预习1. 根据两个特殊的直角三角形的相关知识填空:13230°AB Ca c =_______,bc =_______,a b =_______,ba=_______.112CA45°ba c =_______,bc =_______,a b =_______,ba=_______. 2. 我们一般将特殊角度(30°,45°,60°)放到__________中处理,同时不能破坏特殊角.如图,在△ABC 中,∠A =45°,∠B =30°,AB=1,则△ABC 的面积为___________.ABC3. 小明在操场上放风筝,已知风筝线长为250 m ,拉直的线与地面所成的锐角为α,小明从点A 移动到点A 3的过程中,风筝也从点B 移动到点B 3,小明研究了α的大小与其所在的直角三角形两直角边比值的关系特征,根据小明提供的数据填空.OB 3A 3B 2A 2B 1A 1BA1在点A 时,α=∠BAO ,BO =240,AO =70,BOAO=________; 在点A 1时,α=∠B 1A 1O ,B 1O =200,A 1O =150,11B OA O=_____; 在点A 2时,α=∠B 2A 2O ,B 2O =150,A 2O =200,22B OA O=____; 在点A 3时,α=∠B 3A 3O ,B 3O =70,A 3O =240,33B OA O=_____; 小明发现,在α逐渐减小的过程中,BOAO的值逐渐_______, 进一步探索发现,在α逐渐减小的过程中,BO BA 的值逐渐____,AOBA的值逐渐__________. ➢ 知识点睛1. 在Rt △ABC 中,∠C =90°,sin A =________,cos A =________,tan A =________.2. 在Rt △ABC 中,∠C =90°,锐角A 越大,正弦sin A ______,余弦cos A ______,正切tan A ______. 3. 特殊角的三角函数值:60°45°30°α正切 tan α余弦 cos α正弦 sin α4. 计算一个角的三角函数值,通常把这个角放在____________中研究,常利用_________或__________两种方式进行处理.➢ 精讲精练1. 下列说法正确的是( )A .在△ABC 中,若∠A 的对边是3,一条邻边是5,则tan A 35=BCA1B .将一个三角形的各边扩大3倍,则其中一个角的正弦值也扩大3倍C .在锐角三角形ABC 中,已知∠A =60°,那么cos A 12=D .一定存在一个锐角A ,使得sin A =1.23 2. △ABC 中,∠C =90°,AB =8,cos A 34=,则AC 的长是_______. 3. 在Rt △ABC 中,∠C =90°,根据下列条件填空:(∠A ,∠B ,∠C 的对边分别为a ,b ,c ) (1)a =2,b =1,则sin A =__________; (2)a =4,tan A =1.5,则b =_________; (3)3a,则sin A =__________.4. 在锐角三角形ABCtan 0B =,则∠C =_______. 5. 已知在△ABC 中,∠A ,∠B 均为锐角,且(tan 0B A =,则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .有一个角是60°的三角形6. 已知∠A为锐角,且cos 2A >,则∠A 的度数( ) A .小于45° B .小于30° C .大于45° D .大于30°7. 当4590A ︒<∠<︒时,下列不等式中正确的是( )A .tan cos sin A A A >>B .cos tan sin A A A >>C .sin tan cos A A A >>D .tan sin cos A A A >>8. 计算:(1)22sin 302sin 60tan 45tan 60cos 30︒+︒+︒-︒+︒;1(2)22sin 45cos 452sin 30(tan 30)2cos30-︒⋅︒-︒+︒-︒; (3)sin 302tan 60︒-︒.9. 如图,在△ABC 中,AD 是BC 边上的高,︒=∠30C,2BC =+1tan 2B =,那么AD 的长是( )A .12B .1 C.12+ D.13+CDBA第9题图 第10题图10. 如图,在△ABC 中,cosB =,sin C 35=,AC =5,则△ABC 的面积是( ) A .212B .12C .14D .2111. 如图,已知P 是正方形ABCD 内一点,△PBC 为正三角形,则tan ∠P AB 的值是( )ABC1C'B'BCAA.2+B.2C.12D.12PD CBACE DB A第11题图 第12题图12. 如图,D 是△ABC 中AC 边上一点,CD =2AD ,AE ⊥BC 于点E ,若BD =8,3sin 4CBD ∠=,则AE 的长为___________.13. 如图,A ,B ,C 三点在正方形网格线的交点处,将△ACB 绕着点A 逆 时针旋转得到△AC′B′,若A ,C ,B′ 三点共线,则tan ∠B ′CB =________.14. 如图,在△ABC 中,∠A =90°,D 是AB 边上一点,∠ACD =37°,∠BCD =26.5°,AC =60,求AD ,CD 及AB 的长.(参考数据:sin37°≈0.6,cos37°≈0.8)DCBA15. 如图,在△ABC 中,∠B =37°,∠C =67.5°,AB =10,求BC 的长.(结果精确到0.1,参考数据:sin37°≈0.6,cos37°≈0.8,tan67.5°≈2.41,tan22.5°≈0.41)1BCA67.5°37°16. 如图,在△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC 于点D ,求AD 的长.DCBA【参考答案】➢课前预习1.12;2;32;2;1;12.3.247;43;34;724;减小;减小;增大➢知识点睛1.A∠的对边斜边;A∠的邻边斜边;AA∠∠的对边的邻边2.越大;越小;越大3.4.直角三角形;转移;构造➢精讲精练1.C112. 63. (1)5; (2)83; (3)124. 75°5. D6. A7. D8. (1)原式=2;(2)原式=3 ;(3)原式9. B 10. A 11. A 12. 9 13.214. AD =45,CD =75,AB =120. 15. BC =10.5. 16. AD=7. 直角三角形的边角关系(习题)➢ 例题示范例:如图,在△ABC 中,∠B =37°,∠C =67.5°,AB =10,求BC 的长.(结果精确到0.1,参考数据:sin37°≈0.6,cos37°≈0.8,tan67.5°≈2.41)BCA 67.5°37°从下面书写板块的名称中选取合适的内容,写到对应的横线上.①得出结论;②解直角三角形;③准备条件.D67.5°37°C BA1➢巩固练习1.在Rt△ABC中,如果各边长度都扩大为原来的2倍,那么锐角A的正弦值()A.扩大2倍B.缩小2倍C.没有变化D.不确定2.在Rt△ABC中,若∠C=90°,AC=3,BC=5,则sin A的值为()A.35B.45C.34D3.在△ABC中,∠A,∠B均为锐角,且21sin cos02A B⎛⎫⎪⎝⎭+-=,则这个三角形是()A.等腰三角形B.直角三角形C.钝角三角形D.等边三角形4.若∠A为锐角,且cos A的值大于12,则∠A()A.大于30°B.小于30°C.大于60°D.小于60°5.已知β为锐角,且tan3β<≤β的取值范围是()A.3060β︒︒≤≤B.3060β︒<︒≤C.3060β︒<︒≤D.30β<︒6.如图,在矩形ABCD中,DE⊥AC,垂足为E,设∠ADE=α,若3cos5α=,AB=4,则AD的长为()A.3B.163C.203D.1651。

北师大版九年级下第一章直角三角形的边角关系同步复习

北师大版九年级下第一章直角三角形的边角关系同步复习

第一章直角三角形边的关系知识点一:锐角三角函数一、正切定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ;注意:一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

例1在ABC Rt ∆中, 90=∠C ,BC AC 2=,求A sin ,A tan ,A cos 的值。

变式练习:在ABC ∆中, 90=∠C ,125tan =A ,求A cos 的值。

31sin =B ,1=AD ,求BC 的长。

能力提高:(1)已知1tan =α,且α为锐角,则ααcos 2sin 3-的值为。

(2)如图,已知菱形ABCD 的边长为10cm ,AB DE ⊥,53sin =A ,则这个菱形的面积是 。

(7)(2013·深圳)如图,已知321////l l l ,相邻两条平行线间的距离相等,若等腰直角ABC ∆的三个顶点分别在这三条平行线上,求αsin 的值。

(2)证明:BBB cos sin tan =; (3)根据上面的两个结论解答:①若2cos sin =+A A ,求A A cos sin -的值; ②若2tan =B ,求BB BB sin cos 2sin cos 4+-的值。

知识点二:30°,45°,60°角的三角函数值及计算题一、三角函数值参照表减小)而减小(或增大)。

例1计算下列各题:(1) 45sin 230cos 330tan 62--(2)已知45sin =a ,60sin =b ,求:()bb a b a b ab a ab a 222222-÷--+++变式练习: 计算下列各题:,那么C ∠= 。

