最新(数学精品教案)人教版A高中数学必修2优秀教案名师优秀教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(数学精品教案)人教版A高中数学必修2优秀教案讲义1: 空间几何体
一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、
锥体、台体、球体及简单组合体的结构特征,并
能运用这些特征描述现实生活中简单物体的结
构.
二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.
三、教学难点:柱、锥、台、球的结构特征的概括. 四、教学过程:
(一)、新课导入:
1. 导入:进入高中,在必修?的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.
(二)、讲授新课:
1. 教学棱柱、棱锥的结构特征:
?、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征,把这些几何体用水平力推斜后,仍然有哪些公共特征,
?、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. ? 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).
结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.
?、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.
表示:棱柱ABCDE-A’B’C’D’E’
?、讨论:埃及金字塔具有什么几何特征,
?、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些
面所围成的几何体叫棱锥.
结合图形认识:底面、侧面、侧棱、顶点、高. ? 讨论:棱锥如何分类及表示, ?、讨论:棱柱、棱锥分别具有一些什么几何性质,有什么共同的性质,
?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都
是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形
?棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等
于顶点到截面距离与高的比的平方. 2. 教学圆柱、圆锥的结构特征: ? 讨论:圆柱、圆锥如何形成,
? 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的
几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围
成的几何体叫圆锥.
?结合图形认识:底面、轴、侧面、母线、高. ? 表示方法 ? 讨论:棱柱与圆
柱、棱柱与棱锥的共同特征, ? 柱体、锥体.
? 观察书P2若干图形,找出相应几何体;
三、巩固练习:
1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.
2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.
223.正四棱锥的底面积为46,侧面等腰三角形面积为6,求正cmcm四棱锥侧棱.
(四)、教学棱台与圆台的结构特征:
? 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征, ? 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做
棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.
结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.
讨论:棱台的分类及表示, 圆台的表示,圆台可如何旋转而得,
? 讨论:棱台、圆台分别具有一些什么几何性质,
? 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧
面是梯形;侧棱的延长线相交于一点.
? 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任
意两条母线的延长线交于一点;母线长都相等.
? 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什
么关系,圆台与圆柱、圆锥有什么关系, (以台体的上底面变化为线索) 2(教学球体的结构特征:
? 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫
球体.结合图形认识:球心、半径、直径.? 球的表示.
? 讨论:球有一些什么几何性质,
? 讨论:球与圆柱、圆锥、圆台有何关系,(旋转体)棱台与棱柱、棱锥有什么共性,(多面体)
3. 教学简单组合体的结构特征:
? 讨论:矿泉水塑料瓶由哪些几何体构成,灯管呢, ? 定义:由柱、锥、台、球
等几何结构特征组合的几何体叫简单组合体.
4. 练习:圆锥底面半径为,cm,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)
(五)、巩固练习:
1. 已知长方体的长、宽、高之比为4?3?12,对角线长为26cm, 则长、宽、高分别为多少,
2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高
3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.
?例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。
?解:考查其截面图,利用平行线的成比例,可得所求为9厘米。
? 例题2:已知三棱台ABC—A′B′C′ 的上、下两底均为正三角
形,边长分别为3和6,平行于底面的截面将侧棱分为1:2
两部分,求截面的面积。
(43 )
? 圆台的上、下度面半径分别为6和12,平行于底面的截面分
高为2:1两部分,求截面的面积。
(100π)
? 解决台体的平行于底面的截面问题,还台为锥是行之有效的一种方法。
讲义2、空间几何体的三视图和直视图一、教学要求:能画出简单几何体的三视图;能识别三视图所表
示的空间几何体. 掌握斜二测画法;能用斜二测
画法画空间几何体的直观图.
二、教学重点:画出三视图、识别三视图.
三、教学难点:识别三视图所表示的空间几何体. 四、教学过程:
(一)、新课导入:
1. 讨论:能否熟练画出上节所学习的几何体,工程师如何制作工程设计图纸,
2. 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远
近高低各不同。
不识庐山真面目,只缘身在此山中。
” 对
于我们所学几何体,常用三视图和直观图来画在纸上. 三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形. 用途:工程建设、机械制造、日常生活.
(二)、讲授新课:
1. 教学中心投影与平行投影:
? 投影法的提出:物体在光线的照射下,就会在地面或墙壁上
产生影子。
人们将这种自然现象加以的抽象,总结其
中的规律,提出了投影的方法。
? 中心投影:光由一点向外散射形成的投影。
其投影的大小随
物体与投影中心间距离的变化而变化,所以其投影不
能反映物体的实形.