能力提高:(1)已知3=a ,且()021345tan 42=-++-c b b ,以a 、b 、c 为边组成的三角形面积等于 。

(2)如图,在直角坐标平面内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,5=BO ,53sin =∠BOA ,求: ①点B 的坐标; ②BAO ∠cos 的值。

北师大版数学九年级下册:第一章《直角三角形的边角关系》知识点整理复习

北师大版数学九年级下册:第一章《直角三角形的边角关系》知识点整理复习

直角三角形的边角关系知识点复习考点一、锐角三角函数的概念如图,在△ABC 中,∠C=90°正弦:_____sin =∠=斜边的对边A A 余弦:____cos =∠=斜边的邻边A A 正切:_____tan =∠∠=的邻边的对边A A A三角函数 30°45°60°sin α cos α tan α考点三、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA •tan(90°—A)=1 (4)商的关系:tanA=AAcos sin 考点四、锐角三角函数的增减性当角度在0°~90°之间变化时,(1) 正弦值随着角度的增大而_______;(2) 余弦值随着角度的增大而_______;(3) 正切值随着角度的增大而___________; 考点五、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:______________________(勾股定理) (2)锐角之间的关系:______________________(3)边角之间的关系:正弦sinA=___________,余弦cosA=____________,正切tanA=______________ (4) 面积公式:c ch ab s 2121==(h c 为c 边上的高) 考点六、解直角三角形应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

北师版九年级下册第一章直角三角形的边角关系知识点及习题

北师版九年级下册第一章直角三角形的边角关系知识点及习题

九年级下册第一章 直角三角形的边角关系【知识要点】一、锐角三角函数:正切:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即b A atan =; 正弦..:.在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即ca sin =A ; 余弦:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cA bcos =; 余切:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cA b cot =; 注:〔1〕sinA,cosA,tanA, 是在直角三角形中概念的,∠A 是锐角(注意数形结合,构造直角三角形). 〔2〕sinA,cosA,tanA, 是一个完整的符号,表示∠A,适应省去“∠〞号;〔3〕sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均﹥0,无单位. 〔4〕sinA,cosA,tanA, 的大小只与∠A 的大小有关,而与直角三角形的边长无关. 〔5〕角相等,那么其三角函数值相等;两锐角的三角函数值相等,那么这两个锐角相等. 一、三角函数和角的关系tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

sinA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,sinA 的值越大。

cosA 的值越小,梯子越陡,∠A 越大;∠A 越大,梯子越陡,cosA 的值越大。

2、三角函数之间的关系 〔1〕互为余角的函数之间的关系0º 30 º45 º 60 º 90 ºsin α 021 22 23 1假设∠A 为锐角,那么 ①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=;)90tan(cot A A ∠-︒=〔2〕同角的三角函数的关系 1)平方关系:sinA 2+cosA 2=1 2)倒数关系:tanA ·cotA =13)商的关系:tanA =A o A s c sin ,cotA =A Asin cos二、解直角三角形:※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

(完整)新北师大版九年级数学下册第一章直角三角形的边角关系小结复习练习

(完整)新北师大版九年级数学下册第一章直角三角形的边角关系小结复习练习

直角三角形的边角关系知识点复习考点一、锐角三角函数的概念如图,在△ ABC 中,/ C=90考点二、一些特殊角的三角函数值 三角函数 30 °45 °60 °sin aCOS atan a考点三、各锐角三角函数之间的关系(1) 互余关系: sinA=cos(90 ° — A), cosA=si n(90 °—A); (2) 平方关系: 2 2 sin A cos A 1 ; (3)倒数关系: tanA ?tan(90 ° — A)=1(4)商的关系: 丄 Asin A tanA=— cos A考点四、锐角三角函数的增减性 当角度在0° ~90。

之间变化时,(1)正弦值随着角度的增大而 _______ ;⑵ 余弦值随着角度的增大而 ________ ; (3)正切值随着角度的增大而 _____________ ;考点五、解直角三角形 1、 解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角, 由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

2、 解直角三角形的理论依据在Rt △ ABC 中,/ C=90,/ A ,Z B ,Z C 所对的边分别为a ,b ,c(1)三边之间的关系: _________ (勾股定理);(2)锐角之间的关系: ____________________正弦: sinA余弦: cos A正切:tan AA 的对边斜边A 的邻边斜边__A 的对边 A 的邻边的对边ZE 的邻边N 直的邻边 MB 的对边(3) 边角之间的关系:正弦 sinA= _________ ,余弦 cosA= _____ 正切tanA= ___________________________________ 考点六、解直角三角形应用1、 将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、 仰角、俯角、坡面知识点及应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

新版北师大初中数学九年级(下册)第一章直角三角形的边角关系练习题【含答案】

新版北师大初中数学九年级(下册)第一章直角三角形的边角关系练习题【含答案】

北师大版初中数学 九(下) 第一章直角三角形的边角关系 分节练习(带答案)第1节 锐角三角函数1、【基础题】在Rt △ABC 中,∠C =90°,BC =3,tan A =125,求AC . ★ 1.1、【基础题】在Rt △ABC 中,∠C =90°,sin A =54,BC =20,求△ABC 的周长和面积. ★ 1.2、【基础题】在Rt △ABC 中,∠C =90°,sin A 和cos B 有什么关系?2、【综合Ⅰ】在等腰三角形ABC 中,AB =AC =5,BC =6,求sin B ,cos B ,tan B . ★2.1【综合Ⅰ】已知∠A 是锐角,cos A =53,求sin A 和tan A . 2.2、【综合Ⅰ】在Rt △ABC 中,∠BCA =90°,CD 是中线,BC =8,CD =5,求sin ∠ACD ,cos ∠ACD 和tan ∠ACD .2.3【综合Ⅰ】如图,点P 是∠α的边OA 上一点,且点P 的坐标为(4,3),则sin α和cos α的值分别是( )A. 34,35B. 54,53C. 53,54D. 34,432.4、【综合Ⅲ】如右图,在Rt △ABC 中,∠BCA =90°,CD ⊥AB ,垂足为D ,AD =8,BD =4,求tan A 的值. ☆第2、3节 30°,45°,60°角的三角函数值 & 三角函数的计算3、【基础题】计算:(1)sin 30°+cos 45°; (2)2sin 60°+2cos 60°-tan 45°.3.1、【综合Ⅱ】 化简2)130(tan - = ( ) A. 331- B. 13- C. 133- D. 13-3.2、【综合Ⅱ】 △ABC 中,∠A ,∠B 均为锐角,且有2|tan 2sin 0B A +=(,则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形4、【基础题】用计算器求下列锐角的三角函数值(结果保留4个有效数字)(1)sin 72°; (2)cos 36.43°; (3)tan 38° 24'25".4.1、【基础题】如左下图,河岸AD 、BC 互相平行,桥AB 垂直于两岸,桥AB 长12 m ,在C 处看桥两端A 、B ,夹角∠BCA =60°,求B 、C 间的距离(结果精确到1 m ).4.2、【基础题】如右图,AB =20 m ,∠CAB =50°,∠DAB =56°,求避雷针CD 的长度(结果精确到0.01 m )5、【基础题】根据下列条件利用计算器求∠A 的度数(用度、分、秒表示).(1)cos A =0.6753; (2)sin A =0.4553; (3)tan A =87.545.1、【基础题】一梯子斜靠在墙上,已知梯长4 m ,梯子位于地面上的一端离墙2.5 m ,求梯子与地面所成的锐角.第4节 解直角三角形6、【基础题】在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,根据下列条件求出直角三角形的其他元素. ★(1)5=a ,25=c ; (2)34=c ,∠A =60°第5节 三角函数的应用7、【综合Ⅱ】如左下图,小李想测量塔CD 的高度,他在A 处仰望塔顶,测得仰角是30°,再往塔的方向前进50 m至B 处,测得仰角是60°,那么该塔有多高?(小李的身高忽略不计,结果精确到1 m ) ★7.1、【综合Ⅱ】如右上图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30º,朝物体AB 方向前进20米,到达点C ,再次测得A 点的仰角为60º,则物体AB 的高度为( ) ★B.10米7.2【综合Ⅱ】(2012年陕西数学中考20题)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos 250.9063tan 250.4663sin 650.9063︒≈︒≈︒≈︒≈,,,,cos 650.4226tan 65 2.1445︒≈︒≈,)8、【综合Ⅱ】如左下图,大楼AD 高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及大楼与塔之间的距离AC (结果精确到0.01 m ).8.1【基础题】如图,线段AB 、DC 分别表示甲、乙两建筑物的高,某初三课外兴趣活动小组为了测量两建筑物的 高,用自制测角仪在B 处测得D 点的仰角为α,在A 处测得D 点的仰角为β. 已知甲、乙两建筑物之间的 距离BC 为m . 请你通过计算用含α、β、m 的式子分别表示出甲、乙两建筑物的高度.2,则AB的长是_________. ☆9、【综合Ⅲ】如左下图,在△ABC中,∠A=30°,∠B=45°,AC=39.1、【综合Ⅲ】如右上图,在四边形ABCD中,AD=30 m,DC=50 m,CB=20 m,AB=50 m,∠A=60°,m)∠C=60°,求此四边形ABCD的面积(结果精确到0.01 210、【综合Ⅰ】一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港. 求(1)A、C两港之间的距离(结果精确到0.1 km);(2)确定C港在A港的什么方向.10.1、【综合Ⅲ】如图,一艘船以每小时36海里的速度向正北航行到A处,发现它的东北方向有灯塔B,船继续向北航行2小时到达C处,发现灯塔B此时在它的北偏东75°方向,求此时船与灯塔的距离(结果保留根号).第6节利用三角函数测高11、【综合Ⅱ】如图,∠MCE=α,∠MDE=β,AC=BD=a,AB=b,那么物体MN的高度如何表示?九(下) 第一章直角三角形的边角关系 分节练习答案1、【答案】 AC =536 1.1、【答案】 周长60,面积150. 1.2、【答案】 相等 2、【答案】 sin B =54,cos B =53,tan B =34. 2.1【答案】 sin A =54,tan A =34. 2.2、【答案】 sin ∠ACD =54,cos ∠ACD =53,tan ∠ACD =34. 2.3【答案】 选C 2.4、【答案】 tan A =22 3、【答案】(1)221+; (2)0. 3.1、【答案】选A 3.2、【答案】选D 4、【答案】(1)sin 72°≈0.9511; (2)cos 36.43°≈0.8046; (3)tan 38° 24'25"≈0.79284.1、【答案】 BC =34≈7(m ) 4.2、【答案】 CD ≈5.82 m5、【答案】 (1)∠A ≈47° 31'21"; (2)∠A ≈27° 5'3"; (3)∠A ≈89° 20'44".5.1【答案】 梯子与地面所成的锐角是51° 19'4"6、【答案】 (1)5=b ,∠A =∠B =45°; (2)∠B =30°,6=a ,32=b .7、【答案】 CD ≈43 m 7.1、【答案】 选A 7.2【答案】 207米8、【答案】 用方程来解,设AC =x ,则DE =x , 可列方程 tan 60°·x -tan 30°·x =30,解得x =153≈25.98, BC =153×tan 60°=45.008.1【答案】 CD =BC ·tan α=m ·tan α, AB =m ·(tan α-tan β). 9、【答案】 33+9.1【答案】四边形ABCD 的面积是1082.53 2m 10、【答案】(1)14.1 km ; (2)北偏东15°方向. 10.1、【答案】11、【答案】 MN =a b +-αββαtan tan tan tan。