? 平行投影:在一束平行光线照射下形成的投影. 分正投影、
斜投影.
? 讨论:点、线、三角形在平行投影后的结果. 2. 教学柱、锥、台、球的三视图:
? 定义三视图:正视图(光线从几何体的前面向后面正投影);
侧视图(从左向右)、俯视图
? 讨论:三视图与平面图形的关系, ? 画出长方体的三视图,
并讨论所反应的长、宽、高
? 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自
左而右)、上面(自上而下)三个角度,分别观察,画出观
察得出的各种结果. ? 正视图、侧视图、俯视图.
? 试画出:棱柱、棱锥、棱台、圆台的三视图. ( ? 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后),哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
? 讨论:根据以上的三视图,如何逆向得到几何体的形状.
(试变化以上的三视图,说出相应几何
体的摆放)
3. 教学简单组合体的三视图:
? 画出教材P16 图(2)、(3)、(4)的三视图.
? 从教材P16思考中三视图,说出几何体.
4. 练习:
? 画出正四棱锥的三视图.
? 画出右图所示几何体的三视图.
? 右图是一个物体的正视图、左视图和俯视图,
试描述该物体的形状.
(三)复习巩固、
1. 何为三视图,(正视图:自前而后;侧视图:自左而右;俯视图:自上而下)
2.定义直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.把空间图形画在平面内,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形
(四)、讲授新课:
1. 教学水平放置的平面图形的斜二测画法:
? 讨论:水平放置的平面图形的直观感觉,以六边形为例讨论. ? 给出斜二测画法规则:
建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;
画出斜坐标系,在画直观图的纸上(平面上)画出对应的
’’’’00'''OX,OY,使=45(或135),它们确定的平面表示水平,XOY
平面;
画对应图形,在已知图形平行于X轴的线段,在直观图中画
‘成平行于X轴,且长度保持不变;在已知图形平行于Y轴的线
‘段,在直观图中画成平行于Y轴,且长度变为原来的一半;
擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。
? 出示例1 用斜二测画法画水平放置的正六边形.
(师生共练,注意取点、变与不变 ? 小结:画法步骤) ? 练习: 用斜二测画法画水平放置的正五边形. ?讨论:水平放置的圆如何画,(正等测画法;椭圆模板) 2. 教学空间图形的斜二测画法:
? 讨论:如何用斜二测画法画空间图形,
? 出示例2 用斜二测画法画长4cm、宽3cm、高2cm的长方体的直观图.
(师生共练,建系?取点?连线,注意变与不变; 小结:画法步骤)
? 出示例3 (教材P20)根据三视图,用斜二测画法画它的直观图.
讨论:几何体的结构特征, 基本数据如何反应,
师生共练:用斜二测画法画图,注意正确把握图形尺寸大小的关系
? 讨论:如何由三视图得到直观图,又如何由直观图得到三视图,
空间几何体的三视图与直观图有密切联系. 三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸). 直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象. 3. 练习: 探究P21 奖杯的三视图到直观图.
(五)、巩固练习:
1. 练习:P21 1,5题
正视图俯视图左视图 2. 右图是一个几何体的三视图,请作出其直观图. 3. 画出一个正四棱台的直观图.尺寸:上、下底面边长2cm、4cm; 高3cm
(六)高考题:
??1((2007广东?文) 已知某几何体的俯视图是如图5所示的矩形,正视图(或
称主
视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视
图)是一个底边长为6、高为4的等腰三角形(
(1)求该几何体的体积V; (2)求该几何体的侧面积S ?解: 由已知可得该几何
体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD ;(1)
1 V,,,,,86464,,3
(2) 该四棱锥有两个侧面VAD. VBC是全等的等腰三角
28,,2形,且BC边上的高为 h,,,442, 另两个侧面VAB. 1,,2,,
26,,2VCD也是全等的等腰三角形,AB边上的高为 h,,,45;2,,2,,
11因此 S,,,,,,,,2(64285)4024222
?(2007年山东高考)(3)下列几何体各自的三视图中,有且仅有两个视图相同的是( D )
?正方形 ?圆锥 ?三棱台 ?正四棱锥
A(?? B(?? C(?? D(??
讲义3:空间几何体的表面积和体积一、教学要求:了解柱、锥、台的表面积计算公式;能运用柱锥
台的表面积公式进行计算和解决有关实际问题. 二、教学重点:运用公式解决
问题.
三、教学难点:理解计算公式的由来.