最新北师大版九年级数学下册第一章 直角三角形的边角关系小结与复习

最新北师大版九年级数学下册第一章 直角三角形的边角关系小结与复习
北师大版九年级数学下册
第一章 直角三角形的边角关系
小结与复习
回顾与思考
1.锐角三角函数定义: tanA= sinA=
A的对边 A的邻边
B 斜边 ∠A的对边 A ∠A的邻边 ┌ C
A的对边 斜边
cosA=
A的邻边 斜边
回顾与思考 1.结论:梯子的倾斜程度与tanA 、sinA和cosA有关: tanA越___,梯子越陡.sinA越___,梯子越陡; cosA越____,梯子越陡. 2.在∠A+∠B=90°时,_________
1.若A为锐角, sin A和cos A随A如何变化?
sin A随A的增大而增大 cos A随A的增大而减小
2.坡面与水平面的夹角(α)称为坡角,坡面的铅直高度 与水平宽度的比称为坡度i(或坡比),即坡度等于坡角 的正切.
铅直高度 i tan 水平宽度
3.朝上看时,视线与水平面夹角为仰角 朝下看时,视线与水平面夹角为俯角
3 ,则 cosB 5
中考链接
3.(2013 年深圳市)如图,已知 l1 // l 2 // l3 ,相邻两条平行直线间的距离相 等,若等腰直角△ ABC 的三个项点分别在这三条平行直线上,则 sin 的值是( D )
1 A. 3
6 B. 17
5 C. 5
10 D. 10
D
C
E
l1 l2 l3
1.如图,已知Rt△ABC中,斜边BC上的高 AD=4,cosB= 4 ,则AC=_______.
5
【解析】因为∠BAC=90°,AD是斜边BC上的高,
所以∠B=∠CAD;
因为cosB= ,
所以在Rt△ADC中,cos∠CAD= 又因为AD=4,所以AC=5. 答案:5

北师版九年级下册第一章直角三角形的边角关系知识点及习题

北师版九年级下册第一章直角三角形的边角关系知识点及习题

九年级下册第一章 直角三角形的边角关系【知识要点】一、锐角三角函数:正切:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即b A atan =; 正弦..:.在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即ca sin =A ; 余弦:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cA bcos =; 余切:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cA b cot =; 注:(1)sinA,cosA,tanA, 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形). (2)sinA,cosA,tanA, 是一个完整的符号,表示∠A,习惯省去“∠”号; (3)sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均﹥0,无单位. (4)sinA,cosA,tanA, 的大小只与∠A 的大小有关,而与直角三角形的边长无关. (5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等. 1、三角函数和角的关系tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

sinA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,sinA 的值越大。

cosA 的值越小,梯子越陡,∠A 越大;∠A 越大,梯子越陡,cosA 的值越大。

2、三角函数之间的关系 (1)互为余角的函数之间的关系0º 30 º 45 º 60 º 90 º若∠A 为锐角,则①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=;)90tan(cot A A ∠-︒=(2)同角的三角函数的关系 1)平方关系:sinA 2+cosA 2=1 2)倒数关系:tanA ·cotA =13)商的关系:tanA =A o A s c sin ,cotA =A Asin cos二、解直角三角形:※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

【完整版】北师大版九年级下册数学第一章 直角三角形的边角关系含答案

【完整版】北师大版九年级下册数学第一章 直角三角形的边角关系含答案

北师大版九年级下册数学第一章直角三角形的边角关系含答案一、单选题(共15题,共计45分)1、如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ,②sinα>sinβ,③cosα>cosβ.正确的结论为()A.①②B.②③C.①③D.①②③2、如果∠A为锐角,sinA=,那么()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60° D.60°<∠A<90°3、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4 米B.6 米C.12 米D.24米4、如图,在▱ABCD中,,,分别切边AB,AD于点E,F,且圆心O恰好落在DE上现将沿AB方向滚动到与边BC相切点O在的内部,则圆心O移动的路径长为A.4B.6C.D.5、如图,在△ABC中,∠C=90o, AC=3,BC=4,则sinB的值是()A. B. C. D.6、勾股定理有着悠久的历史,它曾引起很多人的兴趣.英国佩里加(H.Perigal,1801﹣1898)用“水车翼轮法”(图1)证明了勾股定理.该证法是用线段QX,ST,将正方形BIJC分割成四个全等的四边形,再将这四个四边形和正方形ACYZ拼成大正方形AEFB(图2).若AD=,tan∠AON=,则正方形MNUV的周长为()A. B.18 C.16 D.7、如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标=(x>0)的图象上,顶点B在原点,斜边AB垂直x轴,顶点A在函数y1=(x>0)的图象上,∠ABO=30°,则=()函数y2A.﹣B.﹣C.﹣D.﹣8、如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是()A. B. C.1600sinα(m 2) D.1600cosα(m 2)9、如图,的顶点都是正方形网格中的格点,则等于()A. B. C. D.10、如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A. B. C. D.111、小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A. B. C. D.12、sin45°=()A. B. C.1 D.13、如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()A.100 mB.50 mC.50 mD. m14、如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B. C. D.15、如图,一把梯子靠在垂直水平地面的墙上,梯子的长是3米.若梯子与地面的夹角为,则梯子顶端到地面的距离BC为()A. 米B. 米C. 米D. 米二、填空题(共10题,共计30分)16、在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是________.17、如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB= 米,背水坡CD的坡度i=1:(i为DF与FC的比值),则背水坡CD的坡长为________米.18、在Rt△ABC中,,BC=2,,则AB=________19、已知⊙O半径为,AB是⊙O的一条弦,且AB=3,则弦AB所对的圆周角度数是________.20、小明在学习“锐角三角函数”中发现,用折纸的方法可求出tan22.5°,方法如下:将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC 上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以知道tan22.5°=________21、在Rt△ABC中,∠C=90°,sinA=,则tanA=________.22、在Rt△ABC中,∠C=90°,2a=c,则∠A=________23、如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则cosA=________24、将矩形纸片ABCD按如图M2-5方式折叠,M,N分别为AB,CD的中点。

北师大新版数学九年级下 第1章 直角三角形的边角关系 单元练习卷 含解析

北师大新版数学九年级下 第1章 直角三角形的边角关系 单元练习卷  含解析

第1章直角三角形的边角关系一.选择题(共15小题)1.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.2.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.3.已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个4.如图,在△ABC中,若∠C=Rt∠,则()A.B.C.D.5.Rt△ABC中,∠C=90°,b=,c=4,则sin A的值是()A.B.C.D.6.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.m sin35°B.m cos35°C.D.7.在Rt△ABC中,∠C=90°,tan A=,则tan B的值为()A.B.C.D.8.对于任意锐角α,下列结论正确的是()A.sinα<tanαB.sinα≤tanαC.sinα>tanαD.sinα≥tanα9.在△ABC中,tan C=,cos A=,则∠B=()A.60°B.90°C.120°D.135°10.已知:α为锐角,且=1,则tanα的值等于()A.﹣1 B.2 C.3 D.2.511.在△ABC中,AC≠BC,∠ACB=90°,CD⊥AB垂足为D,则下列比值中不等于sin A的是()A.B.C.D.12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.13.在Rt△ABC中,若∠B=75°,∠C=90°,BC=1,则Rt△ABC的面积是()A.B.C.D.14.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A.6cm2B.24cm2C.2cm2D.6cm215.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m二.填空题(共5小题)16.比较大小:cos36°cos37°.17.已知α为锐角,sin(α﹣15°)=,则α=度.18.若坡度i=,则坡角为α=19.计算;sin30°•tan30°+cos60°•tan60°=.20.在Rt△ABC中,∠ACB=90°,若tan A=3,AB=,则BC=三.解答题(共7小题)21.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)22.如图,在△ABC中,∠A=30°,cos B=,AC=6,求△ABC的面积.23.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?24.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)25.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)26.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?27.直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.参考答案与试题解析一.选择题(共15小题)1.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.【分析】根据正弦的定义列式计算即可.【解答】解:在△ABC中,∠C=90°,sin A=,∴=,解得,BC=4,故选:B.2.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.【分析】直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.【解答】解:连接DC,由网格可得:CD⊥AB,则DC=,AC=,故sin A===.故选:B.3.已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个【分析】根据锐角函数的正弦是增函数,余弦是减函数,正切是增函数,可得答案.【解答】解:由0<α<45°,得0<sinα<,故①正确;cosα>sinα,故②错误;sin2α=2sinαcosα<2sinα,故③错误;0<tanα<1,故④正确;故选:B.4.如图,在△ABC中,若∠C=Rt∠,则()A.B.C.D.【分析】根据三角函数的定义即可得到结论.【解答】解:在△ABC中,若∠C=Rt∠,sin A=,cos B=,故选:A.5.Rt△ABC中,∠C=90°,b=,c=4,则sin A的值是()A.B.C.D.【分析】由三角函数的定义,在直角三角形中,正弦等于对边比斜边易得答案.【解答】解:如图,AC=b=,AB=c=4,所以BC=a==1,由三角函数的定义可得sin A==,则sin A=,故选:A.6.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.m sin35°B.m cos35°C.D.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=m sin35°,故选:A.7.在Rt△ABC中,∠C=90°,tan A=,则tan B的值为()A.B.C.D.【分析】因为∠A与∠B互余,则tan A•tan B=1,代入计算即可.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∴tan A•tan B=1,∵tan B==,故选:D.8.对于任意锐角α,下列结论正确的是()A.sinα<tanαB.sinα≤tanαC.sinα>tanαD.sinα≥tanα【分析】直接利用锐角三角函数关系分析得出答案.【解答】解:∵sinα=,tanα=,且斜边>α的邻边,∴sinα<tanα.故选:A.9.在△ABC中,tan C=,cos A=,则∠B=()A.60°B.90°C.120°D.135°【分析】直接利用特殊角的三角函数值得出∠C=30°,∠A=30°,进而得出答案.【解答】解:∵tan C=,cos A=,∴∠C=30°,∠A=30°,∴∠B=120°.故选:C.10.已知:α为锐角,且=1,则tanα的值等于()A.﹣1 B.2 C.3 D.2.5【分析】根据同角三角函数关系tanα=进行解答.【解答】解:由=1,得=1.所以=1.解得tanα=2.5.故选:D.11.在△ABC中,AC≠BC,∠ACB=90°,CD⊥AB垂足为D,则下列比值中不等于sin A的是()A.B.C.D.【分析】利用锐角三角函数定义判断即可.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin A=sin∠BCD=,故选:D.12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【解答】解:∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD===,故选:A.13.在Rt△ABC中,若∠B=75°,∠C=90°,BC=1,则Rt△ABC的面积是()A.B.C.D.【分析】根据锐角三角形的定义可求出AC的长度,然后根据三角形的面积公式即可求出答案.【解答】解:∵tan∠B=,∴=,∴AC==2+,∴Rt△ABC的面积为:×1×(2+)=,故选:D.14.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A.6cm2B.24cm2C.2cm2D.6cm2【分析】在Rt△ABC中,求出BC,AC即可解决问题.【解答】解:在Rt△ACB中,∵∠C=90°,AB=8cm,∴sin A==,∴BC=6(cm),∴AC===2(cm),∴S△ABC=•BC•AC=×6×2=6(cm2).故选:D.15.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:=m,故选:C.二.填空题(共5小题)16.比较大小:cos36°>cos37°.【分析】根据余弦值随着角度的增大(或减小)而减小(或增大)求解.【解答】解:cos36°>cos37°.故答案为>.17.已知α为锐角,sin(α﹣15°)=,则α=75 度.【分析】利用特殊角的三角函数值求出α的度数即可.【解答】解:∵α是锐角,且sin(α﹣15°)=,∴α﹣15°=60°,即α=75°,故答案为:7518.若坡度i=,则坡角为α=30°【分析】根据坡度i与坡角α之间的关系计算,得到答案.【解答】解:∵坡度i=,∴tanα=,∴α=30°,故答案为:30°.19.计算;sin30°•tan30°+cos60°•tan60°=.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin30°•tan30°+cos60°•tan60°=×+×=.故答案为:.20.在Rt△ABC中,∠ACB=90°,若tan A=3,AB=,则BC= 3【分析】由tan A==3可设BC=3x,则AC=x,依据勾股定理列方程求解可得.【解答】解:∵在Rt△ABC中,tan A==3,∴设BC=3x,则AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(负值舍去),则BC=3,故答案为:3.三.解答题(共7小题)21.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)【分析】根据题意可以作辅助线AE⊥BC,作DF⊥BC,然后根据AB坡坡角为45°,DC 坡坡度为1:2和题目中的数据可以分别求得CF和BE的长,从而可以求得BC的长.【解答】解:作AE⊥BC于点E,作DF⊥BC于点F,如右图所示,由题意可得,tan∠C=,CD=10m,∠B=45°,AD=6m,∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,AE=DF,设DF=x,则CF=2x,∴=102,解得,x=2,∴DF=2m,CF=4m,AE=2m,∵∠AEB=90°,∠ABE=45°,AE=2m,∴BE=2m,∴BC=BE+EF+CF=2+6+4=(6+6)m,即BC的长是(6+6)m.22.如图,在△ABC中,∠A=30°,cos B=,AC=6,求△ABC的面积.【分析】过点C作CD⊥AB于点D,根据直角三角形的性质求出CD,根据余弦的定义求出AD,根据余弦的定义求出BD,计算即可.【解答】解:过点C作CD⊥AB于点D.∵∠A=30°,∴CD=AC=3,AD=AC•cos A=3,∵cos B=,∴设BD=4x,则BC=5x,由勾股定理得,CD=3x,由题意的,3x=3,解得,x=1,∴BD=4,∴AB=AD+BD=3+4,CD=3,∴S△ABC=•AB•CD=×(3+4)×3=6+.23.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?【分析】(1)根据三角形内角和定理求出∠ACB,根据等腰三角形的判定定理解答;(2)作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,比较得到答案.【解答】解:(1)由题意得,∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣30°﹣120°=30°,∴∠ACB=∠CAB,∴BC=AB=40(海里);(2)作CE⊥AB交AB的延长线于E,在Rt△CBE中,sin∠CBE=,∴CE=BC•sin∠CBE=40×=20,∵20>30,∴轮船继续向东航行,无触礁危险.24.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴=,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC的高度约为19米.25.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)【分析】在Rt△CBE中,由于∠CBE=45°,所以BE=CE,AE=40+x,在Rt△ACE中,利用30°的锐角三角函数求出x,加上测角仪的高度就是CD.【解答】解:设CE的长为xm,在Rt△CBE中,∵∠CBE=45°,∴∠BCD=45°,∴CE=BE=xm,∴AE=AB+BE=40+x(m)在Rt△ACE中,∵∠CAE=30°,∴tan30°=即=,解得,x=20+20≈20×1.732+20=54.64(m)所以CD=CE+ED=54.65+1.5=56.15≈56(m)答:该建筑物的高度约为56m.26.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?【分析】根据题意可知,实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D 点,求CD的长.【解答】解:作CD⊥AB于D,根据题意,AB=30×=20(海里),∠CAD=30°,∠CBD=60°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=20(海里),解得:CD=10>10,所以不可能.27.直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.【分析】过P作PC⊥AB交BA的延长线于C,连接PA,PB,于是得到∠PBO=∠CPB=60°,∠CPA=30°,求得∠APB=30°,根据余角的定义得到∠ABP=90°﹣60°=30°,求出∠ABP=∠APB,根据等腰三角形的判定得到AP=AB=200,在Rt△APC中,根据含30°角的直角三角形的性质得到AC=AP=100,即可得到结论.【解答】解:过P作PC⊥AB交BA的延长线于C,连接PA,PB,则∠PBO=∠CPB=60°,∠CPA=30°,∴∠APB=30°,∵∠ABP=90°﹣60°=30°,∴∠ABP=∠APB,∴AP=AB=200,在Rt△APC中,AC=AP=100,∴PO=AC+AB=300米.答:飞机的高度PO为300米.。