四、教学过程:
(一)、复习准备:
1. 讨论:正方体、长方体的侧面展开图,? 正方体、长方体的表面积计算公式,
2. 讨论:圆柱、圆锥的侧面展开图, ? 圆柱的侧面积公式,圆锥的侧面积公式,
(二)、1. 教学表面积计算公式的推导:
? 讨论:如何求棱柱、棱锥、棱台等多面体的表面积,(展开成平面图形,各面
面积和)
? 练习:求各面都是边长为10的等边三角形的正四面体S-ABC的表面积.
一个三棱柱的底面是正三角形,边长为4,侧棱与底面垂直,侧棱长10,求其
表面积.
? 讨论:如何求圆柱、圆锥、圆台的侧面积及表面积,(图?侧?表)
圆柱:侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱
r的高(母线), S=2,S=2,其中为圆柱底面,rrl(),,rl圆柱侧圆柱表
半径,为母线长。
l
圆锥:侧面展开图为一个扇形,半径是圆锥的母线,弧长
r0等于圆锥底面周长,侧面展开图扇形中心角为,,,,360l
rS=, S=,其中为圆锥底面半径,为母线长。
,rrl(),,rll圆锥侧圆锥表
圆台:侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆台下底周长,侧面展开图扇环中心角为
Rr,220,()rrlRlR,,,,S=,S=. ,()rRl,,360,,圆台侧圆台表l
? 练习:一个圆台,上、下底面半径分别为10、20,母线与底面的夹角为60?,求圆台的表面积. (变式:求切割之前的圆锥的表面积)
2. 教学表面积公式的实际应用:
? 出示例:一圆台形花盆,盘口直径20cm,盘底直径15cm,底部渗水圆孔直径1.5cm,盘壁长15cm.. 为美化外表而涂油漆,若每平方米用100毫升油漆,涂200个这样的花盘要多少油漆,
讨论:油漆位置,? 如何求花盆外壁表面积, 列式 ? 计
算 ? 变式训练:内外涂
? 练习:粉碎机的上料斗是正四棱台性,它的上、下底面边长分别为80mm、440mm,高是200mm, 计算制造这样一个下料斗所需铁板的面积.
(三)、巩固练习:
1. 已知底面为正方形,侧棱长均是边长为5的正三角形的四棱锥S-ABCD,求
其表面积.
2. 圆台的上下两个底面半径为10、20, 平行于底面的截面把圆台侧面分成的
两部分面积之比为1:1,求截面的半径. (变式:r、R;比为p:q)
3,求这个圆3. 若一个圆锥的轴截面是等边三角形,其面积为
锥的表面积.
*4. 圆锥的底面半径为2cm,高为4cm,求圆锥的内接圆柱的侧面积的最大值.
5. 面积为2的菱形,绕其一边旋转一周所得几何体的表面积是多少,
(四)、1. 教学柱锥台的体积计算公式:
? 讨论:等底、等高的棱柱、圆柱的体积关系,(祖暅(gèng,祖冲之的儿子)原理,教材P34)
? 根据正方体、长方体、圆柱的体积公式,推测柱体的体积计算公式,
VSh, ?给出柱体体积计算公式: (S为底面面积,h为柱体柱
2VShrh,,,的高)? 圆柱
? 讨论:等底、等高的圆柱与圆锥之间的体积关系, 等底等高的圆锥、棱锥之
间的体积关系,
? 根据圆锥的体积公式公式,推测锥体的体积计算公式, ?
1给出锥体的体积计算公式: S为底面面积,h为高) VSh,锥3
? 讨论:台体的上底面积S’,下底面积S,高h,由此如何计算切割前的锥体
的高,
? 如何计算台体的体积,
1'''? 给出台体的体积公式:S (S,分别上、下VSSSSh,,,()台3
底面积,h为高)
11''22 ? (r、R分别为圆台上底、,,,,,,,VSSSShrrRRh()()圆台33
下底半径)
? 比较与发现:柱、锥、台的体积计算公式有何关系,
从锥、台、柱的形状可以看出,当台体上底缩为一点时,台成为锥;当台体上
底放大为与下底相同时,台成为柱。
因此只要分别令S’=S和S’=0便可以从台体
的体积公式得到柱、锥的相应公式。
从而锥、柱的公式可以统一为台体的体积公式讨论:侧面积公式是否也正确, 圆柱、圆锥、圆台的侧面积和体积公式又可如
何统一,
(五)1. 教学体积公式计算的运用:
? 出示例:一堆铁制六角螺帽,共重11.6kg, 底面六边形边长12mm,内空直径
10mm,高10mm,估算这堆螺帽多少个,(铁
3) 的密度7.8g/cm
讨论:六角螺帽的几何结构特征, ? 如何求其体积, ? 利用哪些数量关系求个
数,
? 练习:将若干毫升水倒入底面半径为2cm的圆柱形容器中,量得水面高度为
6cm;若将这些水倒入轴截面是正三角形的倒圆锥形容器中,求水面的高度.
(六)、巩固练习:1. 把三棱锥的高分成三等分,过这些分点且平行于三棱锥底
面的平面,把三棱锥分成三部分,求这三部分自上而下的体积之比。
2. 已知圆锥的侧面积是底面积的2倍,它的轴截面的面积为4,求圆锥的体积.
2*3. 高为12cm的圆台,它的中截面面积为225πcm,体积为
32800cm,求它的侧面积。
4. 仓库一角有谷一堆,呈1/4圆锥形,量得底面弧长2.8m,母
3线长2.2m,这堆谷多重,720kg/m
(七)、1. 教学球的表面积及体积计算公式:
? 讨论:大小变化的球,其体积、表面积与谁有关,
2. 43,? 给出公式: V= ; S=4R(R为球的半径) ,R球面球3
?讨论:公式的特点;球面是否可展开为一个平面图形, (证明的基本思想
是:“分割?求体积和?求极限?求得结果”,以后的学习中再证明球的公式) ? 出示例:圆柱的底面直径与高都等于球的直径. 求球的体积与圆柱体积之比;证明球的表面积等于圆柱的侧面积.讨论:圆柱与球的位置关系,(相切) ? 几何量之间的关系(设球半径R,则…)
? 师生共练 ? 小结:公式的运用. ? 变式:球的内切圆柱的体积
?练习:一个气球的半径扩大2倍,那么它的表面积、体积分别扩大多少倍,
2. 体积公式的实际应用:
? 出示例:一种空心钢球的质量是142g,外径是5.0cm,求它
3) 的内径. (钢密度7.9g/cm
讨论:如何求空心钢球的体积,
? 有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放入一个半径为R的球,并注入水,使水面与球正好相切,然后将球取出,求此时容器中水的深度.
? 探究阿基米德的科学发现:图中所示的圆及其外切正方形绕图中由虚线表示的对称轴旋转一周生成的几何体称为圆柱容
2球。
在圆柱容球中,球的体积是圆柱体积的,球的3
A 2 2D 表面积也是圆柱全面积的. 3
(八)、巩固练习: 4 1. 一个正方体的顶点都在球面上,它的棱长为6cm,求这个球表面积和体积。
C B 5 2. 如果球的体积是V,它的外切圆柱的体积是V,球圆柱外切等边圆锥的体积是V,求这三个几何体体积之比. 圆锥
3. 如图,求图中阴影部分绕AB旋转一周所形成的几何体的表面积和体积。
*4(一个正方体的内切球的体积为V,求正方体的棱长。
若球与正方体的各棱相切,则正方体的棱长是多少,
5. 求正三棱柱的外接圆柱体体积与内切圆柱体积之比.
6. 已知球的一个截面的面积为9π,且此截面到球心的距离为4, 求此球的表面积和体积.
讲义4:空间的点、线、面之间的位置关系
第一课时 2.1.1 平面
新疆王新敞奎屯一、教学要求:1、理解平面的无限延展性;正确地用图形和符号表示点、直线、平面以及它们之间的关系;2、初步掌握
文字语言、图形语言与符号语言三种语言之间的转化二、教学重点:理解三条公理,能用三种语言分别表示. 三、教学难点:理解三条公理.
四、教学过程:
(一)、复习准备:
1. 讨论:长方体的8个顶点、12条棱所在直线、6个面之间有和位置关系,
(二)、讲授新课:
1. 教学平面的概念及表示:
? 平面的概念:平面是无限伸展的;
一个平面把空间分成两部分。
? 平面的画法:
画法:通常画平行四边形来表示平面。
———水平平面:通常画成锐角成45?,横边等于邻边的两倍。
非水平平面:只要画成平行四边形。
直立的平面:一组对边为铅垂线。
相交的平面:一定要画出交线;遮住部分的线段画虚线或不画。
C.练习: 画一个平面、相交平面
? 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。
,? 点与平面的关系:点A在平面内,记作;点不在平A,,A
,面内,记作. A,,
2. 教学公理1:
?揭示公理1:如果一条直线的两点在一个平面内,那么这条直
线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)
(2)、符号:点A的直线l上,记作:A?l; 点A在直线l
,l; 外,记作A
, 直线l在平面α内,记作lα。
?用符号语言表示公理1: AlBlABl,,,,,,,,,,,,
3.教学公理2:
?揭示公理2:经过不在同一条直线上的三点,有且只有一个平面。
记写:平面ABC。
4 .教学公理3:
?揭示公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
?符号:平面α和β相交,交线是a,记作α?β,a。
? 符号语
言:PABABlPl,,,,,
三、巩固练习:
1. 练习:P48 1,4
2. 根据符号语言画出下列图形:? a?α,A,B?a,但Bα;,
,? a?b,A,bα,aα ,
3. 过直线l上三点A、B、C分别作三条互相平行的直线a、b、c,讨论四条直线共面,
第二课时 2.1.2 空间直线与直线之间的位置关系
一、教学要求:了解空间两条直线的三种位置关系,理解异面直线的定义,掌握平行公理,掌握等角定理,掌握两条异面直线所成角的定义及垂直
二、教学重点:掌握平行公理与等角定理.