九下第1章直角三角形的边角关系4解直角三角形作业新版北师大版

九下第1章直角三角形的边角关系4解直角三角形作业新版北师大版

【点拨】 如图,过点 A 作 AH⊥BC 于点 H. ∵△ABC 是等边三角形, ∴AB=AC=BC=6,∠BAC=60°. ∵AH⊥BC, ∴BH=12BC=3,∠BAH=12∠BAC=30°, ∴∠BAD+∠DAH=30°.
∵∠BAC=60°,∠DAE=30°,
∴∠BAD+∠EAC=30°,∴∠DAH=∠EAC, ∴tan∠DAH=tan∠EAC=13. 又∵AH=AB·sin 60°=6× 23=3 3, ∴tan∠DAH=DAHH=3DH3=13, ∴DH= 3,∴BD=BH-DH=3- 3.
【答案】D
10 如图,在△ABC中,∠A=30°,∠B=90°.
(1)在斜边AC上求作线段AO,使AO=BC,连接OB;(要 求:尺规作图并保留作图痕迹,不写作法,标明字母) 【解】如图所示.
(2)若OB=2,求AB的长. 【解】∵∠A=30°,∠ABC=90°,∴AC=2BC. ∵AO=BC,∴AC=2AO, ∴OC=AO,即点 O 为 AC 的中点. ∵OB=2,∴AC=2OB=4, ∴AB=AC·cos A=2 3.
(2)sin ∠ADC的值. 【解】∵AD 是△ABC 的中线,∴CD=12BC=2. ∴DE=CD-CE=1. ∵AE⊥BC,DE=AE=1,∴∠ADC=45°. ∴sin ∠ADC= 22.
【点方法】
∠B和∠C均不在直角三角形中,需要作出BC边 上的高来构造直角三角形,问题便容易解决.
12 (1)[问题呈现]如图①,△ABC和△ADE都是等边三角 形,连接BD,CE.求证:BD=CE. 【证明】∵△ABC和△ADE都是等边三角形, ∴AD=AE,AB=AC,∠DAE=∠BAC=60°. ∴∠DAE-∠BAE=∠BAC-∠BAE. 即∠BAD=∠CAE. ∴△BAD≌△CAE(SAS).∴BD=CE.

北师大版九年级下册 第一章 直角三角形的边角关系(包含答案)

北师大版九年级下册 第一章 直角三角形的边角关系(包含答案)