三、教学难点:理解异面直线的定义与所成角
四、教学过程:
(一)、复习准备:
1. 提问:同一平面上的两条直线位置关系有哪几种,三条公理的内容,
,,2. 按符号画出图形:aα,b?α,A,Aa
二、讲授新课:
1. 教学两条直线的位置关系:
? 实例探究 ? 定义异面直线:不同在任何一个平面内的两条直线.
? 以长方体为例,寻找一些异面直线, ?性质:既不平行,又不相交。
?画法:以辅助平面衬托:(三种)
?讨论:分别在两个平面内的两条直线,是不是异面直线,
?讨论:空间两条直线的位置关系:(整理如下)
,相交直线:同一平面内,有且只有一个公共点;,共面直线,, 平行直线:同一平面内,没有公共点;,,,异面直线:不同在任何一个平面内,没有公共点.,
2. 教学平行公理:
? 提出公理4:平行于同一条直线的两条直线互相平行, ? 出示例:空间四边形ABCD,EH分别是边ABAD的中点,、、
CFCG1F、G分别是边CB、CD上的点,且,,,求证:EFGHCBCD3
是梯形。
注意:什么是空间四边形, (四个顶点不在同一平面上的四边形);以及:平面几何中的性质,如何在立体几何中使用, 3. 教学等角定理:
? 讨论:平面几何中,两角对边分别平行,且方向相同,则两角有何关系,到立体几何中呢,
? 提出定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两角相等。
?试将题改写成数学符号语言题,并画出立体图形。
? 推广:直线a、b是异面直线,经过空间任意一点O,分别引直线a’?a,b’?b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。
? 图形表示
? 讨论:与点O的位置是否有关,为什么,最简单的取法如何取, ? 垂直
4. 小结:空间两直线的位置关系;公理4;等角定理;异面直线的定义、垂直、所成角.
三、巩固练习:
1. 教材P53 1、2题.
2. 已知空间边边形ABCD各边长与对角线都相等,求异直线AB和CD所成的角的大小.
第三课时 2.1.3 空间直线与平面之间的位置关系 & 2.1.4 平面与平面之间的位置关系
一、教学要求:了解直线与平面的三种位置关系,理解直线在平面外的概念,了解平面与平面的两种位置关系. 二、教学重点:掌握线面、面面位置关系的图形语言与符号语言. 三、教学难点:理解各种位置关系的概念.
四、教学过程:
(一)、复习准备:
1. 提问:公理1,4的内是什么,空间两条直线有哪几种位置关系,
2. 探究:以长方体为例,探求一面对角线与各面的位置关系, 生活中直线与平面的位置关系,
(二)、讲授新课:
1. 教学直线与平面的位置关系:
? 讨论:直线和平面有哪几种位置关系,
? 定义:直线和平面平行:直线和平面没有公共点。
?小结:三种位置关系:直线在平面内、相交、平行;
?探究:公共点情况;
?定义:直线在平面外:相交或平行的情况。
?三种位置关系的图形画法:
? 三种位置关系的符号表示:
,α a?α,A a?α (后两个统称为aα) a,2. 教学平面与平面的位置关系: ? 以长方体为例,探究相关平面之间的位置关系, ? 讨论得出:相交、平行。
?定义:平行:没有公共点;相交:有一条公共直线。
?符号表示:α?β、α?β,b ?举实例:… ? 画法:相交:……
平行:使两个平行四边形的对应边互相平行 ? 练习: 画平行平面;画一条直线
和两个平行平面相交;画一个平面和两个平行平面相交
? 探究:
A. 分别在两平行平面的两条直线有什么位置关系,
B. 三个平面两两相交,可以有交线多少条,
C. 三个平面可以将空间分成多少部分,
3. 小结:线面位置关系;面面位置关系.
三、巩固练习:
1. 三个平面两两相交于三条直线,交线不平行,求证:三条交线交于一点.。