第一章直角三角形的边角关系一、选择题1.在Rt△ABC中,∠C=90°,sin A=513,则tan B的值为()A.1213B.512C.1312D.125答案 D 在△ABC中,∵∠C=90°,∴sin A=BCAB ,又sin A=513,∴BCAB=513,设BC=5k(k>0),则AB=13k,∴AC=√AB2-BC2=√(13k)2-(5k)2=12k,∴tan B=ACBC =12k5k=125,故选D.2.已知α为锐角,且cos(90°-α)=12,则α的度数为()A.30°B.60°C.45°D.75°答案 A ∵cos60°=12,α为锐角,∴90°-α=60°,∴α=30°.3.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.12B.√55C.√1010D.2√55答案 B 如图,连接CO.根据网格的特点知CO⊥AB,不妨设每个小正方形的边长为1. 在Rt△AOC中,CO=√12+12=√2, AC=√12+32=√10,则sin A=OC AC =√2√10=√55.4.在△ABC 中,a,b,c 分别为∠A,∠B,∠C 的对边,∠C=90°,a=2,cos B=13,则b=( ) A.√1010B.2√10C.4√2D.4√23答案 C ∵cos B=13,∴a c =13, 又a=2,∴c=6, ∴b=√62-22=√32=4√2.5.如图,在△ABC 中,sin B=√22,cos C=45,AC=5,则△ABC 的面积为( )A.13B.14C.21D.10.5 答案 D 过点A 作AD ⊥BC,垂足为D.∵cos C=45,AC=5,∴CD=4, ∴AD=√AC 2-CD 2=3, ∵sin B=√22,∴∠B=45°,∴BD=AD=3,∴S △ABC =12BC ·AD=12(3+4)×3=10.5.故选D.6.图是横断面为梯形的河坝,根据图中数据,若AB=(9+4√3)米,那么斜坡BC 的坡比i 等于( )A.1∶2B.√3∶2C.√3∶1D.1∶√3答案 D 如图,作DF ⊥AB 于F,则DF=CE=4米,FE=CD=5米.所以AF=√AD 2-DF 2=√(4√2)2-42=4米,所以BE=AB-AF-FE=9+4√3-4-5=4√3米. 所以i=tan B=CE EB =44√3=1√3,即i=1∶√3.7.在△ABC 中,∠A=120°,AB=4,AC=2,则sin B 的值是( )A.5√714 B.√35 C.√217D.√2114答案 D 如图所示,过C 作CD ⊥AB 交BA 的延长线于D.∵∠CAB=120°,∴∠CAD=60°. 在Rt △CDA 中,AC=2,∠CDA=90°, ∴AD=2cos 60°=1,CD=2sin 60°=√3,∴在Rt △CDB 中,BC 2=CD 2+(AD+BA)2=(√3)2+(1+4)2=28,∴BC=2√7,∴sin B=CD BC =√32√7=√2114,故选D.8.如图,在△ABC 中,∠A=30°,E 为AC 上一点,且AE∶EC=3∶1,EF⊥AB 于F,连接FC,则tan ∠CFB 等于( )A.16√3 B.12√3 C.43√3 D.14√3 答案 C 如图,作CD ⊥AB,垂足为D,则EF ∥CD,设EC=x(x>0),则AE=3x,∵sin A=sin 30°=EF∶AE=1∶2,∴EF=32x,∵cos A=cos 30°=AF∶AE=√32,∴AF=3√32x, ∵EF∥CD,∴AE EC =AF FD=3,AE AC =EF CD =34,∴FD=AF 3=√32x,CD=43EF=2x, ∴tan∠CFB=CD FD =3x 2=43√3,故选C.二、填空题9.在△ABC 中,∠A,∠B都是锐角,若|sinA -12|+(cosB -12)2=0,则∠C=.答案 90° 解析∵|sinA -12|+(cosB -12)2=0,∴sin A=12,cos B=12,∵∠A,∠B 都是锐角, ∴∠A=30°,∠B=60°, 则∠C=180°-30°-60°=90°.10.如图,在菱形ABCD 中,DE ⊥AB,垂足为E,DE=6,sin A=35,则菱形ABCD 的周长为 .答案 40解析 在Rt △ADE 中,DE=6,sin A=DE AD =35,所以AD=10,所以菱形ABCD 的周长为4×10=40. 11.如图,在△ABC 中,AB=5,AC=7,∠B=60°,则BC 的长为 .答案 8解析 过点A 作AD ⊥BC 于点D,则在Rt △ABD 中,BD=AB ·cos 60°=5×12=52,AD=AB ·sin 60°=5√32, 所以DC=√AC 2-AD 2=112, 所以BC=BD+DC=52+112=8.12.如图,平面直角坐标系中有正方形ABCD,B(0,√3),∠BAO=60°,那么点C 的坐标是 .答案 (-√3,√3+1)解析 如图,作CE ⊥y 轴于E,则Rt △CEB ≌Rt △BOA.所以CE=BO=√3,BE=AO=BO tan ∠BAO =√3√3=1,所以OE=BO+BE=√3+1,因此C(-√3,√3+1).13.在综合实践课上,小聪所在的小组要测量一条河的宽度,如图1-7-8,河岸EF ∥MN,小聪在河岸MN 上点A 处用测角仪测得河对岸小树C 位于东北方向,然后沿着河岸走了30米,到达B 处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD=10米.根据这些数据可求出河的宽度为 米(结果保留根号).答案10(3+√3)解析如图,过点C作CP⊥MN于点P,过点D作DQ⊥MN于点Q,设河宽为x米,则CP=DQ=AP=x 米.在直角三角形DBQ中,可以得到BQ=√3x米,3由题意知CD=PQ=10米,因为AQ=AP+PQ,所以30+√3x=x+10,解得 x=10(3+√3).3即河的宽度为10(3+√3)米.14.在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是______.【答案】75或25【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.15.为解决停车难的问题,在如图所示的一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出个这样的停车位.(√2≈1.4)答案17解析如图,BC=2.2×cos45°=2.2×√2≈1.54米,2≈3.5米,CE=5×sin45°=5×√22BE=BC+CE=5.04米,≈3.14米,EF=2.2÷sin45°=2.2÷√22(56-5.04)÷3.14+1=50.96÷3.14+1≈16+1=17(个).故这个路段最多可以划出17个这样的停车位.16.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是海里.(结果精确到个位,参考数据:√2≈1.4,√3≈1.7,√6≈2.4)答案24解析∠CBA=25°+50°=75°.作BD⊥AC于点D.∠CAB=(90°-70°)+(90°-50°)=20°+40°=60°,则∠ABD=30°,∴∠CBD=75°-30°=45°.在直角△ABD中,BD=AB·sin∠CAB=20×sin60°=20×√3=10√3(海里).2在直角△BCD中,∠CBD=45°,则BC=√2BD=10√3×√2=10√6≈10×2.4=24(海里).三、解答题17.计算:(1)|-2|+2sin 30°-(-√3)2+(tan 45°)-1;(2)cos245°-cos60°+tan245°-tan260°.1−sin30°答案(1)原式=2+1-3+1=1.(2)原式=(√22)2-121−12+12-(√3)2=12-1+1-3=-52.18.如图,在平面直角坐标系中,O 为坐标原点,点N 的坐标为(20,0),点M 在第一象限内,且OM=10,sin ∠MON=35.求:(1)点M 的坐标;(2)cos ∠MNO 的值.答案(1)过点M 作MP ⊥ON,垂足为P.在Rt △MOP 中,由sin ∠MON=35,OM=10,得MP 10=35,即MP=6.由勾股定理,得OP=√102-62=8.∴点M 的坐标是(8,6).(2)由(1)知MP=6,PN=20-8=12.∴MN=√62+122=6√5.∴cos∠MNO=PNMN =6√5=2√55. 19.如图,已知在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD,AE 分别与CD 、CB 相交于点H 、E,AH=2CH.(1)求sin B 的值;(2)如果CD=√5,求BE 的长.答案(1)∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,∴AB=2CD=2BD,∴∠DCB=∠B.∵AH⊥CD,∴∠AHC=∠CAH+∠ACH=90°.又∵∠DCB+∠ACH=90°,∴∠CAH=∠DCB=∠B.∴△ABC∽△CAH.∴ACBC =CH AH.又∵AH=2CH,∴BC=2AC.可设AC=k,BC=2k,k>0, 则在Rt△ABC中,AB=√AC2+BC2=√5k.∴sin B=ACAB =√5 5.(2)∵AB=2CD,CD=√5,∴AB=2√5.在Rt△ABC中,AC=AB·sin B=2√5×√55=2. ∴BC=2AC=4.在Rt△ACE和Rt△AHC中,tan∠CAE=CEAC =CHAH=12.∴CE=12AC=1.∴BE=BC-CE=3.20.如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100 m.请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈712,cos35°≈56,tan35°≈710)答案如图,作AD⊥CB交直线CB于点D.由题意知∠ACD=35°,∠ABD=45°.在Rt△ACD中,∠ACD=35°,tan35°=AD,CD所以CD≈10AD.7在Rt△ABD中,∠ABD=45°,tan45°=AD,BD所以BD=AD.因为BC=CD-DB,所以10AD-AD=100,解得AD≈233.7答:热气球离地面的高度约为233 m.21.校车安全是最近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的试验:如图,先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB 的长(精确到0.1米,参考数据:√3≈1.73,√2≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.答案 (1)由题意得,在Rt △ADC 中,AD=CD tan30°=21√3≈36.33(米),在Rt △BDC中,BD=CD tan60°=√3=7√3≈12.11(米),所以AB=AD-BD=36.33-12.11=24.22≈24.2(米).即AB 的长约为24.2米.(2)从A 到B 用时2秒,所以速度为24.2÷2=12.1(米/秒),因为12.1×3.6=43.56,所以该校车速度为43.56千米/小时,大于40千米/小时,所以此校车在AB 路段超速.22.如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°.已知山坡AB 的坡度i=1∶√3,AB=10米,AE=15米.(i=1∶√3是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH;(2)求广告牌CD 的高度.(测倾器的高度忽略不计,结果精确到0.1米.参考数据:√2≈1.414,√3≈1.732)答案 (1)在Rt △ABH 中,i=tan ∠BAH=1√3=√33, ∴∠BAH=30°,∴BH=12AB=5米.即点B 距水平面AE 的高度BH 为5米. (2)如图,过B 作BG ⊥DE 于G,由(1)得BH=5米,∴AH=5√3米,∴BG=AH+AE=(5√3+15)米,在Rt △BGC 中,∠CBG=45°,∴CG=BG=(5√3+15)米.在Rt △ADE 中,∠DAE=60°,AE=15米,∴DE=√3AE=15√3米.∴CD=CG+GE-DE=5√3+15+5-15√3=20-10√3≈2.7(米).∴广告牌CD的高度约为2.7米.23.在东西方向的海岸线l上有一长为1 km的码头MN(如图1-7-17),在码头西端M的正西方向19.5 km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°方向,且与A相距40 km的B处,经过1小时20分钟,又测得该轮船位于A的北偏东60°方向,且与A相距8√3 km的C处.(1)求该轮船航行的速度(结果保留根号);(2)如果该轮船不改变航向继续航行,那么该轮船能否正好行至码头MN靠岸?请说明理由.答案(1)如图,∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40 km,AC=8√3 km,∴BC=√AB2+AC2=√402+(8√3)2=16√7 km.小时,∵1小时20分钟=43∴该轮船航行的速度为16√7=12√7千米/小时.43(2)如图,作BR⊥l于R,作CS⊥l于S,延长BC交l于T.∵∠2=60°,∴∠4=90°-60°=30°,∵AC=8√3 km,∴CS=8√3×sin 30°=4√3 km,AS=8√3×cos 30°=8√3×√32=12 km.∵∠1=30°,∴∠3=90°-30°=60°.∵AB=40 km,∴BR=40×sin 60°=20√3 km,AR=40×cos 60°=40×12=20 km.易知△STC ∽△RTB,∴ST RT =CS BR ,即ST ST+20+12=√320√3,解得ST=8(km).∴AT=12+8=20 km.∵AM=19.5 km,MN=1 km,∴AN=20.5 km,∵AM<AT<AN,故该轮船能够正好行至码头MN 靠岸.。

北师大版九年级下册数学第一章 直角三角形的边角关系 含答案

北师大版九年级下册数学第一章 直角三角形的边角关系 含答案

北师大版九年级下册数学第一章直角三角形的边角关系含答案一、单选题(共15题,共计45分)1、如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A. B. C. D.2、如图,△ABC的顶点都在正方形网格的格点上,则tan∠BAC的值为()A.2B.C.D.3、在Rt△ACB中,∠C=90°,AB=10,sinA= ,则BC的长为()A.6B.7.5C.8D.12.54、某市“旧城改造”中,计划在市内一块如图所示的三角形空地上种植某种草皮,以美化环境.已知这种草皮每平方米售价a元,则购买这种草皮至少需要()A. 元B. 元C. 元D.5、如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD 于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()A. B. C. D.6、在Rt△ABC中,如果各边的长度同时扩大2倍,那么锐角A的正弦值和余弦值()A.都扩大2倍B.都缩小2倍C.都不变D.不能确定7、如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A. B. C. D.8、如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BAC等于()A.15°B.20°C.30°D.45°9、如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A. B. C. D.10、如果某人沿坡度为3:4的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6mB.8mC.10mD.12m11、△ABC中,若AB=6,BC=8,∠B=120°,则△ABC的面积为()A. B.12 C. D.12、在△ABC中,∠C=90°,CD⊥AB于D,∠ACD=α,若tanα=,则sinB=()A. B. C. D.13、在Rt△ABC中,∠C=90°,AC=2BC,则SinA的值是()A. B. C.2 D.14、如图大坝的横断面,斜坡AB的坡比i=1:2,背水坡CD的坡比i=1:1,若坡面CD的长度为米,则斜坡AB的长度为()A. B. C. D.2415、sin60°的相反数是( )A.-B.-C.-D.-二、填空题(共10题,共计30分)16、在如图所示的正方形网格中,∠1________∠2.(填“>”,“=”,“<”)17、如图,菱形ACBD中,AB与CD相交于点O,∠ACB=120°,以C为圆心,CA为半径作弧AB,再以C为圆心,CO为半径作弧EF,分别交CA、CB于点F、E,若CB=2,则图中阴影部分的面积是________.18、某斜坡的坡度,则它的坡角是________度.19、已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在BC的延长线上的点E处,那么=________.20、在Rt△ABC中,,sinA=,则cosB的值等于________21、如图,在四边形ABCD中,AB=,AD=7,BC=8,tan ∠B=,∠C =∠D,则线段CD的长为________.22、如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则cot∠EAB的值为________23、如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,那么该斜坡的坡比是________ .24、如图,利用标杆测量楼房的高度,如果标杆长为3. 6米,若,米,则楼高是________米.25、在Rt△ABC中,∠C=90°,cosB=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B′D:CD=________.三、解答题(共5题,共计25分)26、计算:27、南沙群岛是我国的固有领土,现在我南海渔民要在南沙群岛某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为防止某国的巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.28、写出下列函数的关系式:有一个角是60°的直角三角形的面积S与斜边x的之间的函数关系式.29、如图,某学校数学兴趣社团成员想测量斜坡旁一棵树的高度,他们先在点处测得树顶的仰角为60°,然后在坡顶测得树顶的仰角为30°,已知斜坡的长度为,的长为,则树的高度是多少米.30、计算:()﹣1﹣2cos60°+(2﹣π)0.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、C6、C7、C8、C9、A10、A11、A12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下册第一章 直角三角形的边角关系【知识要点】 一、锐角三角函数:正切:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即bA atan =;正弦:...在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即ca sin =A ;余弦:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cA b cos =;余切:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cA b cot =;注:(1)sinA,cosA,tanA, 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).(2)sinA,cosA,tanA, 是一个完整的符号,表示∠A,习惯省去“∠”号; (3)sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均﹥0,无单位.(4)sinA,cosA,tanA, 的大小只与∠A 的大小有关,而与直角三角形的边长无关.(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.1、三角函数和角的关系tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

sinA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,sinA 的值越大。

cosA 的值越小,梯子越陡,∠A 越大;∠A 越大,梯子越陡,cosA 的值越大。

2、三角函数之间的关系 (1)互为余角的函数之间的关系 若∠A 为锐角,则 ①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=;)90tan(cot A A ∠-︒=(2)同角的三角函数的关系 1)平方关系:sinA 2+cosA 2=1 2)倒数关系:tanA ·cotA =13)商的关系:tanA =A o A s c sin ,cotA二、解直角三角形:※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

◎在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有 (1)三边之间的关系:a 2+b 2=c 2;(2)两锐角的关系:∠A +∠B=90°; ◎解直角三角形的几种基本类型列表如下:(3)边与角之间的关系:;cot ,tan ,cos ,sin abA baA cbA caA ====;cot ,tan ,cos ,sin ba B ab B ca B cbB ====(4)面积公式:c ch ab 2121S ==∆(h c 为C 边上的高);(5)直角三角形的内切圆半径2cb a r -+=(6)直角三角形的外接圆半径c R 21=三、解直角三角形的应用:1、当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..2、 如图2,坡面与水平面的夹角叫做坡角.. (或叫做坡比..)。

用字母i 表示,即A lhi tan ==◎从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

图1图 3图4◎指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角...。

如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

【基础训练】 锐角三角函数定义 一、填空题1.如图所示,B 、B ′是∠MAN 的AN 边上的任意两点,BC ⊥AM 于C 点,B ′C ′⊥AM 于C ′点,则△B'AC ′∽______,从而ACB A BC C B )()(='='',又可得 ①='''B A C B ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比是一个______值; ②=''B AC A ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比也是一个______;图2h③='''C A C B ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比还是一个______.第1题图2.如图所示,在Rt △ABC 中,∠C =90°.第2题图①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______, 斜边)(cos =B =______;③的邻边A A ∠=)(tan =______, )(tan 的对边B B ∠==______.3.因为对于锐角的每一个确定的值,sin 、cos 、tan 分别都有____________与它______,所以sin 、cos、tan都是____________.又称为的____________.4.在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sinA =______,cosA =______,tanA =______, sinB =______,cosB =______,tanB =______.5.在Rt △ABC 中,∠C =90°,若a =1,b =3,则c =______, sinA =______,cosA =______,tanA =______, sinB =______,cosB =______,tanB =______.6.在Rt △ABC 中,∠B =90°,若a =16,c =30,则b =______, sinA =______,cosA =______,tanA =______,sinC =______,cosC =______,tanC =______.7.在Rt △ABC 中,∠C =90°,若∠A =30°,则∠B =______, sinA =______,cosA =______,tanA =______, sinB =______,cosB =______,tanB =______.二、解答题8.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .9.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cosB .综合、运用、诊断10.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sinB 、cosB 、tanB .11.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tanB .12.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sinB .拓展、探究、思考13.已知:如图,Rt △ABC 中,∠C =90°,按要求填空:(1),sin ca A =∴=⋅=c A c a ,sin ______; (2),cos cb A =∴b =______,c =______; (3),tan ba A =∴a =______,b =______;(4),23sin =B ∴=B cos ______,=B tan ______; (5),53cos =B ∴=B sin ______,=A tan ______;A BC (6)∵=B tan 3,∴=B sin ______,=A sin ______.正切:1、在Rt △ABC 中,锐角A 的对边和邻边同时扩大100 倍,tanA 的值( )A.扩大100倍B.缩小100倍C.不变D.不能确定2、已知∠A,∠B 为锐角(1)若∠A=∠B,则tanA tanB; (2)若tanA=tanB,则∠A ∠B.3、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.正弦和余弦:1.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 2.在Rt ABC ∆中, 90=∠C ,如果2=AB ,1=BC ,那么B sin 的值是( )A.21 B.23 C.33 D.33.在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则t a n A =4.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为 米.5.如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( ) A.12C.1 D三角函数值的计算 一、填空题1.填表.锐角 二、解答题2.求下列各式的值. (1)o 45cos 230sin 2-︒ (2)tan30°-sin60°·sin30°(3)cos45°+3tan30°+cos30°+2sin60°-2tan45° (4)︒+︒+︒+︒-︒45sin 30cos 30tan 130sin 145cos 2223.求适合下列条件的锐角. (1)21cos =α (2)33tan =α (3)222sin =α (4)33)16cos(6=- α综合、运用、诊断4.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.5.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ACB 的值.6.已知:如图,Rt△ABC中,∠C=90°,∠BAC=30°,延长CA至D点,使AD =AB.求:(1)∠D及∠DBC;(2)tanD及tan∠DBC;(3)请用类似的方法,求tan22.5°.7.已知:如图,Rt△ABC中,∠C=90°,3=AC,作∠DAC=30°,AD交=BCCB于D点,求: (1)∠BAD;(2)sin∠BAD、cos∠BAD和tan∠BAD.8.已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .拓展、探究、思考9.已知:如图,∠AOB =90°,AO =OB ,C 、D 是上的两点,∠AOD >∠AOC ,求证:(1)0<sin ∠AOC <sin ∠AOD <1;(2)1>cos ∠AOC >cos ∠AOD >0;(3)锐角的正弦函数值随角度的增大而______;(4)锐角的余弦函数值随角度的增大而______.10.已知:如图,CA ⊥AO ,E 、F 是AC 上的两点,∠AOF >∠AOE .(1)求证:tan ∠AOF >tan ∠AOE ;(2)锐角的正切值随角度的增大而______.11.已知:如图,Rt △ABC 中,∠C =90°,求证:(1)sin 2A +cos 2A =1 (2)⋅=A AA cos sin tan解直角三角形(一)一、填空题1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系:__________________________________.②两锐角之间的关系:__________________________________.③边与角之间的关系:==B A cos sin ______;==B A sin cos _______; 第1题图 ==B A tan 1tan _____; ==B Atan tan 1______. ④直角三角形中成比例的线段(如图所示).第④小题图在Rt△ABC中,∠C=90°,CD⊥AB于D.CD2=_________;AC2=_________;BC2=_________;AC·BC=_________.⑤直角三角形的主要线段(如图所示).第⑤小题图直角三角形斜边上的中线等于斜边的_________,斜边的中点是_________.若r是Rt△ABC(∠C=90°)的内切圆半径,则r=_________=_________.⑥直角三角形的面积公式.在Rt△ABC中,∠C=90°,S△ABC=_________.(答案不唯一)2.关于直角三角形的可解条件,在直角三角形的六个元素中,除直角外,只要再知道_________(其中至少_________),这个三角形的形状、大小就可以确定下来.解直角三角形的基本类型可分为已知两条边(两条_________或斜边和_________)及已知一边和一个锐角(_________和一个锐角或_________和一个锐角)3.填写下表:二、解答题4.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ;(3)已知:32sin =A ,6=c ,求a 、b ;(4)已知:,9,23tan ==b B 求a 、c ;(5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .拓展、探究、思考8.如图所示,甲楼在乙楼的西面,它们的设计高度是若干层,每层高均为3m,冬天太阳光与水平面的夹角为30°.(1)若要求甲楼和乙楼的设计高度均为6层,且冬天甲楼的影子不能落在乙楼上,那么建筑时两楼之间的距离BD至少为多少米?(保留根号)(2)由于受空间的限制,甲楼和乙楼的距离BD=21m,若仍要求冬天甲楼的影子不能落在乙楼上,那么设计甲楼时,最高应建几层?9.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地多少距离?10.已知:如图,在高2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要多少米?(保留整数)、解直角三角形(二)1.已知:如图,△ABC中,∠A=30°,∠B=60°,AC=10cm.求AB及BC的长.2.已知:如图,Rt△ABC中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm,AD的长.3.已知:如图,△ABC中,∠A=30°,∠B=135°,AC=10cm.求AB及BC长.4.已知:如图,Rt△ABC中,∠A=30°,∠C=90°,∠BDC=60°,BC=6cm.求AD的长.综合、运用、诊断5.已知:如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50m.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求山的高度及缆绳AC的长(答案可带根号).三角函数的应用1、船有触礁的危险吗例1、已知:如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮继续向北航行时,与灯塔M之间的最短距离是多少?(精确到0.1海里,7323 ).1练习1、如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时.接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均受到影响.(1)问:B处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物?(供选用数据:2≈1.4,3≈1.7)练习2、、如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里)(以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈1.732.).2、测量物体的高度(1)例2、已知:如图,在某旅游地一名游客由山脚A 沿坡角为30°的山坡AB 行走400m ,到达一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶C 处观测到景点B 的俯角为60°.求山高CD(精确到0.01米).AP北40练习1、已知:如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°.点D到地面的垂直距离mDE,23求点B到地面的垂直距离BC.练习2、已知:如图,小明准备测量学校旗杆AB的高度,当他发现斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC =20m ,斜坡坡面上的影长CD =8m ,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面所成的锐角为30°,求旗杆AB 的高度(精确到1m).3、测量物体的高度(2)例3、某市为促进本地经济发展,计划修建跨河大桥,需要测出河的宽度AB, 在河边一座高度为300米的山顶观测点D 处测得点A,点B的俯角分别为α=30°,β=60°, 求河的宽度(精确到0.1米)BD AC练习1、如图:某水坝的横断面为梯形ABCD ,坝顶宽BC 为6米,坝高BH 为20米,斜坡AB 的坡度31:=i ,斜坡CD 的坡角为︒45.求(1)斜坡AB 的坡角;(2)坝底宽AD (精确到1米). (参考数据:41.12=,73.13= )直角三角形的边角关系基础性测试卷BA DC︒4531:H一、选择题1.如图,在ABC ∆中,AC =3,BC =4,AB =5,则tan B 的值是( )A .34B .43C .35D .452.在Rt ABC ∆中,90C ∠=,13AC AB =, 则cos A 等于( )A .3B .13C .D .43.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的点D '处,那么tan BAD '∠等于( )A .1BC .2D .4.如图.一个小球由地面沿着坡度i =1∶2的坡面向上前进了10m ,此时小球距离地面的高度为( )A .5mB .C .D .103m5.如图,在某海岛的观察所A 测得船只B 的俯角是30°.若观察所的标高(当水位为0m 时的高度)是53m ,当时的水位是+3m ,则观察所A 和船只B 的水平距离BC 是( ) A .50 m B .350mC .53 mD .353m6.如图,两条宽度均为40 m 的国际公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( ) A .αsin 1600(m 2) B .αcos 1600(m 2)C .1600sin α(m 2)D .1600cos α(m 2)7.某市为了美化环境,计划在如图所示的三角形空地上种植草皮,已知这种草皮每平方米售价为a 元,则购买这种草皮至少需要 ( )A .450a 元B .225a 元C .150a 元D .300a 元 8.身高相同的甲、乙、丙三人放风筝,各人放出线长分别为300米、350米、280米,线与地面的夹角分别为30°、45°、60°(假设风筝线是拉直的),三人所放风筝( )A .甲的最高B .乙的最高C .丙的最高D .一样高二、填空题1.在ABC ∆中,90C ∠=若tan B =2,1a =,则b = .2.在Rt ABC ∆中,3BC =,AC =90C ∠=,则A ∠= . 3.在ABC ∆中,90C ∠=,tan 2A =,则sin cos A A += .4.在Rt ABC ∆中,90C ∠=,4sin 5A =,20BC =,则ABC ∆的面积为 . 5.如图所示,在高2 m ,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要 m .6.如图所示,从位于O 处的某哨所发现在它的北偏东60°的方向,相距600 m 的A 处有一艘快艇正在向正南方向航行,经过若干时间,快艇到达哨所东南方向的B 处,则A ,B 的距离为 m .7.如图,在高为h 的山顶上,测得一建筑物顶端与底部的俯角分别为30°和60°,用h 表示这个建筑物的高为 .(第6题图) (第7题图) 三、解答题1.在等腰直角三角形ABC 中,90C ∠=,10AC =,D 是AC 上一点,若1tan 5DBC ∠=,求AD 的长.2.如图,学校的保管室里,有一架5米长的梯子斜靠在墙上,此时梯子与地面所成的角为45,如果梯子的底端O 固定不动,顶端靠在对面墙上,此时梯子与地面所成的角为60,求此保管室的宽度AB 的长.3.如图,在ABC ∆中,15AB =,BC =14,84ABC S ∆=.求tan C ∠的值。

相关文档
最新文档